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Merging and fragmentation in the Burgers dynamics
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We explore the noiseless Burgers dynamics in the inviscid limit, the so-called “adhesion model” in cosmol-
ogy, in a regime where (almost) all the fluid particles are embedded within pointlike massive halos. Following
previous works, we focus our investigations on a “geometrical” model, where the matter evolution within the
shock manifold is defined from a geometrical construction. This hypothesis is at variance with the assumption
that the usual continuity equation holds but, in the inviscid limit, both models agree in the regular regions.
Taking advantage of the formulation of the dynamics of this “geometrical model” in terms of Legendre
transforms and convex hulls, we study the evolution with time of the distribution of matter and the associated
partitions of the Lagrangian and Eulerian spaces. We describe how the halo mass distribution derives from a
triangulation in Lagrangian space, while the dual Voronoi-like tessellation in Eulerian space gives the bound-
aries of empty regions with shock nodes at their vertices. We then emphasize that this dynamics actually leads
to halo fragmentations for space dimensions greater or equal to 2 (for the inviscid limit studied in this paper).
This is most easily seen from the properties of the Lagrangian-space triangulation and we illustrate this process
in the two-dimensional (2D) case. In particular, we explain how pointlike halos only merge through three-body
collisions while two-body collisions always give rise to two new massive shock nodes (in 2D). This generalizes
to higher dimensions and we briefly illustrate the three-dimensional case. This leads to a specific picture for the

continuous formation of massive halos through successive halo fragmentations and mergings.
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I. INTRODUCTION

The Burgers equation, introduced at the end of the 1930s
in [1], was proposed as an archetype system for the dynamics
of pressureless gases. It indeed shares with the Navier-Stokes
equations its quadratic nonlinearity, and its symmetry prop-
erties (invariance under parity, under space and time transla-
tions). It fails however to reproduce the chaotic behaviors
one encounters in Navier-Stokes systems, as it became clear
when an explicit fully deterministic solution of this system
was found by Hopf [2] and Cole [3]. Nevertheless, the Bur-
gers dynamics has retained much interest for hydrodynami-
cal studies, as a benchmark for approximation schemes [4]
and as a simpler example of intermittency phenomena [5-7].
Moreover, the Burgers equation has also appeared in many
physical contexts, such as the propagation of nonlinear
acoustic waves in nondispersive media [8] or the formation
of large-scale structures in cosmology [9,10], see [11] for a
recent review.

In particular, in the cosmological context it provides an
approximate description of the nonlinear evolution of the
large-scale structure of the Universe, and it leads to complex
structures (similar to the network of filaments observed be-
tween clusters of galaxies in simulations or in the sky) in
dimension two or larger [10,12-16]. In this cosmological
context (and also in many hydrodynamical studies) one is
interested in the noiseless inviscid limit, where the viscosity
is sent to zero and when the initial velocity field obeys
Gaussian statistics. Then, regular fluid elements are simply
free moving, until singularities (shocks) appear. There, the
infinitesimal viscosity prevents matter flows from crossing
each other and gives rise to shocks and massive local struc-
tures of various co-dimensions, of infinitesimal width. This
effect mimics the formation of gravitationally bound objects
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and allows to reproduce the skeleton of the large scale struc-
ture built by the exact gravitational dynamics with the same
initial conditions [13,14]. Then, this model is often referred
to as the “adhesion model,” following Ref. [9].

Many works have been devoted to the early stages of the
dynamics (see [17] and references in [11]) of such models,
where only a fraction of the mass has reached caustics, and
to the universal exponents associated with the formation of
these singularities. In this paper, our interest is more particu-
larly focused on a limit where almost all the fluid particles
have reached caustics and are actually in pointlike massive
objects. This is the regime of interest for cosmological pur-
poses, where the stochastic initial velocity field is Gaussian
with a power-law (or slowly running) power spectrum
[analogous to fractional Brownian motion in one dimension
(1D)]. Moreover, we are mostly interested in the distribution
of matter (i.e., the density field generated by the Burgers
velocity field, starting with a uniform initial density), rather
than in the properties of the velocity field itself.

Here, we must note that the Burgers equation itself, and
its Hopf-Cole solution, refers to the equation of motion for
the velocity field. Since we are interested in the evolution of
the matter distribution, we need to couple this velocity field
to a density field and follow their simultaneous evolution.
Note that a significant difference with the gravitational dy-
namics is that the evolution of the velocity field is indepen-
dent from that of the density field, which in this sense plays
a passive role. The “standard” procedure would be to use the
usual continuity equation for the density field, and next take
the inviscid limit v— O0*. This is a natural and well-defined
model which has been studied for instance in Ref. [18]. A
drawback of this procedure is that, analytically, it only pro-
vides information on the instantaneous Eulerian velocity
field inside shocks; to fully obtain the Lagrangian map, nu-
merical integration cannot be avoided. One then loses the
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whole interest of having the Hopf-Cole solution at our dis-
posal.

There exists, however, an alternative procedure for the
evolution of the matter distribution which is embedded in the
Hopf-Cole solution for the velocity field. Indeed, as noticed
in Refs. [8,16,19], in the inviscid limit the Hopf-Cole solu-
tion implicitly provides an “inverse Lagrangian map,” x>,
which for regular points gives the Lagrangian coordinate q
of the particle that is located at position x at time 7. Once
shocks have formed, this map is not regular anymore and
cannot be inverted without ambiguities (except in the one-
dimensional case), since the “interior” of shock nodes are not
reached when the whole Eulerian space is spanned. How-
ever, using the fact that the “inverse Lagrangian map,”
X—>(, can be written in terms of a Legendre transform, it is
possible to define the “direct map,” q+— X, by Legendre con-
jugacy. In fact, this mapping can also be built as the inviscid
limit of a specific mapping x+«>q, which holds at finite v
where all points are regular. In this manner, to quote Ref.
[19], one obtains an “analytically convenient” model for the
density field, since the matter distribution can be obtained at
any time ¢ through Legendre transforms, or equivalent geo-
metrical constructions, without the need to explicitly solve a
differential equation over all previous times. Of course, this
implies in turn that the density field defined by this “geo-
metrical model” does not obey the standard continuity equa-
tion. More precisely, there appears a specific diffusive-type
term in the right hand side of the continuity equation. Then,
in the inviscid limit one recovers the standard behavior out-
side of shocks, but there remains significant differences
within the shock manifold. This is particularly manifest
when one tries to follow the history of accretion/merging of
mass clusters. As already noticed in Ref. [8] (chapter 6, see
also note [20]), in the geometrical model, and for dimensions
two and higher, mass clusters do not necessarily merge when
they collide, and the collision can give rise to several new
clusters (with an exchange of matter and a possibly different
number of outgoing clusters, as we shall explain in this pa-
per). This is clearly qualitatively at variance with what the
standard model gives rise to. In the latter case the resulting
mass evolution follows indeed that of a genuine “adhesion
model,” although some unexpected behaviors are still en-
countered. For instance mass clusters can leave shock nodes
and travel along the shock manifold [18].

The standard model and the geometrical model clearly
differ and while the first is based on a somewhat natural
assumption regarding the continuity equation, the second al-
lows easier numerical and analytical insights. Investigations
of the latter model is further justified from numerical works
that have shown that the latter provides a valuable model in
the cosmological context, as it builds large-scale structure
and even shock mass functions that are similar to those ob-
tained in the standard gravitational dynamics [10]. In any
case, it provides a rare example of a nontrivial mass trans-
portation, coupled to a dynamical velocity field, which can
be integrated and where significant analytical results can be
obtained.

In this paper, we revisit the “geometrical model,” focusing
on the late time mass distribution after (almost) all the mass
has reached the shock manifold and gathered in pointlike
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objects. The Hopf-Cole solution, and its geometrical inter-
pretation, provides a way to describe the mass distribution in
this limit and it corresponds, in Eulerian space, to a
“Voronoi-like” tessellation (as it was already noticed in [14]
and further described in more details in [16,19], and in the
review paper [21]). We further explore the consequences of
this construction in the context of cosmological studies by
paying special attention to the evolution with time of the
dual Lagrangian-space triangulation and Eulerian-space tes-
sellation. Thus, we describe how the halo masses can be
obtained, by means of Legendre transforms or geometrical
constructions, and eventually how they are rearranged as
time evolves. In particular, this allows us to obtain the pecu-
liar collision rules that drive the dynamics and to illustrate
with further details the exchanges of matter that can take
place during these events. In this paper we cover those as-
pects in a rather qualitative way, as the focus will be on the
description of these mechanisms and their illustration with
numerical simulations in the two-dimensional case. The out-
line of the paper is the following. The Burgers equation and
the Hopf-Cole solution are introduced in Sec. II. Its dual
description in both Eulerian and Lagrangian spaces is pre-
sented in Sec. III, together with a precise definition of the
inviscid limit associated with the “geometrical model” and
the resulting late time behavior of the displacement fields
and potentials. Finally, numerical results are presented in
Secs. IV and V for respectively the d=1 and d=2 cases, as
well as a detailed description of the fragmentation-merging
processes.

II. BURGERS DYNAMICS
A. Equations of motion

We consider the d-dimensional Burgers equation (with d
Z 1)9

Ju+ (u-V)u=rAu, (1)

in the inviscid limit, »— 07, for the velocity field u(x,7), and
the evolution of the density field p(x,t) generated by this
dynamics, starting from a uniform density p, at the initial
time r=0. As pointed out in the introduction, in this article
we study a specific “geometrical model” for the distribution
of matter, where the density field is not coupled to the veloc-
ity field Eq. (1) through the standard continuity equation but
through the modified Eq. (31) below. We shall discuss this
“geometrical model” in Sec. III and explain in details its
relationship with the Burgers dynamics Eq. (1). However, we
must first describe in this section the initial conditions that
we consider in this article and the properties of the Burgers
velocity field.

