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The response behavior of binary fluid convection to low-frequency temporal modulation of the heating is
studied for the case of a negative Soret coupling between temperature and concentration gradients. Numerical
simulations using a finite difference method are carried out for ethanol-water mixtures subject to realistic
boundary conditions. We study in particular the response when the Rayleigh number periodically drops below
the saddle node in the bifurcation diagram of convective solutions under stationary heating, i.e., into a regime
where convection would die out in the absence of modulation. Quasiperiodic traveling waves, several different
periodic traveling waves, and synchronously modulated patterns with fixed spatial phase are found as stable
solutions depending on parameters. The symmetry properties of the different periodic traveling waves are
discussed. Anomalous variations of the mixing behavior relative to advection are observed and explained.
Lateral and temporal Fourier decompositions are used together with other diagnostic tools to analyze the
complex bifurcation and spatiotemporal properties that are caused by the interplay of modulated heating,

nonlinear advection, Soret induced gradients, and mixing of the fluid.
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I. INTRODUCTION

Self-organization and pattern formation phenomena ap-
pear in many nonlinear dissipative systems that are driven
sufficiently far away from thermal equilibrium [1]. One ex-
ample of such systems is convection in binary miscible fluids
such as, e.g., 3He-*He or ethanol-water. It shows a rich and
interesting variety of different patterns and it displays a wide
range of phenomena related to instabilities, transport, bifur-
cations, and self-organization with complex spatiotemporal
behavior.

Compared to convection in homogeneous fluids such as,
e.g., pure water or pure ethanol the spatiotemporal properties
of binary mixtures are rather complex. That is related to
concentration  gradients which are generated via
thermodiffusion—i.e., the Soret effect—by externally im-
posed and by internal temperature gradients. These concen-
tration gradients influence the buoyancy, i.e., the driving
force for convective flow. The latter in turn mixes the two
components of the binary mixture and therefore advectively
redistributes concentration. This nonlinear advection gets in
developed convective flow typically much larger than the
smoothing by linear diffusion: the Péclet numbers measuring
the strength of advective concentration transport relative to
diffusion are easily O(1000). In this case the concentration
balance is strongly nonlinear giving rise to large variations of
the concentration field with narrow boundary layers. The
momentum and heat balances, on the other hand, show
weakly nonlinear behavior close to onset as in homogeneous
fluids with smooth and basically harmonic variations of the
velocity and temperature fields as of the critical modes.

In the absence of the thermodiffusive Soret coupling be-
tween temperature and concentration gradients any initial
concentration deviation from the mean diffuses away and
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influences no longer the balances of the other fields. Hence,
the feedback interaction between (i) the Soret generated con-
centration variations, (ii) the resulting changes in the buoy-
ancy, and (iii) the strongly nonlinear advective transport and
mixing causes binary mixture convection to be rather com-
plex with respect to its spatiotemporal properties and its bi-
furcation behavior. In the case of modulated heating the
complexity of the interplay between these processes in-
creases even further as will be elucidated in this paper.

We investigate here convection in binary fluid mixtures in
the case of negative Soret coupling /<0 between tempera-
ture and concentration gradients [2,3] when the lighter com-
ponent migrates to cooler regions thereby stabilizing the den-
sity stratification in the quiescent laterally homogeneous
conductive fluid state. Then the above described feedback
interaction generates oscillations of mixture. In fact the
buoyancy difference in regions with different concentrations
was identified already in [4] as the cause for traveling-wave
(TW) convection.

In contrast to steady convection oscillatory behavior in
binary mixtures appears in a rather large variety: as transient
growth of convection at supercritical heating, in spatially ex-
tended nonlinear TW and standing wave (SW) solutions that
branch out of the conductive state via a common Hopf bifur-
cation, in spatially localized TW states, and in various types
of fronts [1,5-23]. The oscillations appear with different
characteristics. For instance, the Hopf frequency wp of the
oscillatory instability of the quiescent fluid characterizes the
linear stage of fast oscillating convective perturbations. On
the other hand, the upper solution branch of the stable
strongly nonlinear TWs that have bifurcated backward out of
the conductive state is characterized by much smaller fre-
quencies. Under modulation such systems can demonstrate
complex resonance phenomena [24,25].