It is a well known result that if the initial velocity is
potential, uy=—V, it remains so forever [11], so that the
velocity field is fully defined by its potential ¢A(x,?), or by its

divergence 6(x,1), through
u=-Vy¢, 6=-V-u=Ay. (2)

Having in mind the use of the Burgers dynamics as a
model for the formation of the large-scale structure in cos-
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mology, we shall consider for numerical implementations the
case where ¢, is a random Gaussian field, statistically homo-
geneous and isotropic, thus entirely characterized by its
power spectrum (see for instance [22] for details). The power
spectrum of ¢, can be equivalently defined by that of the
velocity divergence, P (k), such that,

<50> =0, (50(1(1)50(1(2)) =op(k; + kZ)Pﬂo(kl)’ (3)

where we note Jp the Dirac distribution and 50 the Fourier
transform of the initial divergence,

%@:fm@“%@. (4)

For simplicity we shall also assume that the power spectrum
Pgo(k) is a power law of index n,

Py (k)= K34 with -3<n<I. (5)

2m)?
As a result, for the range —3<<n<1 the dynamics is self-
similar: a rescaling of time is statistically equivalent to a
rescaling of distances, as

A>0: t— A, x— ANy (6)

so that at a given time ¢ there is only one characteristic scale,
which we normalize as

L(1) = (2D V03, (7)

It marks the transition from the large-scale linear regime to
the small-scale nonlinear regime. In order to express the scal-
ing law Eq. (6) it is convenient to introduce the dimension-
less scaling variables

a4 _x _
L’ ~ L0 L@’

Then, equal-time statistical quantities (such as correlations or
probability distributions) written in terms of these variables
no longer depend on time and the scale X=1 is the charac-
teristic scale of the system.

We stress however that many properties that we discuss in
the following also apply to more general initial conditions
than Eq. (5), such as those with a scale dependent power
spectrum with a local slope n=d-3+d In Pgo/d In k that
could vary with k but remains in the range ]-3,1[ at very
small and very large scales. This is typically what is expected
in cosmology.

Q= (8)

B. Hopf-Cole solution

With the Hopf-Cole transformation [2,3], ¢(x,1)
=2vIn E(x,1), the nonlinear Burgers Eq. (1) transforms into
a linear heat equation for E(x, ), which leads to the solution

~ dq to(q) Ix—qlz}
¢(x,t)_2vlnj (4wvt)d/2eXp{ vy " am | 9)

Then, in the inviscid limit v— 0%, a steepest-descent method
gives [11,23]
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FIG. 1. (Color online) The geometrical interpretation of the
Hopf-Cole solution in terms of parabolas for the d=1 case.

_ x-qf
(x,1) = max| ¢(q) - 5 : (10)
q t

If the maximum in Eq. (10) is reached at a unique point,
q(x,1), no shock has formed there and the quantity q(x,?) is
the Lagrangian coordinate of the particle that is located at the
Eulerian position x at time 7 [11,23] (hereafter, we note by
the letter q the Lagrangian coordinates, i.e., the initial posi-
tions at =0 of particles, and by the letter x the Eulerian
coordinates at any time ¢>0). Moreover, still in the absence
of shocks, this particle has kept its initial velocity and we
have

(11)

u(x.1) = u[q(x.1)] = %(X’)

On the other hand, in case there are several degenerate solu-
tions to Eq. (10) a shock has formed at position x and the
velocity is discontinuous (as seen from Eq. (11), as we move
from one solution q_ to another one q, when we go through
x from one side of the shock surface to the other side) while
the density is infinite.

The solution Eq. (10) has a nice geometrical interpretation
in terms of paraboloids [11,23]. Thus, let us consider the
family of upward paraboloids P, .(q) centered at x and of
height ¢, with a curvature radius ¢,

_ 2
Pyo(q) = % +e. (12)

Then, moving down Py .(q) from ¢=+%, where the parabo-
loid is everywhere well above the initial potential i,(q) [this
is possible for the initial conditions Eq. (5) since we have
[o(q)| ~ g"'=""2, which grows more slowly than ¢> at large
distances], until it touches the surface defined by ¢(q), the
abscissa q of this first-contact point is the Lagrangian coor-
dinate q(x,7). If first-contact occurs simultaneously at sev-
eral points there is a shock at the Eulerian location x. One
can build in this manner the inverse Lagrangian map
x—(q(x,7). We show in Fig. 1 an illustration of this geo-
metrical construction in the one-dimensional case.
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III. LAGRANGIAN POTENTIAL AND MATTER DENSITY
FIELD

A. Finite viscosity >0

Alternatively, the Burgers dynamics can be entirely reex-
pressed in terms of Lagrangian-Eulerian mappings [10,11],
with the introduction of a time dependent Lagrangian poten-
tial ¢(q,7). As we shall discuss below, this also allows a
precise description of the dynamics from a Lagrangian point
of view, a precious perspective when one is interested in the
evolution of the matter distribution.

Note that the inviscid dynamics Eq. (10) is defined as the
limit of solution Eq. (9) at v— 0%, which is different from
setting »=0 in the right hand side of Eq. (1) (that would
correspond to the so called Zeldovich approximation [24] in
a cosmological context, which leads to multiflow regions if
we first go to Lagrangian coordinates). Thus, the inviscid
limit is singular in this sense and it is useful to start with v
>0 to remove possible ambiguities that would arise by
working with Eq. (10) from the onset. Therefore, following
[10], but for the case of nonzero v, let us introduce the func-
tion H(x,?), defined as

[x[?

H(x,1) = 7+t¢(x,t). (13)

From Eq. (9) it also reads as
d
H(x,)=2vt In f m elxa-lalP 2@V @r) (14)

Next, as in [8,19], let us define for any function A(q) its
“mean”

f qu(q)e[x-q—lq\2/2+tt//o(q)]/(2vt)

<A> , (15)

X, 51 =

f dgelxa-laPr2+i(@y v

seen as the average of A over a probability distribution for
the random variable q, at fixed x and ¢ for a given realization
of the potential ¢y. This is possible since the weight in the
average Eq. (15) is positive and normalized to unity. In par-
ticular, we have from Eq. (14)

oH

<>y g, = I

(16)
Note that <q>,. Yo is not the Lagrangian coordinate of the
particle located at x at time 7. Next, the second derivatives of
H(x) writes as

oH —L< >_<g> <g>
&xi&xj_2vt[ q9i4; ~ — ~4; h ]

- L <gm <gg- <g)>. (17

2vt
Therefore, in dimension d, the Hessian matrix of H(x) is the
covariance matrix of the d variables ¢, ... ,q; which implies
that it is positive semidefinite [19]. Moreover, it has vanish-
ing eigenvalues if and only if the distribution of the vector q
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is degenerate (it occurs for instance when the initial velocity
potential is separable, gbo(q):Eit//g)(q,-), and (/lg>= g) for
some pair i # j). For generic potentials i(q), such as those
obtained from the random Gaussian initial conditions Eq.
(3), the Hessian determinant of H(x) is strictly positive,
which implies that H(x) is strictly convex.

This latter property is crucial. It indeed allows to explic-
itly invert the function q(x,7)= <q>x 1y, defined in Eq.
(16). Thus, let us introduce the Legendre transform, ¢(q,?),
of H(x,t) as

¢(q.0) = LHx.n]=max[q-x-H(x.0)].  (18)

where we used the standard definition of the Legendre-
Fenchel conjugate f*(s) of a function f(x),

fis)=Lfx)]= sgp[s -x - f(x)]. (19)

Because H(x) is strictly convex, H(x,?) is also the Legendre
transform of ¢(q,7) and the correspondence q <« x associated
with the Legendre transforms is one-to-one. For a fixed value
of q its corresponding value x(q) is that which makes q-x
—H(x) maximal so that q and x obey the relation,

M&ﬂ=%g~ (20)
X

As a result q(x) is given by Eq. (16) whereas x(q) is given
by

x(q,t)z‘;—z. 21)

Finally, note that ¢(q) is strictly convex since the Hessian
matrix (6*¢/dq;dq;)=(dx;/ dg;) is the inverse of the matrix
(0q;/ ox;)=(3"H | dx;dx;), which is positive definite, as seen
above from Eq. (17).

We are now in position to compare the evolution with
time of the mapping q+— x introduced above with actual par-
ticle trajectories. First, we can note that from the definition
of the velocity potential Egs. (2) and (13) the Eulerian ve-
locity field also writes as

oy 1[

ux,n)=——=—|x . (22)

JH x—- < q>x,t;1//0
Jx t B

Jx

where we used Eq. (16). Note the similarity with Eq. (11)
obtained for the inviscid case at regular points. However, in
the viscous case u(x,?) is a priori different from the initial
velocity ug[ <q>]. It is interesting to note that we also have
the identity

x= <q>+1<uylq) >, (23)

which arises from a total derivative with respect to q of the
integrand in Eq. (15), whence

u(x, ) = < uo(ﬂ)>x,z;¢0- (24)

However, this does not imply that the Eulerian velocity field
is set by the initial velocity of Lagrangian particles that are
located at x at time ¢. In particular, we have <ugy(q)>
#uy(<q>). Nevertheless, we can already see from Egs.
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(22)—(24) that in the inviscid limit, »— 0%, and in regular
regions, the “mean” Eq. (15) becomes dominated by a single
point q and the variance <q>>, vanishes, in agreement with
Eq. (17). We shall then recover the equation of motion of
free Lagrangian particles. Of course, this does not hold
within “shocks,” where the “mean” Eq. (15) is degenerate
and receives contributions from several points q.

Second, taking the derivative with respect to time of the
implicit Eq. (16) at fixed <q> yields the system of equa-
tions

PH dx; FH
l=i=d: = —L 4 s (25)
&xi 3)6] 19t [9.xl'(9t

with summation over repeated indices (here j). Using expres-
sion Eq. (14) to compute the second term and Eq. (17) we
obtain

PH | ax; <q;> —x; PH
- T pl ekt JA . (6)
07xio7xj ot t (3xi(3xj(?xj

and multiplying by the inverse of the Hessian matrix,
(6°H/ dx;dx))™", gives
dx;
dt

ot

#H \! ’H
9x; I Xy ax,
(27)

i
=— =u;(x,t) — vl
(1) (ax,-,axj,

<q> ij

where we used Eq. (22). In Eq. (27) the first term simply
changes notation to rewrite dx/d¢ as a total derivative at
fixed <q>, in a form that is more familiar for a Lagrangian
point of view. Thus, Eq. (27) shows that the curves
x(<q>,1), seen as a function of time at fixed <q>, do not
follow particle trajectories since their time-derivative differs
from the Eulerian velocity field u(x,?).