The influence of time-dependent gravitational accelera-
tions or vibrations on the onset of Rayleigh-Bénard convec-
tion was studied in [26]. The linear stability problem for the
single component system was reduced to the damped
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Mathieu equation. It was shown that high-frequency vibra-
tions can increase the stability of the quiescent state. Finite
frequency vibrations, on the other hand, can destabilize the
quiescent state by resonance phenomena. The effect of
modulating the temperature of the horizontal boundaries on
the threshold for the onset of convection in a horizontal layer
of a homogenous fluid was studied in Refs. [27-29]. In the
quiescent basic state the temperature modulation drives heat
waves that propagate diffusively between the boundaries of
the layer.

The convective instability of a pure fluid under vibrations
or under a modulated temperature gradient can be related to
two types of critical disturbances that are in general the first
that get undamped: for a synchronous response the oscilla-
tion period of the convective disturbances coincides with the
period of the external modulation. In the case of a subhar-
monic response the period of the latter is twice as large as the
modulation period. The influence of temporal modulation on
pattern formation and nonlinear dynamics in pure liquids
was investigated experimentally [30] and theoretically [31].
A Lorenz-like model of the hydrodynamic equations was
used in these investigations.

In this work we consider spatially extended convection
patterns consisting of straight rolls as they appear in narrow
rectangular and annular channels. These structures can effi-
ciently be described in the two-dimensional vertical x-z cross
section in the middle of the channel perpendicular to the roll
axes ignoring variations in the y-axis direction. Furthermore,
these convection structures have relevant phase gradients
only in the x direction thus causing effectively one-
dimensional patterns [32]. For such structures we explore the
effect of modulating the heating rate, i.e., the forcing mecha-
nism that causes convection in the first place.

Modulated heating with a frequency () that is large com-
pared to the TW frequencies under stationary driving was
investigated in [24]. There, depending on parameters, the
following variety of the convective response behavior was
found: (i) synchronously oscillating rolls with a fixed spatial
phase, (ii) quasiperiodic TWs in which basically only the
amplitude is modulated, (iii) more strongly modulated TW's
where also the phase velocity gets modulated, and (iv) fre-
quency locked subharmonic SWs that get stabilized by the
modulation. All in all, high-frequency modulation with rela-
tive modulation amplitudes of 20% around the mean heating
rate extended the existence range of these oscillating struc-
tures to lower mean Rayleigh numbers in comparison to the
case of stationary thermal driving.

Here, we show why the response characteristics for low-
frequency modulation—being partly more complex—differ
from the high-frequency case. To that end we perform nu-
merical simulations of strongly nonlinear convection in bi-
nary mixtures with negative Soret coefficients. In particular
we elucidate the spatiotemporal behavior and the bifurcation
properties of different convective structures under temporal
modulation with amplitudes of 20% around the mean. Then,
the Rayleigh number periodically drops below the saddle
location of TWs under stationary heating, i.e., into a regime
where convection would die out in the absence of modula-
tion.

The paper is organized as follows. In Sec. II we describe
the problem and the governing equations. In Sec. III we give
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a brief summary of the unmodulated case and under large-
frequency modulation before presenting in Sec. IV our re-
sults in the presence of low-frequency modulation. The last
section is devoted to concluding remarks.

II. SYSTEM

We consider a horizontal plane layer of a binary fluid
mixture that is placed in the earth’s gravitational field with
the acceleration g. The layer is bounded by rigid perfectly
heat conducting and impervious parallel planes located at z
=0 and z="h. Thus, £ is the thickness of the layer. The fluid
might be a mixture of water with the lighter component eth-

anol at a mean mass concentration C. The temperature T, of
the upper boundary is fixed. The temperature 7; that is im-
posed at the lower boundary is modulated harmonically with
angular frequency () according to

T/(t) =T, + AT(1 + 8 sin Q). (2.1)

The mean temperature difference is AT and its relative
modulation amplitude is 8. We use T, as the reference tem-

perature 7 and we consider the (small) variations of the fluid
density p due to temperature and concentration variations to
be governed by the linear thermal and solutal expansion co-
efﬁcients a=—l§$ and B:—i%, respectively. Both are posi-
tive for ethanof—water.

A. Equations

To describe convection in this binary fluid mixture we use
the balance equations for mass, momentum, heat, and con-
centration in the Oberbeck-Boussinesq approximation which
read in nondimensional form [21,33,34]

V.v=0, (2.2a)

J
(9—: +(v-V)v==Vp+0V>v+oR(T+Ce., (2.2b)

aT
E +(v-V)T=VT, (2.2¢)

% +(v-V)C=LVA(C - ). (2.2d)

Here, v is the velocity field, p is the pressure, and e, is the
unit vector directed upward. T and C are scaled (cf. below)

deviations of temperature and concentration from T and C,
respectively. The field equations (2.2) contain the Rayleigh
number R characterizing the thermal driving of the fluid and
three other parameters describing the physical properties of
binary fluid mixture: the Prandtl number o, the Lewis num-
ber L, and the separation ratio i,
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Brr
oT

(2.3)

y=- =5,C(1 - c‘r)g.

Here, v is the kinematic viscosity, « is the thermal diffusiv-
ity, and D is the concentration diffusion constant of the mix-

ture, while k;=TC(1-C)S; is the thermodiffusion coefficient
[33] and Sy is the Soret coefficient. Furthermore, the follow-
ing scales have been used in Egs. (2.2): length, &; time, 7%/ «;
velocity, «/h; temperature, AT; concentration, «AT/B; and
pressure, pKz/ h2.

We solved the field equations (2.2) for two-dimensional
roll convection with axes oriented in the y direction. To that
end we introduced the stream function W and the vorticity ¢
which are connected to the velocity field in the following
way:

(aw AL
v= (2.4)

_309__ s = VX ).
Jz ax> o=V v,

Then the partial differential equations (2.2) are transformed
into

e=V2V, (2.52)
do dWde VI IT+C
LN TR0 - RS
at 9z dx  x 9z ox

(2.5b)
aT Vv aT v aT
— 4 —— - ——=VT, (2.5¢)
Jt dz dx  Jdx 0z
9C ¥ aC ¥ aC
——=LVXC-yT). (2.5d)

+
ot 0z c?x ox dz

1. Boundary conditions

The horizontal boundaries at z=0,1 are taken to be of no
slip (v=0) and impervious, so that there

PAG aC  oT
V=0, —=0, ——y—=0.

2.6
9z 0z 0z 26)

The temperatures at the boundaries are
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T(z=0)=1+8sinQ¢t, T(z=1)=0. (2.7)

Laterally we impose periodic boundary conditions, f(x,z,?)
=f(x+\,z,1), on all fields f=V,p,T,C with A=2 through-
out the paper.

2. Parameters

In this paper we consider mixtures with L=0.01, =10,
and ¢=-0.25. This set of parameters is characteristic for and
easily experimentally realizable with ethanol-water mixtures.
The wave number of the convection rolls is k=r. It is close
to the critical one and close to the one that one typically
observes for oscillatory convection rolls at negative ¢, say, in
narrow annular containers. The relative amplitude of the
temperature modulation (2.1) of the lower boundary is &
=0.2. We consider small modulation frequencies, namely,
0=0.2wy, 1=0.1wg, and 1=0.01wy. Here, wy=11.246 is
the Hopf frequency at the onset of oscillatory convection
with wave number k= for static heating.

3. Conductive state

In the conductive state, i.e., when the fluid is motionless
the temperature 7.,,,(z,t) and the concentration C,,,(z,?)
fields satisfy the one-dimensional diffusion equations,

a]‘(,‘Dl'l &ZTCOI‘I
—cond _ ——cond (2.8)
ot dz
aCCOn azCCOn &ZTC(H’!
d=L< 2=y zd) (2.9)
ot 0z 0z

respectively, together with the boundary conditions (2.6) and
(2.7). The conductive temperature distribution following
from Eq. (2.8) is given by a superposition of a static linear
profile and a damped heat wave propagating from the lower
boundary into the fluid,

Tcond(zst) = T?ond(z) +T ond(Z t) (210&)
7 ,=1-z, (2.10b)
h D] .
cond =JRe { sin [a(z )] elnt}, o= \"/iE.
sinh «
(2.10¢)