What is then the resulting density field? As in [16,19], we
can take advantage of the mapping q<«x defined by Eq.
(16), that is by the Legendre conjugacy Eq. (18), to construct
the distribution of matter at any time ¢. That is, starting with
a uniform initial density p, at t=0, we can define a density
field at any time ¢ by

d ox \~!
p(x,1) = pg det(—q) =po det(—x> , (28)
ox aq

which also reads as

(x,1) dt( 82H) dt( Po
X,1)= € = ()
P Po ﬁxiﬁx]‘ Po &qlo"qj

-1
) . (29)

In Eq. (28) we used the fact that the determinants are posi-
tive, as shown by expression Eq. (29) and the convexity of
H(x) and ¢(q), so that we do not need to take the absolute
value to compute the Jacobians. Of course, this model for the
density field conserves the total mass. Thus, Eq. (29), built
from the Legendre conjugacy associated with Egs. (16)—(21),
is the definition of the “geometrical model” that we study in
this article. We use the label “geometrical” to refer to the fact
that it is based on Legendre transforms, which have a geo-
metrical interpretation in terms of convex hulls as we shall
discuss below. Moreover, it is clear from Eq. (29) that one
can build in this manner the matter distribution at any time ¢
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without the need to follow the evolution of the density field
over all previous times, since the convex functions H(x) and
¢(q) can be computed from the Hopf-Cole solution Eq. (9),
as in Egs. (14) and (18).

Then, from the equation of motion Eq. (27), which gives
the “trajectories” at constant <q>, we obtain the evolution
with time of the density field defined by Egs. (28) and (29),
associated with this mapping x+« <q>. Thus, conservation
of mass yields the standard equation

d d
—p+v-<p—x ):0, (30)
ot dt <q>
which gives with Eq. (27)
ap P . a@kk]
L4V (pu)=v—| p(O@),—2|, 31
ot (pu)=v &xi[p( )ij o, (1)

where we introduced the Hessian matrix, ®, of H(x),
#H )

(9.xi(9.x]'

(®ij) = ( (32)
We can note that in the one-dimensional case, d=1, this is
identical to a simple diffusive term Ap, but in higher dimen-
sions this is generically different, see the note [25].

As proposed in [19], the density field defined by the map-
ping Eq. (28) can be interpreted by a stochastic process. In-
deed, with the help of an adequate “mean-field approxima-
tion” one can obtain Eq. (28) as the density field generated
by the motion of a passive tracer that moves along the Bur-
gers velocity field, to which a Brownian noise of amplitude
set by v is added (this actually yields a diffusive term vAp).
If one does not introduce such a “mean-field approximation,”
an analysis in terms of backward stochastic differential equa-
tions yields an inverse problem with no explicit solution,
which only simplifies to Eq. (28) in the inviscid limit v
— 0% [26]. Thus, it might be more convenient to simply de-
fine the density field through the Jacobian Eq. (28), or
equivalently by the modified diffusion Eq. (31). This pro-
vides an explicit interpretation in terms of continuum equa-
tions of motion as well as a simple solution at any finite » in
terms of the Legendre conjugacy Eq. (18). As described in
the next section, this “geometrical model” has a well-defined
inviscid limit, which allows us to recover the prescription
that was used in some previous numerical works [10].

B. Inviscid limit v—0

We now consider the inviscid limit v— 0*. As we recalled
in Sec. II B, the velocity potential is given by the maximum
Eq. (10), which shows degenerate maxima at shock posi-
tions. This also determines the Eulerian velocity field u(x, 7).
Next, we define the density field p(x,f) as the limit for v
— 07" of the density field Eq. (29) defined in the previous
section for finite viscosity.

As already argued in our introduction and in [16,19], the
main reason supporting the use of the definition Eq. (29),
that is Eq. (31), is that it allows an explicit integration of the
continuity equation as the density field is given by Eq.
(29)—which remains valid in the inviscid limit as seen
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below—for any time ¢. In other approaches one should a
priori numerically integrate the associated continuity equa-
tion over time. We also stress that the peculiar form of Eq.
(31) should not be a serious disadvantage, since outside of
shocks we recover the standard continuity equation and
“within” shocks the Burgers dynamics is usually seen as an
effective model.

First, let us define the “linear” Lagrangian potential

@1(q,1) by [10]

lal®
()DL(q7t) = T - tlﬂO(q)’ (33)
so that in the linear regime the Lagrangian map, q—X, as-
sociated with particle trajectories, is given by

Ie
X,(Q.1) = —°F = 4 + ug(Q). (34)

aq
Thus we recover the linear displacement field, x;—q
=tu,(q), which is valid before shocks appear, as seen in Eq.
(11) above. Next, introducing the function H(x,¢), defined as

in the viscous case by Eq. (13), we obtain from Eq. (10) the
expression

2
H(x,1) = maX[X q- % + ll/fo((l)} =Ll ec(q,0],
q

(35)

where we recognize the Legendre transform of ¢;. As re-
called below Eq. (10) this gives the inverse Lagrangian map
x—(q, (x,f) being the point where the maximum in Egq.
(10) and (35) is reached. Thus, q and x are Legendre-
conjugate coordinates. From the previous section this is also
the inviscid limit of the mapping x+« <q> introduced at
finite viscosity, and outside of shocks the direct Lagrangian
map, q—x(q,?), corresponds to particle trajectories. This
mapping is still given by Egs. (16) and (21), which read as

oH e
qx,0)=—, x(q,0)=—, (36)
ox aq

where the function ¢(q,?) is still defined by the Legendre
transform Eq. (18). From Eq. (35) and elementary properties
of Legendre transforms this implies that ¢(q,?) is also the
convex hull of the linear potential ¢;(q),

@(q.1) = Ly[H(x,1)] = conv(ey). (37)

Of course, both functions H(x,t) and ¢(q,) remain convex
in the inviscid limit, in agreement with the fact that they are
still given by Legendre transforms, but they are not neces-
sarily strictly convex (i.e., their Hessian determinant may
vanish at some points). By Legendre duality, loss of convex-
ity in one of these functions (i.e., hyperplanar facets) is as-
sociated with singular points (with no well-defined gradient)
in the other one. This analysis shows how the prescription
Eq. (36), that was already used in some numerical computa-
tions [10], corresponds to the inviscid limit of the density
field Eq. (28) and of the mapping Egs. (16) and (21), intro-
duced at finite v in the previous section (see the note [27]).
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Thus, Egs. (35) and (37), which give the convex functions
H(x,1) and ¢(q,?), and Eq. (36) which gives the Lagrangian
to Eulerian space mapping, define the “geometrical model”
that we study in this paper, in the inviscid limit. This pro-
vides a simple model for the evolution with time of the dis-
tribution of matter, which is coupled to the Burgers equation
for the velocity field. This model has already been proposed
and studied in previous works [8,10,19], and the main goal
of the previous sections was to clearly set out its formulation
in terms of Legendre transformations and convex hulls, for
both finite and infinitesimal viscosity. This also allowed us to
derive the modified continuity Eq. (31) to which it corre-
sponds. In the following we shall investigate some of the
properties of this “geometrical model,” focusing on the re-
gime where all the matter is contained within shocks, which
holds as soon as >0 for the power-law initial conditions Eq.
(5).

The correspondence q < X is one-to-one as long as ¢;(q)
is smooth and strictly convex (which implies that H(x) obeys
the same properties). For generic initial conditions with an
ultraviolet cutoff this holds at early times, as shown by Eq.
(33). At late times (or also at small scales, for the power-law
initial conditions that we consider in this paper), fluctuations
of the initial potential ¢4 can make the linear Lagrangian
potential ¢; nonconvex. This corresponds to the formation of
shocks and the maximum Eq. (35) is degenerate. In one di-
mension, d=1, there are generically two degenerate Lagrang-
ian points, g_<gq,, which gives rise to a shock at Eulerian
position x,. This yields a discontinuity at x, in the slope
9H/dx(x;)=q~ and a discontinuity in the velocity u.=(x,
—q-+)/t. Moreover, since particles cannot cross each other (as
seen from the convexity of H(x) and ¢(g), which implies that
g(x) and x(g) are monotonically increasing), all the particles
initially located in the interval |g_,q,[ map to the shock
position x,.

We can check that this gives for the Lagrangian potential
¢(g), defined by x(q)=d¢/dq as in the second Eq. (36), the
expression ¢(q)=¢;(q_)+x,(g—q_) over lg_,q.,[. Therefore,
¢(q) is indeed the convex envelope ¢ of ¢; [10]. Thus, we
can see that in the one-dimensional case the knowledge of
the inverse Lagrangian mapping, x+>g¢, outside of shocks
(whence at their boundaries) is sufficient to reconstruct the
full direct Lagrangian map g+—>x. This also means that de-
fining the density field as the inviscid limit of Eq. (31) (or
equivalently in d=1 with a standard diffusive term Ap), or
using the standard continuity equation, give the same results.
As noticed above, this is no longer the case in higher dimen-
sions: the inverse map, X—q, is no longer sufficient to de-
fine the direct map, q— X, and one must explicitly define the
model used for the transportation of matter.

C. “Effective momentum” conservation

It is interesting to note that the “effective momentum”
defined by the velocity field u(x,¢) is conserved in a global
sense in the inviscid limit by the “geometrical model.” In-
deed, let us consider the total “momentum” over an Eulerian
volume V,,
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P=f dxp(x)u(x). (38)
v

X

Here, we consider a finite viscosity, ¥>0, so that the veloc-
ity and density fields are regular and the integral Eq. (38) is
well defined. Since u is not the actual velocity of Lagrangian
particles, as explained in Sec. IIT A, we refer to the quantity
defined in Eq. (38) as an “effective momentum.” Using the
expression Eq. (28) of the density field as the Jacobian of the
mapping x<« q, and the result Eq. (22), we obtain

x(Q)-q p de
PZPQJ dq—z_o dq a__q ) (39)

where V, is the Lagrangian space volume which corresponds
to Vy through the mapping x«< q. Then, considering for in-
stance the direction 1 in Cartesian coordinates, we can inte-
grate over g; as

2 2
_ 611+_91—}

P
P1=70fdQ2"'de{<P(41+w~)_99(41—"") 2

(40)

where g;+(q,...,q,) are the boundaries of the volume V, at
fixed (¢, ...,q,) (and we integrate over the projection of the
volume V, on the (d— 1) remaining directions). Here for sim-
plicity we assumed a convex volume (so that there are only
two boundaries ¢,-) but the calculation straightforwardly ex-
tends to the general case. The expression Eq. (40) holds for
any viscosity ». Then, in the inviscid limit, v— 0, the La-
grangian potential is given by the explicit expression Eq.
(37) as the convex hull of ¢,. If shocks are restricted to a
finite domain V"°*, which corresponds to the finite-mass
Lagrangian domain V;h“k, we can evaluate the total “effec-
tive momentum” P over a larger volume V, D V", as

Py = —Pof dgy - dqvo(qrs.--) = Yolqi-,...)], (41)

where we used Eq. (33), since ¢=¢, at the surface of V.
Next, using the definition of the initial velocity potential in
Eq. (2), we recognize in Eq. (41) the one component of the
initial momentum [dqpyu,. Therefore, in the inviscid limit
the “effective momentum” is conserved in any dimension,
even after shocks have formed, provided one considers the
total momentum over a volume such that its boundary is
regular (i.e., no shock crosses its boundary). Thus, there is no
“dissipation” of the “effective momentum” in the inviscid
limit.