The conductive concentration distribution resulting from
Eq. (2.9) is determined by the temperature distribution (2.10)
due to the thermal diffusion effect,

cond(ZJ) Cc(md(z) + Ciond(Z,[), (21 la)
e ) (2.11b)
cond — 2 -/ .
B cosh a cosh[ B(z — 1)] - B cosh(Bz) + a sinh[ a(z — 1)]sinh B Si0 Ny
cond - lv[/(s Re{l (a _ ﬁZ)SIHh « sinh ,8 } B— \/lLQ. (21 10)
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Thus, both the temperature and concentration fields in the
motionless mixture have a steady part and an oscillating part
with zero mean. The steady part varies linearly in z. The part
that oscillates harmonically in time with the modulation fre-
quency () has an amplitude that varies linearly in &. But it
has a more complicated z dependence, the details of which
depend on (). The oscillatory part of the concentration also
depends on ¢ and L; cf. Eq. (2.11c) for C!,, (z,t). Snapshots
of this quantity at different times during the modulation pe-
riod are shown for the case of a large modulation frequency
Q=wy in Fig. 1(a) and two smaller ones, Q=0.1wy and ()
=0.01wy, in Figs. 1(b) and 1(c), respectively.

When modulating with the large frequency ()=wy the
thermodiffusion processes at our set of parameters do not
have time enough to create substantial deviations of the con-
centration distribution from its static mean C° (z) in Fig.
1(a). Thus, in this case the oscillatory contribution C iond(z,t)
does not influence the dynamics of convection significantly.

At low frequencies, say, () <0.2wy, the temperature ad-
dition TLI,UH 4(z,1) and therefore the total temperature distribu-
tion T.,,,4(z,t) are practically linear functions of z at each
moment of the driving period. However, the concentration
additions C Ll.(md(z,t) still depend strongly on frequency. In the
range Lwy < < wy they have nonlinear z profiles.

Modulation with a small frequency, say, 1=0.01wy as in
Fig. 1(c) leads to contributions of C.,,(z,f) to the concen-
tration distribution of several percent near the boundaries.
Thus, for example, at z=0 and z=1 one has C! ,
=0.135C" . at time Q1= %277 for our modulation amplitude
of 6=0.2.

4. Solution method

For solving the system of equations (2.5) in the general
case of W#0 an alternating-direction implicit scheme is
used with central differences for the spatial derivatives and
one-sided right differences for the time derivatives. This is a
finite difference method of second order. The stream function
was determined with an iterative method of successive over-
relaxation at each time step. Typically, a state of relaxed
finite amplitude convective oscillations obtained at a particu-
lar set of parameters was used as the initial condition for a
run at another set of parameters.

B. Diagnostic tools

To measure the intensity of the heating we use the re-
duced Rayleigh number r=R/ R(C), where R(C) is the critical
Rayleigh number for onset of pure-fluid convection with the
critical wave number k?. Linear stability theory predicts R?
=1707.8 and k2:3.1 16. However, to compare our finite dif-
ference numerical results presented in this paper with experi-
mental, analytical, or numerical ones we scale R by the
threshold R°=1701.5 of our numerical code. Most of the
calculations are executed using grids of 47X 31 nodes. A
further mesh refinement to 82 X 61 nodes does not provide a
significant improvement in the evaluation of oscillation char-
acteristics and shows no relevant differences.

For the modulation (2.1) of the temperature at the lower
boundary the time-dependent reduced Rayleigh number,
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FIG. 1. (Color online) Conductive concentration variations in
the case of temperature modulation of the lower boundary. Shown
are snapshots of the z dependence of the term Cion Jz,0) (2.11¢c)
entering into the conductive concentration distribution (2.11a). The
snapshot times 0, 1/8, 1/4, 3/8, and 1/2 that label the curves in the
figures refer to fractions of the respective modulation cycle. Fre-
quencies are (a) Q=wy=11.246, (b) Q=0.lwy, and (c) Q
=0.01wy. Parameters are 6=0.2, L=0.01, and ¢=-0.25.

r(t) = 1 + & sin(Q2)], (2.12)
is modulated around a mean value r with relative amplitude
6. To monitor the convection intensity we use the maximum
and the minimum of the vertical flow field in the x-z cross
section perpendicular to the roll axes,

Wmax(t) =max, . W(X7Z,t), (2133)
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Wi () = min, , w(x,z,1), (2.13b)

as well as the time evolution of w at a fixed position x, 2.

We also consider running time averages of various quan-
tities f(r) over some time interval, in particular over a period
of the modulation 7=2/(},

t+7/2

1
H0)=- f)ar', (2.14)
TJ -2
as well as long-time averages,
1 (7
N=7 J fdt (2.15)
7)o

with very large 7. The latter is used among others to deter-
mine the mean lateral velocity (v,,) of the phase of w as
measured by the time derivative of node locations of w(x,z
=1/2,1) at midheight of the fluid layer, v,,h:dx(wzo)/ dt.
Thus,

<vl7h> = [x(w=())(7) - x(wzo)(O)]/T

For all modulated TWs with lateral periodicity A=2m/k
we use the mean phase velocity (v,,) (2.16) to identify

(o) = vk (2.17)

as the mean frequency of a modulated TW. We also use the
frequency ratio

(2.16)

0 = Ol wrw) (2.18)

as a diagnostic tool. In general Q is not a rational number. In
that case one has a quasiperiodic modulated TW. For a peri-
odic TW the frequency ratio Q=m/n is the quotient of two
integer numbers m and n. The set of periodic TWs contains
the subharmonic one with Q=2 and also synchronous TWs
with O=1.

To elucidate the spatiotemporal complexities of the con-
vective behavior and of the transitions between various re-
gimes we have also studied lateral Fourier decompositions,

F,0) = fot) + Re D, f(1)e ™, (2.19)
n=1

of the fields at midheight position z=1/2. The behavior there
is largely representative for all other z’s.

Finally, we analyzed the time evolution of the spatial vari-
ance of the concentration field in the layer. To that end we
monitored the mixing number of the concentration field,

= cz/(c(gmd) (2.20)

Here, the overbar implies a spatial average over the layer. In
the unmodulated (5=0) quiescent (v=0) layer the Soret in-
duced conductive concentration profile C° (z) (2.11b) var-
ies from —¢/2 at the top boundary to /2 at the bottom one
with (CY), )>=y?/12.

In the unmodulated conductive state one has M=1 by
definition. In the modulated conductive state M depends on
time with a maximum that grows with decreasing frequency
and that is larger than 1: for example, M,,,,(Q)=wy)=1.002
but M,,,,(Q2=0.01wy)=1.134. However, when convection is
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present then the advective mixing reduces the mean square
deviation C? of the concentration—the better the fluid is
mixed advectively the smaller is M coming closer to the
limit M =0 for a perfectly mixed fluid.

III. STATIONARY HEATING AND MODULATION
WITH LARGE FREQUENCY

In Sec. III A we give a brief overview of the main bifur-
cation and spatiotemporal properties of laterally extended
convection states in the absence of modulation, 6=0; cf.
[5,20] for more details. Then, in Sec. II B a short synopsis
of the effect of large-frequency modulation (6=0.2, Q=wy)
[24] is presented. Both these reviews serve to give the back-
ground on which we present our results for low-frequency
modulation in Sec. IV.

A. Stationary heating

When increasing the heating quasistatically the onset of
convection in the ethanol-water mixture occurs for our pa-
rameters via a Hopf bifurcation at the reduced Rayleigh
number r,,.=1.335 with a Hopf frequency wgy(k=1,r,,.)
=11.246 according to linear stability theory. Our finite dif-
ference numerical method, on the other hand, yields r,,.
=1.318. Thin lines in Fig. 2(a) show for §=0 the bifurcation
diagrams of maximal vertical flow velocity w,,,, versus r for
the SW solution, the TW solution, and the stationary over-
turning convection (SOC) solution. The last solution branch
is disconnected from the quiescent conductive state. The SW
and the pair of the symmetry degenerated left and right
traveling-wave solutions bifurcate backward out of the con-
ductive state at 7.

When following the solution branches TWs gain stability
in a saddle-node b1furcat10n at r§W=1 175 while SWs remain
unstable. For r<r convection in the unmodulated fluid
layer damps out and the system goes to the conductive state.
Only above r§W stable, yet strongly nonlinear, TW convec-
tion exists. This stable TW solution branch ends at r*=1.36
by merging with zero frequency in the SOC branch thereby
transferring its stability to the SOC solution. In the interval
r§W< r<r,s an unstable TW solution branch exists which
becomes weakly nonlinear when approaching the threshold
r()SC'

There are not only quantitative but also significant quali-
tative structural differences—most predominant in the con-
centration field—between weakly and strongly nonlinear
TWs. The isoconcentration lines of weakly nonlinear TW are
open and the field looks almost harmonic. On the other hand,
in strongly nonlinear TWs there exist well-mixed regions of
almost constant concentration. They are surrounded by
closed isolines and open ones meander between the closed
isoline domains in a strongly anharmonic fashion.