In the general case, the “effective momentum” defined as
the inviscid limit of the expression Eq. (38) may differ from
the true momentum [dxpv, where v is the actual velocity of
Lagrangian particles, if shocks have formed. Indeed, in regu-
lar regions u— v in the inviscid limit, but along shock lines
where u(x,7) becomes discontinuous these velocities are not
identical. (Moreover, v depends on whether one uses the
“geometrical model” or a “standard model” based on the
usual continuity equation, as discussed in Sec. V D below.)

In one dimension, where there is no ambiguity and all
prescriptions for the density field match in the inviscid limit,
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conservation of momentum in this limit is a well-known
property [23]. Moreover, in this case the velocity v of shock
nodes is simply the mean of the left and right velocities u(x_)
and u(x,), and the “effective momentum” Eq. (38) is also
equal to the actual momentum of Lagrangian particles (both
are equal to [dgpyuy).

However, while in one dimension conservation of mo-
mentum also holds in a local sense, that is, the momentum of
a shock node is equal to the sum of the initial momenta of
the particles it contains, in higher dimensions this is no
longer the case as shocks can redistribute momentum among
themselves. We shall come back to the conservation of mo-
mentum in Sec. V E below, when we discuss the “late-time”
regime where all the matter has been redistributed over
shock nodes and it is not possible to draw volumes with
regular boundaries.

D. Late time structures

If one lets the system evolve for a long enough time,
shocks generically form that lead to the formation of low
dimension structures. Eventually, finite regions V, in q space
can map to a single positions X;, leading to a pointlike mas-
sive objects in the Eulerian density field. And finally, one
expects that, at late enough time, almost all the fluid particles
have reached such objects. Conversely, it implies that the x
space is partitioned into a set of finite domains, V, each of
them originating from infinitely small Lagrangian region, q,,
centered over a discrete number of points. This gives rise to
“voids” in Eulerian space, as the infinitesimal mass associ-
ated with Lagrangian position q, is spread over the finite
volume V; [8,21] and this occurs when the initial conditions
show significant UV power and ;,(q) has a local maximum
at q, with a discontinuous first derivative. In such regions,
the function H(x,r) is affine, with a constant gradient
JdH/ dx=q,, over the domain V.

This is the regime we investigate here. More precisely, we
assume that ¢;(q) shows infinitesimally thin downward
peaks over a set of peak locations q;, so that its convex hull
is supported by a subset of those points. It is only in the close
vicinity of those points that the mapping is regular, and thus
that the local density is there independent of the chosen
model for the continuity equation. However, almost all the
mass is then in the shock manifold(s) and the question we
want to address is how the mass is distributed within those
manifolds. For the 1D case the question can be easily an-
swered as shocks cover disconnected pointlike regions, each
of them being associated with a single mass halo. For higher
dimension cases however, the shocks form a single con-
nected manifold where objects of different dimension and at
different locations coexist. It appears that the way the mass is
distributed within this manifold inherently depends on which
prescription is adopted for the inviscid limit of the continuity
equation.

Let us then explore in more details the case of the geo-
metrical model in such a regime. Basic properties of its Leg-
endre transform can easily be derived as it then reads (for a
fixed time 1),

H(x) = me[x “q-@(q)]= m?X[X “q;—¢r(q)]. (42)

It is clear from this form that H(x) is affine over regions,
corresponding to a given i. Let us label them by the corre-
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sponding parameter i. Boundaries between two such regions,
say i and j, correspond to locations where

x-q;—¢(q)=x" q;— (PL(qj)’ (43)

In 2D this obviously corresponds to a straight line (and more
generally to hyperplanes). The x space is then partitioned
into polygons, in which H(x) is affine. This defines a tessel-
lation, which a priori resembles that of Voronoi (we shall see
later how the two are linked).

These regions are simply “voids” where the matter that
was in the infinitely small q-region i has spread. Note that
H(x) is continuous, but has discontinuous derivatives on the
boundaries of those regions, which thus correspond to
shocks. Depending on the space dimension there are shocks
of various dimensions. For instance in 2D, segments bound-
ing two adjacent domains are shock lines. They still gather
an infinitesimally small amount of matter, which corresponds
to that contained in the ridge joining two neighbored i re-
gions in q space (see [10,11] for a depiction of those ob-
jects). Most of the mass has actually reached the pointlike
shocks (all of the mass at any time >0 in the regime that we
consider in this paper). In Lagrangian space they correspond
to regions where the convex hull ¢(q) is of a constant slope.

An important geometrical result is that these regions are
triangles and that the triangulation is the one associated with
the tessellation we have just defined. Indeed each pointlike
shock is associated with each summit x,. of the tessellation.
Those points are at the intersections of 3 domains (in 2D)
and there are thus three values, i}, i, and i3, such that x.-q;
—¢.(q;) is constant. It can easily be checked that no points
inside the triangle (q;,q,,qs3) can be part of the convex hull
and the whole region within the triangle has reached the
point X.. In terms of mass distribution this means that the
mass function is given by the area distribution of triangles of
that triangulation. This property extends to higher dimen-
sions. In three dimensions (3D), the masses correspond to the
volume of tetrahedra [8].

This construction shares some similarities with the classi-
cal Voronoi tessellation/Delaunay triangulation dual con-
struction. Let us remind the reader that a Voronoi tessellation
is built from a set of seeds. It is the surface of a volume
partition whose domains are such that all points of each do-
main are closest to a given seed. The tessellation we have in
the present “geometrical model” is not a true Voronoi tessel-
lation. Indeed, the d—1 hypersurface defining the boundary
between two domains i and j, ng‘l), is equivalently defined
by

la; - x|* = 214(q,) = |(lj—X|2_2“»b0(qj)' (44)

It corresponds to the hypersurface of the equidistant points of
q; and q; only when ¢(q;)=(q;). It is however possible to
embed our d space into a d+1-space such that the extra
coordinate g% of q is \21[Cy—th(q)] (Where Cj, is a large
enough constant so that all these quantities are real, if we
consider a finite volume over q). Then the d-dimension hy-
persurface of the equidistant points between q; and q; (in the
d+1 space) is defined as
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|q; = x|* + e =24 Co — (g 1}
= |(Ij = xP+ = V21[ G, - '/fo(qj')]}z- (45)

Its intersection with the x4*!=0 hypersurface is nothing but
Sl(-;i_l). It straightforwardly follows that the tessellation we
have constructed is nothing but a plane cut through a higher
dimensional Voronoi tessellation. Note that some properties
of the Voronoi tessellation have then been lost. In particular,
seed points may have no domain at all associated with (this
is when they are not part of the convex hull) and the seed
point of a given domain does not necessarily sit within it.

It is interesting to note that standard Voronoi tessellations
have also been used in cosmology to study the large-scale
structures of the Universe. They provide a model of these
large-scale structures which can reproduce some properties
of the observed galaxy distribution [28-30]. On the other
hand, they can be used as data analysis tools, to measure for
instance the velocity field statistics [31]. See for instance
[32,33] for reviews. The facts that the Burgers dynamics
leads to generalized Voronoi cells as described above, see
also [21], and that this model provides a good description of
gravitational clustering at large scales in cosmology
[9,10,13,14], provide a further motivation for the use of
Voronoi tessellations in this context. Note that the Burgers
dynamics (more precisely its formulation as the “geometrical
model” studied here) also provides the dynamical evolution
of these tessellations, as a function of the initial conditions.
In particular, this makes explicit the connection with the
gravitational dynamics and the background cosmology.

The picture we have obtained so far is a simple conse-
quence of the convex hull construction from which the geo-
metrical model derives and describes a snapshot of the mass
distribution. The question we explore hereafter is how this
structure evolves with time.

IV. ONE-DIMENSIONAL DYNAMICS

As time grows one expects the fluid particles to aggregate
in halos of increasing mass. The net result of the time evo-
lution should then be that of merging effects. For the 1D
case, this happens simply by the merging of adjacent halos.
Let us illustrate the mechanism at play more explicitly.

A. Inverse and direct Lagrangian maps

From the Hopf-Cole solution Eq. (10), or the Legendre
transform Eq. (35), we obtain the Eulerian velocity field
u(x,r) and its potential i{(x,7), as well as the inverse La-
grangian map, x—>¢. As noticed above, from standard prop-
erties of Legendre transforms, and as can be directly checked
on Eq. (35), the map ¢(x) is monotonically increasing. This
expresses the fact that particles cannot cross, because of the
infinitesimal viscosity v. We plot for illustration in Fig. 2 the
results obtained for g(x) for one realization of the initial
conditions Eq. (5), in the six cases n=0.5, 0, 0.5, —1.5, -2,
and —2.5, at some time ¢. Note that we actually display the
dimensionless scaling variables X— Q, defined in Eq. (8), so
that the time of the output is irrelevant since the statistical
properties of the curve Q(X) (its increments if n=-1) do not
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FIG. 2. (Color online) The inverse Lagrangian map, X— Q, for
several initial power-spectrum index n. We display the results in
terms of the dimensionless scaling variables Q and X, so that the
properties of the curve Q(X) (its increments if n=-1) do not de-
pend on time.

depend on time. Moreover, we can check that the typical
scale (e.g., size of vertical jumps or horizontal plateaus) is
indeed of order unity.

We can check that Q(X) is monotonically increasing. In
agreement with previous works [6,10,34-37], we can see
that for —1 <n <1, which we shall label as the “UV class” of
initial conditions since Pgo(k) shows significant power at
high k, there are large voids (finite intervals over X where Q
is constant) and a finite number of shocks per unit length,
where Q(X) is discontinuous and shows positive jumps of
order unity. For -3 <n <<-1, which we shall label as the “IR
class” of initial conditions since Pgo(k) shows significant
power at low k, we can distinguish a proliferation of small
jumps [6,10]. Indeed, for n==-2 it can be shown that shocks
are dense in Eulerian space so that there is an infinite number
of shocks per unit length (the shock mass function diverges
at low mass) [7,38-40]. In addition, there are still large
shocks, of mass of order unity, associated with vertical jumps
of order unity.