The thin lines in Fig. 2(b) correspond to the bifurcation
behavior of the frequency w of the nonlinear SW and TW
solutions for stationary heating, 6=0. These frequencies are
largest at the Hopf bifurcation threshold r,,.. There, one has
wy=11.246. Then, upon moving with increasing flow ampli-
tude w,,,, along the solution branches in Fig. 2(a) the fre-
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FIG. 2. (Color online) Bifurcation diagrams of laterally ex-
tended convective states with wave number k=7 in binary fluid
mixtures as functions of the reduced Rayleigh number r. Thick lines
refer to temperature modulation (2.1) of the lower boundary with
relative amplitude 6=0.2 and large frequency Q=wy=11.246. Ver-
tical dotted lines mark boundaries of quasiperiodic (QP) and har-
monic (H) responses to modulation in the form of TWs and phase
fixed modulated convection (MC), respectively. Under modulation
the maximal vertical velocity w,,,.(f) (2.13) oscillates between the
thick lines labeled by w; and w,, respectively, in (a). Thick lines in
(b) denote the largest Fourier contribution in the frequency spec-
trum of the vertical velocity. Thin lines refer to (a) w,,,, and (b) the
frequency of the reference states under stationary heating, 6=0,
with full (dashed) ones denoting stable (unstable) solutions. The
insets below (b) show representative snapshots of the concentration
distribution in the layer in the presence of temperature modulation
for (A") MC, (B’) amplitude modulated TW, (C’) amplitude and
phase modulated TW, and (D’) SW. Their r values are indicated by
arrows in (a). In the color online version the vertical color bars
show the coding in the unmodulated conductive state with C(C)O” A2
varying linearly from —0.125 at the bottom to 0.125 at the top for
p=-0.25. Parameters are L=0.01, 0=10, and =-0.25.

quency decreases. Thus, e.g., the TW frequency at the
saddle, r§W, has dropped already to w§W=3.88. Continuing
further—now with increasing r—along the upper TW solu-

tion branch of Fig. 2(a) the TW frequency decreases further
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until it reaches zero at r* where the TW branch ends in a drift
instability of the SOC branch.

B. Modulation with large frequency

Modulation of the thermal driving force for convection
with a relative amplitude as large as 6=0.2 generates a very
rich response behavior even for a modulation frequency ()
=wy that is large compared to the TW frequencies under
stationary driving [24]. This is not really surprising since
already the unmodulated convective states are strongly non-
linear with quite complex spatiotemporal behavior of the
concentration field that is largely determined by strong ad-
vective transport.

For most of the r values shown in Fig. 2 the oscillation of
the reduced Rayleigh number r(¢) (2.12) covers an interval
from well below the lower existence limit of unmodulated
nonlinear TWs at r§W:1.175 to well above its upper exis-
tence limit at 7*=1.36. This changes the bifurcation diagram
for the stationary case (thin lines in Fig. 2) into a form shown
by thick lines in Fig. 2 for 6=0.2, {)=wy. For example, the
maximal vertical flow velocity w,,,.(f) (2.13) oscillates be-
tween the values w, and w; shown in Fig. 2. Stable SOC
states become synchronously modulated convection (MC)
which oscillates with frequency () and fixed spatial phase
around the SOC solution for stationary heating. Insets A’,
B’, C’, and D’ below the bifurcation diagrams of Fig. 2
show typical concentration distributions for (A’) modulated
convection, (B’) a pure amplitude modulated TW, (C’') a
phase modulated TW, and (D) a SW.

In TW solutions under stationary heating the maximal
vertical flow velocity is a constant but now it oscillates with
the period of r(7). In the TW B’ shortly below r* basically
only the amplitude is modulated. With decreasing r the TW
phase velocity becomes modulated more and more as well
(TW C’). Here, the mixing behavior of the concentration is
very complex with open- and closed-streamline regions ap-
pearing as alternating. The existence range of these modu-
lated TWs extends down to r values well below the saddle
location r?W of unmodulated TWs. Thus, modulation with
6=0.2, Q= wy stabilizes TW convection.