The initial conditions used to generate Fig. 2 have the
same Fourier phase for each velocity mode iiy(k) for all n,
that is, going from the case n; to n, one only multiplies each
iiy(k) by k)2 to satisfy the power spectrum Eq. (5).
Moreover, the times are chosen so that a given X corresponds
to the same x [i.e., the figure is obtained from different times
with n, such that they all have the same scale L(f)]. As no-
ticed in [10], this makes the structures seen in the various
cases very similar, roughly located at the same places. This is
clearly apparent in Fig. 2 as we can see that the various
curves Q(X) roughly superpose on each other. (For the IR
class this is not always the case since structures can move
over a large distance because of the large power at long
wavelengths of the velocity field.)

Next, to derive the direct Lagrangian map, g—x, we do
not need to use the second Legendre transform Eq. (37) with
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FIG. 3. (Color online) The direct Lagrangian map, Q+— X, for
several initial power-spectrum index 7.

Eq. (36). Indeed, as noticed in Sec. III B, in one dimension
the map ¢(x) is sufficient to reconstruct x(¢) since particles
do not cross each other, so that both functions x(¢) and g(x)
are monotonically increasing [10]. Therefore, spanning g(x)
we obtain x(g) (up to the resolution of our grid). In other
words, rotating Fig. 2 by 90 degrees we can directly read
X(Q). We display our results in Fig. 3, for the same initial
conditions as in Fig. 2. We clearly see the horizontal plateaus
associated with shocks, that form a Devil’s staircase for —3
<n<-1 where there is a proliferation of small shocks, in
agreement with Refs [10,38].

For illustration purposes, even though it is not needed to
derive the Lagrangian map x(g), we display in Fig. 4 the
linear Lagrangian potential ¢;(¢) and its convex hull ¢(g),
for the cases n=0 and n—2, see also [10]. We use the dimen-
sionless scaling variables Q and ®=¢/L(f)’. For the white-
noise case, n=0, where ¢;(¢) has no finite first derivative,
the convex hull only touches ¢;(g) at isolated points, which
correspond to the boundaries of shocks in Lagrangian space
(and the position x, of the shock in Eulerian space is given
by the constant slope of ¢ in-between these boundaries
{9_.,q.}). Again, we can check that typical scales are of order
unity. For the Brownian case, n=-2, where ¢;(g) has no
finite second derivative, we can see some regions of La-
grangian space where the convex hull is significantly below
¢, over a large interval, associated with a massive shock, but
in many places it is hard to distinguish both curves. Indeed,
since shocks are dense there are finite-size regions which
contain an infinite number of contact points (note also the
different scales between the upper and lower panels).

B. Mergings

As time grows, shocks merge to form increasingly mas-
sive pointlike objects, so that their typical mass scales as
poL(t). Moreover, once two particles have coalesced into a
single shock they remain glued together ever after. Again,
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FIG. 4. (Color online) The linear Lagrangian potential ¢;(g) and its convex hull ¢(g), in terms of the dimensionless scaling variables Q
and ®=@/L(r)>. We show the cases n=0 (left panel) and n=—2 (right panel).

this can be directly seen from the Hopf-Cole solution Eq.
(10). Let us have a closer look on Fig. 1 which illustrates the
parabolic construction Eq. (12). On the left side we show the
case of a regular point x’, associated with a unique Lagrang-
ian coordinate ¢g’, whereas on the right side the first-contact
parabola P, . simultaneously touches the potential i(q) at
the two first-contact points ¢g_ and ¢,. This implies the points
within ]g_,q,[ cannot come into contact with a parabola.
There is actually a shock at the Eulerian position x, which
gathers all the mass associated with the Lagrangian interval
l9-.4.[. Then, as the parabola curvature decreases with time
as 1/t the points within the interval ]g_,g.[ will remain un-
reachable. This implies that this interval cannot be broken
into separate pieces and the whole interval |g_,q,[ can only
belong to a single shock, which can eventually grow larger.

We show in Fig. 5 the particle trajectories obtained for
one realization in the case n=0, using the physical coordi-
nates x and ¢, see also [41]. We can see how particles are
gathered into isolated shocks that merge as time grows to
build increasingly massive and rare pointlike masses. This
merging process happens when two lines meet. At such
points two halos merge into a single halo. The mass gathered
in a single halo then corresponds to the volume span by all
its progenitors. The average mass obviously grows with time
[according to the scaling law Eq. (6) for the initial conditions
Eq. (5)]. Note that in between mergings halos move along
straight lines, in agreement with Eq. (1). At merging point
their velocity changes. Its new value corresponds to the av-
erage of the mass weighted velocities of the halos that merge
together [23]. Note finally that in between lines there is no
matter left. These are voids.

Other spectrum indices in the range —1 <n <1 yield simi-
lar figures (with shocks getting more numerous for lower n),
while for -3 <n<-1 the particle trajectories fill the whole
(x,r) plane since shocks are dense in the Eulerian space.
Note however that their boundary lines are not dense in La-
grangian space. This is simply due to the fact that although
their number density is infinite, halos have finite masses.

V. TWO-DIMENSIONAL DYNAMICS

We now consider the two-dimensional case, d=2. The
Hopf-Cole solution and its associated parabola construction
can be transposed from the 1D case. The merging properties
of the halos are however much more intricate.

A. Lagrangian and Eulerian tessellations

In high dimensions the inverse Lagrangian map, x—q, is
still given by the Hopf-Cole solution Eq. (10), that is, by the
Legendre transform Egs. (35) and (36). In the one-
dimensional case, when shocks have formed, that is when x
maps to the degenerate pair {g_,¢,}, monotonicity arguments

B e e

FIG. 5. (Color online) The particle trajectories obtained for one
realization in the white-noise case n=0. For any time, each line
corresponds to a collection of particles that have reached the same
location.
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FIG. 6. (Color online) The partition of the Lagrangian space associated with triangular facets of the convex hull ¢(q) of the linear
Lagrangian potential. We plot the triangulation in terms of the dimensionless scaling coordinates (Q;,Q,). The Lagrangian potential
realization corresponds to the case n=0 (left panel) and n=-2 (right panel).

ensure that conversely the whole interval ]g_,q,[ maps to
position x. For higher dimensional cases this is no more the
case: the image of the function q(x) does not span the whole
q space so that the map x~—q does not fully determine the
inverse function x(q) by itself (and a further prescription
must be added). That would be the case if the first-contact
paraboloid Py, introduced in Eq. (12), associated with a
massive shock node at x, would make contact with the po-
tential y(q) over a closed curve C,. But this is generically
not so: Py, only touches the potential (q) over a few
points—from one for a regular point to d+1 for a shock
node. As described in Sec. III, this missing information is
provided by the Lagrangian potential ¢(q), through Egs. (36)
and (37), which take into account that the maps q(x) and
x(q) arise from the Burgers dynamics, to which we have
coupled the evolution of the matter distribution defined by
the “geometrical model.”

Since we focus in this section on the two-dimensional
case, for generic initial velocity potential ¢, the convex hull
¢ is made of regular parts, ruled surfaces and planar tri-
angles, see Fig. 5 of [10]. However, for the power-law initial
conditions Eq. (5), where the initial velocity potential obeys
the scaling law

law
N> 0:h(Aq) = N 2y(q), (46)

so that ¢;(q) shows no finite first derivative if -1 <n<1,
and no finite second derivative if =3 <<n<-1, there are no
regular parts and the convex hull is entirely made of planar
triangles. This corresponds to the late time limit described in
Sec. Il D, a regime in which all the mass is located within
shock nodes, see also [8]. Note that this holds for any dimen-
sion, for the initial conditions Eq. (5), the convex hull ¢(q)
being made of pieces of hyperplanes of dimension d, defined
by d+1 points. This is illustrated on Fig. 4 for the one-
dimensional case, on Fig. 6 for the two-dimensional cases.

We show in Fig. 6 the triangulations we obtain in the q
space at a given time and for one realization of the initial
potential ¢, for the two cases n=0 (left panel) and n
=-2 (right panel). We can see that we recover the qualitative
properties found in the one-dimensional case. In the case n
=0 contact points of the convex hull (which are the nodes of
the triangulations) are well separated and most triangles have
an area of order unity, which implies that in Eulerian space
shock nodes are in finite number per unit surface with
masses of order unity [in the dimensionless scaling units Eq.
(8)]. In the case n=-2 there are regions of the Lagrangian
space with an infinite number of nodes, with numerous tri-
angles of very small area (up to the numerical resolution),
which implies that in Eulerian space there is also an infinite
number of shocks per unit surface (in the mean), that is, the
mass function of shocks diverges at low masses. We can also
distinguish some “white” areas in the figure, associated with
triangles of area of order unity, that is, shock nodes with a
mass of order unity.

The Lagrangian space triangulation shown in Fig. 6,
which arises from the triangular facets of the convex hull
o(q), is associated with a dual partition of the Eulerian
space, which arises from the planar facets of the Legendre
transform H(x). Indeed, as explained in Sec. III, the convex
functions H(x) and ¢(q) are Legendre transforms of each
other, and the planar facets of ¢(q) are associated with ver-
tices of H(x), given by the second Eq. (36), whereas vertices
of ¢(q) (i.e., the nodes of the triangulation of Fig. 6, where
¢, makes contact with its convex hull) are associated with
planar facets of H(x), with a slope given by the first Eq. (36).

We show in Fig. 7 the resulting “Voronoi-like” tessella-
tion of the Eulerian space obtained for a realization of the
initial potential ¢, at a given time, for the n=0 case. In
agreement with the Lagrangian triangulations obtained in
Fig. 6, we can see that in the case n=0 shock nodes are
isolated and in finite number per unit area, while void sizes
are of order unity. In the case n=-2 cells have such a small
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FIG. 7. (Color online) The “Voronoi-like” tessellation of the
Eulerian space associated with planar facets of the convex function
H(x). It is the dual of the Lagrangian space triangulation of Fig. 6.
We plot the diagrams in terms of the dimensionless scaling coordi-
nates (X;,X,) for the case n=0.

area (which keeps decreasing as we increase the numerical
resolution) that vertices appear to cover the whole plane,
suggesting that shock nodes are dense, as in the one-
dimensional case.