At the lower end of the r range of modulated TWs there is
a hysteretic transition to subharmonic SWs. These periodic
states are frequency locked over a finite r interval to oscillate
with half the modulation frequency. The modulation-
stabilized SWs occur below the saddle rgw of unstable un-
modulated SWs. They are less nonlinear and—in particular
with respect to their concentration field structure—closer to
the quiescent conductive state than the highly nonlinear
TWs.

IV. MODULATED HEATING WITH LOW FREQUENCY

In this paper we consider modulation with a relatively
large modulation amplitude of 6=0.2. Then, for most of the
mean values r=(r(r)) that we have investigated here, the
driving r(z) (2.12) drops periodically below the saddle loca-
tion rgw below which unmodulated convection would decay
into the conductive state. An important property among oth-
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ers that then influences the response behavior of convection
is the length of time over which r(¢) remains during the
modulation cycle below ri". We consider here a “low-
frequency” situation where r(f) stays long enough subcriti-
cal, i.e., below rTW, so that the TW flow amplitudes become
small during part of the cycle. Under such conditions stable
low-frequency modulated TWs exist only for r> rgw while
large-frequency modulated TWs [24] exist also well below
rgw. Here, we investigate the frequency range 0.01wy=Q
=0.2wy in which we found qualitatively similar characteris-
tics of such a low-frequency response.

Depending on the size of r this convective response is
periodic or quasiperiodic in the form of a modulated TW or,
at larger r, it is harmonic with the driving in the form of MC.
But under low-frequency modulation we do not observe
stable SWs as in the large-frequency case (cf. the thick lines
in Fig. 2 representing subharmonic SWs). Before we eluci-
date the properties of the convective solutions in more detail
in Secs. IV B and IV C we shortly want to discuss the ques-
tion of the relevant time scales.

A. Time scales

Consider first the time scales for diffusive transport of
momentum, heat, and concentration (1/0,1,1/L)
=(0.1,1,100) and for vertical advection of these fields
1/W,4. all expressed in units of the vertical thermal diffu-
sion time /%/ k. So, for flow intensities w,,,, > 1 that are typi-
cal for nonlinear convective states under stationary heating
or large-frequency modulation concentration is advection
dominated and is not smoothed diffusively while the con-
verse is true for the velocity field: the balance equation for
momentum is weakly nonlinear (as long as the rate for ad-
vective momentum transport is small compared to the diffu-
sive transport rate), while the balance equation for concen-
tration is strongly nonlinear with its Péclet number w,,,./L
being typically very large.

Furthermore, for our low-frequency modulation the pe-
riod 7=27r/() is comparable to the decay time under station-
ary heating of a TW or of SW that is prepared to have as
initial conditions saddle characteristics slightly below rgw or
rﬁw. Under modulation such decay dynamics will take place
when the driving r(r) stays long enough below the saddle
locations. Then w,,,,(f) decreases to very small values in a
significant part of the modulation period.

For modulation with Q)=0.1wy the period 7=5.6 is larger
than the momentum and heat diffusion times, so that the
velocity and the temperature fields have enough time to be
smoothed out diffusively. The behavior of the concentration
field depends on the size of r; cf. the bifurcation diagram in
Fig. 3. When w,,,, > 1 throughout the modulation cycle then
the concentration field remains advection dominated. Such
convective dynamics occurs when r(z) does not remain too
long below the saddle r?W. On the other hand, when r is
located only shortly above the lower end 7" of the existence
interval of stable modulated TWs, then the concentration
field is advection dominated only in that part of the modula-
tion cycle where w,,,,,> 1; cf. further below. Then, thermod-
iffusion processes are most important in the other part of
driving cycle in which w,,,. <1.
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FIG. 3. (Color online) Bifurcation diagrams of laterally ex-
tended convective states with wave number k=7 in binary fluid
mixtures as functions of the reduced Rayleigh number r. Thick lines
refer to temperature modulation (2.1) of the bottom boundary with
relative amplitude §=0.2 and the low frequency Q=0.1wy=1.125.
Vertical dotted lines at r/% =1.217 and r/ =1.430 show the limits
of the existence range of stable modulated TWs. MC identifies the
range of harmonically responding phase fixed modulated convec-
tion. Under modulation the maximal vertical velocity w,,,.(f) (2.13)
oscillates between the thick lines in (a) labeled by w, and w,, re-
spectively. Thick lines in (b) denote the average TW frequency
(wrw)=(v,nk. Arrows labeled A, B, C, D, and E locate states that
are discussed in the text. Thin lines referring to (a) the maximal
vertical flow velocity and (b) the frequency for stationary heating,
0=0, are explained in the caption of Fig. 2. Parameters are L
=0.01, o=10, ¥=-0.25.