Finally we show in Fig. 8 the Lagrangian coordinate Q,
(upper panel) and the velocity component U; (lower panel)
over the Eulerian X plane, for the case n=0. As explained
above, within each of the “Voronoi-like” cells shown in Fig.
7 the Lagrangian coordinate Q is constant, so that the surface
0,(X) shows a series of flat plateaus delimited by the bound-
aries of these cells, where finite jumps take place. Along the
X, direction jumps in Q; can be both positive and negative,
with an even distribution as the system is statistically homo-
geneous and isotropic, but jumps are always positive along
the X, direction. This is a consequences of elementary prop-
erties of the Legendre transform: as can be seen from the first
Eq. (36) and the fact that H(x) is convex, we have the two
relations (and similarly in higher dimensions)

94, =0, 92 =0, (47)

z?xl (9)62
which generalize the same one-dimensional property. How-
ever, as explained above, while in one dimension this non-
crossing property is sufficient to reconstruct the direct La-
grangian map, q+—X, in higher dimensions this requires the
use of the second Legendre transform Eq. (37). Note that by
the same convexity argument we also have

— =0, —=0. (48)

Over the “Voronoi-like” cells, q being constant we can see
from Eq. (11) that the velocity components are affine func-
tions of x. More precisely, we have for instance u;(x)=(x,
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FIG. 8. (Color online) The Lagrangian coordinate Q(X) (upper
panel) and the velocity U;(X) (lower panel) for a realization of the
case n=0. The coordinate Q; is monotonically increasing along
direction X; while U; shows ramps of slope unity separated by
downward jumps.

—q)/t, so that within each cell u; is constant along the x,
direction while it grows with a slope 1/¢ along the x; direc-
tion, as can be checked in the lower panel of Fig. 8. At the
boundaries of the cells, u; shows positive and negative
jumps, with an even distribution, along the x, direction, and
only negative jumps along the x; direction, as can be seen
from the behavior of ¢,(x).

B. Merging and fragmentation

As time goes on, the tessellation and its associated trian-
gulation are bound to evolve. For any dimension, Lagrangian
vertices (i.e., contact points between the linear Lagrangian
potential and its convex hull) at a time #, form a subset of the
vertices obtained at an earlier time #; <f,, as can be most
easily seen from the paraboloid construction Eq. (12). How-
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FIG. 9. (Color online) The evolution with time of the Lagrangian (upper row) and Eulerian (lower row) tessellations, for one field
realization with n=0.5. We show snapshots obtained at four successive times t,<<t; <t,<t3, from left to right (i) At time £, (first column)
we can see in the upper panel three colored triangles which happen to form a larger triangle. They correspond to the three shock nodes
around (X;=1.2, X,=1) in the lower panel, which form a triangular “Voronoi” cell. As seen in the second column, by time 7; these three
Lagrangian triangles have merged to leave the unique larger triangle. In doing so the central vertex q, has been removed, while in Eulerian
space the three shock nodes have merged. (ii) At time #; we have two colored triangles associated with the two shock nodes around (X
=2, X,=1.6) that are moving closer (compare with their position at 7). Between time 7, and 7, these two shock nodes collide and form two
new shocks moving outward in a roughly orthogonal direction, as seen in the third column, while in Lagrangian space there has been a flip.
(iii) A similar process occurs between times #, and 73, with the collision and “bouncing” of the shock nodes around (X; =2.2, X,=1.8). (iv)
The new triangulation obtained between times #; and #, has produced the configuration with the three colored triangles shown at time #5,
which now form a unique larger triangle (that was not the case at the earliest time 7). They are associated with the three shock nodes around

(X;=2, X,=1.5) which are moving closer. Thus, we recover a central configuration similar to the one shown at time #,, and these three
Lagrangian triangles and Eulerian shock nodes merge at a later time 74 (not shown).

ever, it is clear that a naive merging of neighboring triangles
in the Lagrangian-space triangulation shown in Fig. 6 does
not always produce a new triangulation, as four-sided poly-
gons would usually appear. Therefore, new triangulations ob-
tained at time 7,>1; cannot be merely coarser partitions of
the initial one. That is, even though all vertices seen at t,
were already vertices at ¢, triangles seen at 7, are not always
the union of smaller triangles obtained at #,. This implies that
a redistribution of matter throughout the triangulation must
take place. That can only be so through fragmentations of
shock nodes.

In order to show how it works let us simply examine, as
in Fig. 9, successive snapshots of the triangulations/
tessellations. Those presented have been obtained for one
realization of a field of index n=0.5 (this value was chosen
so that cells are of similar sizes to make the figure easier to
read but the qualitative behavior is identical to the n=0
case). We display in the upper row the Lagrangian space
triangulations and in the lower row the Eulerian space
“Voronoi-like” diagrams, obtained at four successive time
(from left to right). The time steps have been chosen so that
only a few rearrangements can be seen from one snapshot to
the other. For each output, we color the triangles (in La-
grangian space), and the associated shock nodes (shown by

triangular symbols in the lower panel in Eulerian space), that
are going to be affected. Note that the relative orders of the
Lagrangian triangles and of the Eulerian nodes match, in
agreement with the monotonicity relations Egs. (47) and
(48).

On these successive snapshots, only two types of triangle
rearrangement can be observed: (i) a flip (2—2): diagonal
inversion in a quadrangle formed by two adjacent triangles;
(ii) a three-merging (3—1): merging of three adjacent tri-
angles into a single one.

These properties can be understood from the convex hull
construction. For a generic time 7, the convex hull is entirely
made of triangular facets. This means that no four summits
of the convex hull are coplanar. As time is changing, critical
time values can be reached where four points become planar.
In between two critical time values the Lagrangian triangu-
lation simply does not evolve while the associated Eulerian
tessellation evolves continuously. At critical times, there are
two possibilities: either one of the four points is within the
triangle formed by the three others or not. The latter case
corresponds to a flip transition; the former to a three-
merging. Here we must note that the existence of “flip
events,” that is 2— 2 collisions with a redistribution of mat-
ter, was already noticed in [8] (the two-clump collision ac-
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FIG. 10. (Color online) A merging-fragmentation tree obtained
for one realization for the case n=0, d=2. The bottom plane corre-
sponds to the initial time where the Voronoi-like structure showing
the location of the halo nodes is shown. The top plane corresponds
to the final time. The tubes in between show the halo trajectories.
The section of each tube is proportional to its corresponding halo
mass. One can observe on this picture examples of 2+ 2 halo dif-
fusions and 3 — 1 mergings. Units are arbitrary.

companied by mass exchange shown in their Fig. 6.21).

Other transitions corresponding to a higher-order degen-
eracy (5 or more coplanar points) are possible in principle
but have a vanishing probability to occur. Thus, we now
clearly see how the system evolves with time through a suc-
cession of two-body and three-body collisions. Two-body
collisions of shock nodes only redistribute matter over two
new shock nodes and redefine the Lagrangian triangulation,
which allows the formation of specific central configurations
where the union of three neighboring triangles forms a larger
triangle. Next, such configurations allow the removal of the
central Lagrangian vertex, through the merging of the three
triangles, which corresponds to a simultaneous merging of
three shock nodes in Eulerian space.

To conclude this paragraph we present in Fig. 10 a real-
ization of a small fraction of a merging-fragmentation graph
obtained for the case n=0. The horizontal plane corresponds
to the Eulerian x plane while the vertical axis is the time
(units are arbitrary). Tubes correspond to trajectories of halo
nodes and their sections are proportional to their mass. One
can see that, similarly to the 1D case, the trajectories are
straight lines in between the collisions taking place at critical
times. In the d=2 case, collisions lead either to 2+ 2 scat-
terings with mass exchange or to 3 — 1 mergings. The former
process is unknown in d=1 case. The net result of these
effects [42] is to progressively diminish the number density
of halos—and to augment their average mass—in agreement
with the scaling law Eq. (7).

PHYSICAL REVIEW E 82, 016311 (2010)

C. Velocities in fragmentation events

Although it was already noticed in [8], the existence of
fliplike transitions, that is 2—2 collisions with mass ex-
change in 2D, is not widely known in the cosmological com-
munity. In particular, despite the “geometrical model,” which
gives rise to such events, has been studied in numerical
works [10,14] in the context of the formation of large-scale
structures in cosmology, other workers in this broader field
(who have not necessarily studied the problematics associ-
ated with the Burgers equation) are not always aware of the
fact that this peculiar model implies such splitting events in
dimensions two and higher (at least, the authors of this paper
were not aware of this behavior before working on the
present study).

Let us point out that the Eulerian-space and Lagrangian-
space tessellations have a different status in this regard. In-
deed, the Voronoi-like tessellation itself, shown in the bottom
row of Fig. 9 and in Fig. 7, is an Eulerian-space construction
that describes the regular regions. It is thus entirely defined
by the Burgers equation in its inviscid limit, through the
Hopf-Cole solution Eq. (10). This is not so for the triangu-
lation that lives in Lagrangian space, shown in the upper row
of Fig. 9 and in Fig. 6. It requires a prescription on where the
matter is actually going, that is, one must add to the Burgers
equation a second equation for the evolution of the density
field. One can choose the “standard” continuity equation, or
the modified continuity Eq. (31) associated with the “geo-
metrical model” described in Sec. III B, which we study in
this paper. Different models lead to different Lagrangian-
space tessellations, since mass clusters may or may not split
depending on the chosen prescription. This also means that,
even though they do not change the Voronoi-like diagrams,
that is, the cellular structure built by the shock manifold,
these different models put matter at different positions on
this shock manifold. As we have already mentioned, in the
“standard” model mass clusters cannot split but they may
leave shock nodes, as found in [18], whereas in the “geo-
metrical model” mass clusters can split but they are always
located on shock nodes (and each node is associated with a
mass cluster). Of course, the latter property is due to the
geometrical construction of this model, associated with the
Legendre transformations and convex hull constructions de-
scribed in Sec. III B. As explained in the previous section,
and illustrated in Fig. 9, this geometrical constraint (requir-
ing that the mass distribution is always defined by the dual
Eulerian Voronoi-like tessellation/Lagrangian triangulation)
implies in dimensions 2 and higher that collisions can redis-
tribute matter among mass clusters. In contrast, in the “stan-
dard” model, where mass clusters do not split, the tessella-
tions are not sufficient to recover the matter distribution
since clusters are not necessarily located at the summits of
the Voronoi-like cells (then, one needs to integrate the con-
tinuity equation over previous times to solve the problem).

In order to illustrate more clearly how the 2—2 collisions
proceed from a dynamical point of view, we show a simple
example of such a fliplike transition in Fig. 11. Such an event
was also described in Fig. 6.21 of Ref. [8], but we complete
the picture by plotting the associated Eulerian velocity field
u(x,7) and discussing in somewhat more details how this
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FIG. 11. (Color online) A collision of two shock nodes that gives rise to two new shock nodes with a redistribution of mass.

proceeds. This example also allows us to compare in Sec.
V D below the behavior of the “geometrical model” with that
of the “standard” model, using the results obtained recently
by [18]. We consider the simplest case where the initial ve-
locity potential ,(q) shows four spikes, labeled as points A,
B, C and D, of coordinates

L>¢>0: A=(-¢,0), B=(£,0)),

c=(0,L), D=(0,-L), (49)

with
Uo(A) =p(B) =0, ¢(C) = ypy(D) =, > 0. (50)

Other points in the q plane have much smaller values of
so that they do not play any role at the time of interest (we
can take Jy(q)=— everywhere outside of points
{A,B,C,D}). This simple case obeys at all times the two
parity symmetries x; <»—x; and x, < —x,. It is easiest to ana-
lyze the system with the help of the paraboloid construction
Eq. (12). At early time (left panel in Fig. 11), paraboloids
have a large curvature (i.e., they are highly peaked) so that
Eulerian positions x in the neighborhood of each summit
{A,B,C,D} are governed by the closest of these four points
(i.e., paraboloids of center x make first contact with the clos-
est peak among {A,B,C,D}). In particular, from Eq. (11) the
velocity field u(x) outflows from each of these points, as
seen in left panel of Fig. 11 (blue arrows). Next, the “domain
of influence” of summit A in Eulerian space (i.e., its
“Voronoi-like” cell) is delimited by straight lines defined as
the set of points x such that the first-contact paraboloid of
center X simultaneously touches summits A and B, A and C,
or A and D (and similarly for other summits). Of course, by
symmetry the frontier between the A cell and the B cell is
orthogonal to the segment (AB). These cells are shown by
the black lines in Fig. 11. Thus, at early times we have the
configuration displayed in the left panel, with two shock
nodes, shown by the big black dots, at the vertices of these
Eulerian cells. Then, the matter that has fallen into the upper
shock node comes from the upper triangle (ACB), whereas
the lower shock node contains the matter from the lower
triangle (ADB). This gives the triangulation of the Lagrang-
ian q space, which we show by the red dashed lines in the
figure. Note that in each panel we superpose the Eulerian
space (the velocity field marked by arrows, the “Voronoi-
like” cells marked by solid lines and the shock nodes marked

by big dots) and the Lagrangian space (the triangulation
marked by the dashed lines). From these partitions of the x
and q spaces we can also read the convex functions H(x) and
o(q) (i.e., this gives the projection of their planar facets).

As time grows the two shock nodes move closer toward
the center of the figure, until the merge at time #, shown in
the middle panel. At this time, the paraboloid of center (0,0)
makes simultaneous contact with the four summits
{A,B,C,D}, and the two triangles obtained at earlier times in
the left panel merge to form a losange.

Next, at later times we obtain the configuration shown in
the right panel, such that the paraboloid of center (0,0) only
makes contact with summits C and D. We now have two
shock nodes moving outward from the center along the hori-
zontal axis. The Lagrangian triangle associated with the left
(respectively, right) shock node is now (ACD) [respectively,
(BCD)]. Therefore, the matter within the losange (ACBD)
has been redistributed. In particular, the triangle (ACB) of
the left panel has been split into two parts, the left half going
into the left shock and the right half going into the right
shock. Thus, the unique central shock node obtained at time
t. has fragmented into two new shock nodes and some par-
ticles that had coalesced at earlier times 7 <<t, have separated
and now belong to two different objects.

It is interesting to note that it had been noticed in numeri-
cal simulations [14] that massive clumps seen in N-body
simulations of the gravitational dynamics generally are asso-
ciated with several nodes in the corresponding adhesion-
model simulations (i.e., defined by the same initial condi-
tions). This was interpreted as an inaccurate description of
the merging process, as the Burgers dynamics does not take
into account local gravitational forces. Our results show that
such differences may also be due to the specific fragmenta-
tion process associated with this Burgers dynamics.

D. Comparison with the “standard” model

The peculiar fragmentation process described in the pre-
vious section arises from our prescription Eq. (29) for the
density field, that is, from the modified continuity Eq. (31). If
we choose to set the right hand side of Eq. (31) to zero, that
is, for finite v the density field obeys the standard continuity
equation, we would obtain a different result with no frag-
mentation in the inviscid limit as studied in [18]. To illustrate
this point, let us consider the configuration shown in Fig. 11
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for a small nonzero viscosity, v>0. From Egs. (9) and (10)
we know that in the limit v— 0% the velocity field at any time
converges toward the inviscid solution displayed in Fig. 11.
The main difference is simply that at finite viscosity the dis-
continuities along the shock lines (black solid lines in the
figure) are smoothed over a small finite distance. In particu-
lar, the central shock node obtained at time 7, (middle panel)
has a small nonzero extension. Then, since the parity sym-
metries of the system are still exactly satisfied, we can see
that at infinitesimally later times the particles located in the
left part of this finite-size cloud experience a local velocity
field that points toward the left, whereas particles located in
the right part see a velocity field that points toward the right.
However, if we use the standard continuity equation this
does not lead to a splitting into two new symmetrical halos,
moving further apart as time grows. Indeed, the differences
between the velocities u(x, ) of the left and right parts of the
small central cloud go to zero with v (along with the size of
the cloud) so that the small cloud stays in the middle of the
new horizontal shock line in the inviscid limit. On the other
hand, if the spikes of the initial potential ¢ at points
{A,B,C,D} are not infinitesimally thin, two new horizontal
nodes appear as in the figure and are fed by the matter flow-
ing from the regular parts of these spikes (so that one obtains
three mass clusters, a motionless central one which has
stopped growing and two small outward-going ones which
have just formed).

As mentioned earlier, the evolution of matter within shock
lines was studied in [18], using the standard continuity equa-
tion for the evolution of the density field. It was found that
the trajectories obtained in the inviscid limit exist and are
unique, so that trajectories that pass through a point at a
given time coincide at all later times. Therefore, there is no
fragmentation of halos in this prescription. On the other
hand, clusters can stop growing and leave the shock nodes
(while remaining on shock lines), in agreement with the dis-
cussion above where we explained how within this prescrip-
tion a small halo would remain motionless at the center of
the right panel of Fig. 11. This approach can be extended to
more general Hamilton-Jacobi equations, with convex
Hamiltonians. Then, one again obtains a unique coalescing
flow [18,43].

The evolution with time of the shock lines themselves
(bifurcations, transitions) in 2D and 3D was studied in de-
tails in [44], for general initial conditions. In particular, both
the 2 — 2 “flip” and 3 — 1 merging events described above in
the “late-time” regime for the 2D case correspond to the A‘l‘
space-time event of Fig. 2 in [44], where the first-contact
paraboloid makes simultaneous contact with four ‘“non-
degenerate” points (in this classification a contact point is
called “nondegenerate” if (Py.—t) has a nonzero second
derivative there—in our case the second derivative is actu-
ally infinite).

E. Momentum exchange through shock node collisions

In the regime studied in this paper, associated with the
power-law initial conditions Eq. (5) or the late-time stage,
not only is all the matter content distributed within shock
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nodes but for d =2 shocks form a unique connected set that
spans the entire space. As a consequence, conservation of the
“effective momentum” defined in Eq. (38) during node col-
lisions cannot be inferred from the general result described in
Sec. I C: no volume V, with a regular boundary can be
drawn around a finite number of nodes. We explore here how
the actual momentum of the particles can be exchanged
through shock node collisions.

First, let us express the momentum of a given shock node.
We note {A,B,C} the summits of its associated triangle in
Lagrangian space, which corresponds to a triangular facet of
the convex hull ¢(q) of the Lagrangian potential. We con-
sider time values between critical times, that is, a time inter-
val during which the triangle {A,B, C} is left unchanged.

The relation Eq. (44) can be written for A and B and for A
and C. Differentiating those equations with respect to time ¢,
we get the node velocity v along the vectors q z=(q—qu

and q4c=qc—qy,
V- Qg = Yo(da) — Yolap): (51)

V- Qac= (a4 = Yolae)- (52)

Furthermore the mass of the node is given by the area of the
triangle

p
m= EO|qAB X Qac]- (53)

Introducing the momentum p=myv, those results can be re-
capped in a single expression. Defining the points {A,B,C}
in a fictitious 3D space

A={q14.924- Y(q)} - -, (54)

we obtain
_ Po = >
73={p,m}=?.AB>< AC, (55)

where AB=B- A, provided {q,z,quc} is positively oriented.

Note that we use the letter “v” for the shock node velocity
to distinguish this quantity from the Eulerian velocity u(x),
which is discontinuous along shock lines. Moreover, as seen
in the previous section and in Fig. 11, in dimensions d=2
the former is not given by the mean of “left” and “right”
Eulerian velocities (at 1>1, the two shock nodes shown in
the right panel of Fig. 11 have constant finite outward veloci-
ties v whereas the horizontal component of u is linear over
x; and goes to zero at the center of the figure). Thus, we
consider in this section the standard momentum of the par-
ticles, rather than the “effective momentum” introduced in
Sec. I C.

Let us now consider a 2 — 2 shock collision, such as the
one shown in Fig. 11. Without loss of generality, we can still
choose the common edge (AB) before collision on the hori-
zontal axis, C in the upper half plane and D in the lower half
plane in Lagrangian space, but with otherwise arbitrary co-
ordinates (i.e., the triangles need not be symmetrical). Then,
before collision the total three momentum reads as
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P ={Pasc+ Papp-Masc + Mapgt = Papc+ Papg, (56)

where we introduced the three momenta of the two shock
nodes, associated with the Lagrangian triangles (ABC) and
(ADB). At the time of the collision, paying attention to the
orientation of the Lagrangian-space triangles, we obtain from
Eq. (55),

P=%[A73>< AC+ AD x AB]
=%A}gxﬁC=%chp:4+p}gx DC]

=Ppca+ Ppsc- (57)

At collision time, we see clearly that both the mass and the
two-momentum p are conserved by the collision, as the
three-momenta associated with the two new shock nodes
again sum up to P. Note that the fact that both triangles
(DCA) and (DBC) are counterclockwise [so that Eq. (55)
applies with no further negative sign] comes from the con-
straint that we have a 2—2 collision rather than a 3—1
event (i.e., the 2D segment [CD] intersects the segment
[AB]).

Finally, let us consider a 3 — 1 merging event, such as the
one shown in left panel of Fig. 9. Thus, we choose a direct
triangle (BCD) with an inner summit A. Before merging the
three momenta associated with the three shock nodes (and
the three Lagrangian-space triangles) read as

Papc= %A% X AC, Pacp= %.,A(C X AD,

Papp= %Ab X AB, (58)
whence after straightforward manipulations
p > >
PABC + PACD + PADB = ZOBC X BD = PBCD' (59)

Therefore, momentum and mass are again conserved by the
3—1 collision.

The analysis described above, based on expression Eq.
(55), shows that momentum is conserved in the “late-time
regime” by shock node collisions. Note that this only holds
at a global level: the total momentum of the two nodes is
conserved in a fragmentation event but the momentum of a
given node is not necessarily equal to the total initial mo-
mentum of the matter particles it contains. Thus, in-between
arbitrary times t; <f,, momentum is only conserved over dis-
joint sets of particles, such that particles in a given set have
only been in contact during this time interval with particles
of the same set (so that there has been no exchange of mo-
mentum between different groups). In the d=1 case though,
there are only merging events and momentum conservation
is therefore ensured at the local level, in agreement with
well-known general results [23].

It is interesting to note that the momentum Eq. (55) coin-
cides with Eq. (41) if the initial velocity potential ¢, is affine
over the three edges (AB), (BC), and (CA) of the
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Lagrangian-space triangle {A, B, C}. In particular, this means
that the momentum of a given node is equal to the total
initial momentum of the matter particles it contains if the
initial velocity potential #(q) is affine over this triangle
{A,B,C} (this also explicitly shows that both quantities are
generically different for arbitrary potential i4,). Then, for the
power-law initial conditions Eq. (5) where the transition to
the “late-time” regime takes place at an infinitesimally small
time, t.,— 0%, with a characteristic scale L(t,) of the
Lagrangian-space triangulation that goes to zero, we can see
that the initial momentum is conserved (in a global sense)
since the piecewise affine approximation of i, defined by
this triangulation converges to .

VI. THREE-DIMENSIONAL DYNAMICS AND BEYOND

We now briefly discuss how the results illustrated in the
previous sections in dimensions d=1 and d=2 generalize to
higher dimensions, and in particular to d=3.

As noticed in [8], in three dimensions the Lagrangian-
space partition is made of tetrahedra (instead of triangles in
d=2), while the Eulerian-space partition is made of Voronoi
cells with an arbitrary number of summits. Then, the analysis
developed in the previous sections shows that the “flip” and
“three-merging” events discussed in the two-dimensional
case in Sec. V B generalize as the following rearrangements,
(i) 2—3: two adjacent tetrahedra are reorganized into three
new tetrahedra; (ii) 3— 2: three adjacent tetrahedra are reor-
ganized into two new tetrahedra; (iii) 4 — 1: merging of four
adjacent tetrahedra into a single one.

These events naturally involve five vertices since, as seen
from the paraboloid construction Eq. (12), an Eulerian-space
shock node is associated with four Lagrangian-space vertices
(where the paraboloid makes simultaneous first-contact with
o(q)), and rearrangements occur when a fifth summit en-
counters the hyperplane defined by these four points. Higher-
order events have a vanishingly small probability.

The last event, 4 — 1, which corresponds to the three-
merging event observed in d=2, occurs when a Lagrangian-
space summit which is located within the tetrahedron built
by four neighboring summits is removed from the convex
hull, as in the first step shown in left panel in Fig. 9. Indeed,
before its removal, this interior summit leads to a splitting of
the larger tetrahedron into four distinct tetrahedra, associated
with four shock nodes. After the removal, only the embed-
ding tetrahedron is left, which corresponds to a single shock
node that contains all the mass associated with the four pre-
vious shock nodes.

When the convex hull of the five Lagrangian vertices is
not a tetrahedron (i.e., no point is located within the tetrahe-
dron formed by the other four summits), one cannot build a
single tetrahedron by complete merging, so that, as in the
two-dimensional events shown in middle panels of Fig. 9,
one can only observe rearrangements of the matter distribu-
tion into new tetrahedra. This leads to both events 2— 3 and
3—-2.

We illustrate the first case, 2— 3, in Fig. 12. This corre-
sponds to Fig. 11, associated with 2—2 events in d=2. We
use the same notations and a similar symmetrical configura-
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1>t

FIG. 12. (Color online) A collision of two shock nodes that
gives rise to three new shock nodes, with a redistribution of mass,
in the three dimensional case. Left panel: at early times we have
two shock nodes (black dots), moving closer to the equatorial plane,
which contain the mass associated with the upper and lower tetra-
hedra (red dashed lines). Right panel: after collision at 7, we have
three shock nodes moving apart in the equatorial plane, while in
Lagrangian space the triangular bipyramid built by the two previous
tetrahedra has been split into three new tetrahedra, with a common
edge set by the segment joining the upper an lower summits (ver-
tical dashed line).

tion. Thus, we have three Lagrangian summits in the equa-
torial plane, z=0, which form an equilateral triangle of side €
with the same value 4™, and two symmetric summits on the
vertical axis at a larger distance L with the same value ¢
> o™, We again superpose the Eulerian-space Voronoi cells
(with edges shown by the black solid lines) and the
Lagrangian-space tessellation built from elementary tetrahe-
dra (dashed red lines). Then, at early times, using again the
Hopf-Cole paraboloid solution Eq. (12), each Lagrangian
summit is contained within its associated Voronoi cell and
for L large enough (or at small enough ¢) the central point
(0,0,0) “sees” the three equatorial summits. This leads to the
partition shown in the left panel with two shock nodes. As
time increases, since > y£% the Voronoi cells associated
with the two upper and lower points expand and eventually
make contact at the center, at the time ¢, when the two shock
nodes collide. Afterwards, these two Voronoi cells have a
common triangular facet in the equatorial plane, the cells
associated with the three equatorial summits being pushed
outward, and we have three outward-moving shock nodes. In
Lagrangian space, the two symmetric upper and lower tetra-
hedra shown in the left panel, which merge into a unique
volume at t=t,, have been split into three new tetrahedra,
with a common edge given by the segment that joins the
upper and lower summits.

As for the 2D case shown in Fig. 11, it is interesting to
note that the “standard” model would give a different behav-
ior. Indeed, extending the discussion of Sec. V D, we can see
that using the standard continuity equation we would obtain
a single mass cluster that remains motionless in the center of
the figure. Thus, there is no fragmentation but the cluster
leaves the shock nodes while staying within the shock mani-
fold. Note that this mass cluster is no longer located on
shock lines either, since it sits at the center of the horizontal
triangular facet of the shock manifold. This explicitly shows
that within this “standard” model matter can be distributed
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anywhere on the shock manifold, that is, not only on shock
nodes or shock lines, and that one needs to know the evolu-
tion of the system over all previous times.

It is clear that the reverse event, 3 — 2, can be obtained in
a similar fashion, by choosing the upper and lower summits
close to the equatorial plane (L<¢) with ¢/ < y£®". These
processes are naturally expected to generalize to higher di-
mensions, where the Lagrangian-space triangulation is built
from (d+1)-summit cells. Then, complete mergings are as-
sociated with (d+1)—1 collisions in Eulerian space, while
lower-order collisions, 2—d,3—(d—1),...,d— 2, are asso-
ciated with Lagrangian-space rearrangements. The latter lead
to a redistribution of matter, so that particles which had coa-
lesced into the same shock node at an earlier time can be
separated into distinct objects. Moreover, such collisions also
change the number of mass clusters in a very specific man-
ner, according to these rules.

VII. CONCLUSIONS, DISCUSSION

The Burgers equation, and its Hopf-Cole solution, only
determines the evolution of the velocity field and to couple
this to a transportation of matter one must add an equation
for the evolution of the density field. A natural choice would
be to use the “standard” continuity equation, as in [18], but it
should then be integrated numerically over time. In the in-
viscid limit, it also leads to behaviors that, at least in a cos-
mological context, are not necessarily realistic.

Here, we rather explore an alternative choice, which we
call the “geometrical model” that fully takes advantage of the
Hopf-Cole solution to define the matter distribution from a
geometrical construction. It is based on Legendre transfor-
mations and convex hull constructions, so that the matter
distribution is associated with dual Eulerian and Lagrangian
space tessellations [8,19]. In regular regions and in the invis-
cid limit, both approaches coincide. The geometrical model,
however, corresponds to a nonstandard continuity equation
for the density field that affects the mass behavior within the
shock manifolds.

The peculiarities of this model are best revealed in the late
time behavior of the density field or for power-law spectra
initial conditions. Then, in the inviscid limit that we investi-
gate in this article, the matter is entirely contained in shock
nodes, which have gathered the matter that was initially in
segments, triangles, or tetrahedra, for respectively the d=1,
d=2, or d=3 cases. In any dimension, those objects form a
partition of the Lagrangian space.

The most striking result of these investigations is the
mechanism with which the matter is rearranged in halos of
growing mass as the system is evolving with time. Indeed,
for dimensions greater or equal to 2, these rearrangements
follow a complex pattern of successive “flips” and “merg-
ings.” In d=2, we explicitly show that these “flips” corre-
spond in Lagrangian space to the rearrangements of two tri-
angles into two new triangles, and in Eulerian space to a
collision of two shock nodes giving rise to two new outward-
moving shock nodes. The “merging” events correspond in
Lagrangian space to the merging of three triangles into a
single larger triangle, and in Eulerian space to the simulta-
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neous merging of three halos into a single node. More com-
plex patterns are expected for higher dimensional cases.

We have also described how the “flips” or “fragmenta-
tion” events, associated with collisions that give rise to sev-
eral new shock nodes, lead to a redistribution of momentum
over outgoing nodes. This implies that momentum is only
conserved in a global sense in d =2 (whereas conservation of
momentum also holds in a stronger local sense in d=1,
where there are only merging events). Thus, in this regime
the inviscid limit of the Burgers equation leads to a specific
set of collision rules (see note [45]), such as {2—2,3—1}1in
2D and {2—3,3—2,4— 1} in 3D. In the present case, even
though shock nodes are infinitesimally thin, we have seen
that one must take into account up to (d+ 1)-body collisions
in dimension d, which still occur at a finite rate.

This peculiar behavior is due to the geometrical construc-
tion that defines the matter distribution and that allows to
integrate the equations of motion for both the velocity field
(using the standard Hopf-Cole solution of the Burgers equa-
tion) and the density field (by definition of this geometrical
construction). This is evidently a very convenient property
that has motivated this study. However, as shown here, this
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leads to a singular inviscid limit, in the sense that particles
that share the same location at a given time can separate at
later times—such singular behaviors are associated with col-
lisions between shock nodes—so that it does not lead to a
genuine “adhesion model.” This result emphasizes the fact
that the transportation of matter which can be associated to
the Burgers equation is a nontrivial process, whether one
uses the “standard” or the “geometrical” model, and that in
the latter case one must be aware of the peculiar merging and
fragmentation events that take place as shock nodes collide
and reorganize the shock manifold.
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