In the case of 1=0.01wy the modulation period 7= 56 is
of the same order as the concentration diffusion time, and
advection can become very small during the part of the cycle
where r(t)<r§W. During these times also the balance equa-
tion for concentration is practically linear when its Péclet
number w,,,,/L is very small.

B. Modulated traveling waves

Low-frequency temperature modulation shifts the bound-
aries (r,%, W ) of the existence range of stable TWs upward
in r: from (rg",r")=(1.175,1.361) for 6=0 to (1.217, 1.430)
for 6=0.2,Q0=0.1wy; cf. thick lines in Fig. 3. For Q
=0.2wy one has (r'¥ r™W)=(1.182,1.415) and for Q
=0.01wy the range is (1.270, 1.434). So, for low-frequency
modulation one has % >rIV while for large-frequency
modulation TWs exist well below the saddle location rgw of
unmodulated TWs. But, on the other hand, low-frequency
modulated TWs exist well above the end r* of the unmodu-
lated TW solution branch, while under large-frequency

modulation the upper end "ﬁ; of the TW branch lies close to
re [24].
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1. Fourier spectra

The modulated TWSs are in general quasiperiodic oscilla-
tory convective states with two different characteristic fre-
quencies: the external driving frequency () and the average
frequency (wzy) (2.17). In a narrow interval below 2" the
TWs are only amplitude modulated with almost constant
phase velocities such that there, v,,~(v,,) at any time. But
with decreasing r the modulation of the phase velocity in-
creases. We first discuss the convective dynamics at driving
parameters where not only the TW amplitudes but also the
phase velocities are modulated significantly and where the
concentration dynamics gets quite complex. This is already
the case at the location marked by arrow A in Fig. 3.

The frequency spectrum of the vertical velocity w(xy,z
=1/2,t) at r=1.399, i.e., at location A in the bifurcation dia-
gram of Fig. 3 is shown in Fig. 4(a). It contains three major
contributions: a main peak at (wyy) and two secondary peaks
at Q *(wypy). The variation of {wsy) with r is shown by the
thick line in Fig. 3(b). It drops to zero at " | beyond which
the response range of MC begins while with decreasing r the
frequency {wyy,) increases.

The structure of the Fourier spectrum is a consequence of
the quadratic character of the nonlinear terms in Egs. (2.5).
Without modulation the convective system generates a TW
with characteristic frequency wzy. The modulation of the
heating changes this frequency into {wy,) and, furthermore,
it generates a temperature wave of frequency (). The heat
balance equation contains the term (d7,,,,/ dz)(dV/dx)
which generates new harmonics ) *{wyy) in the tempera-
ture field. The related buoyancy force then produces in the
fields of vorticity ¢ and velocity w corresponding oscilla-
tions. The further nonlinear interaction of two harmonics ()
+{wry) and ) restores back the TW frequency (wgy).
Hence, this harmonic being created in two different ways has
the largest amplitude in the Fourier spectrum.

Higher Fourier harmonics in the evolution of w(xy,z
=1/2,1) at frequencies

o= * (o) +ml (4.1
with integer m>1 are very small since the momentum bal-
ance equation is only weakly nonlinear. On the other hand,
the frequency spectrum of the concentration wave contains
significant anharmonicities as one can also infer from the
spatial profiles of the C waves discussed in Sec. IV B 2.

With decreasing r the peaks in Fig. 4(a) at {(wpy) and ()
—(wyy) approach each other (as indicated by full arrows)
since {(wyy) grows with decreasing r [cf. Fig. 3(b)]: the flow
intensity and the advective mixing decrease, the Soret in-
duced diffusive concentration gradients become less washed
out, the resulting restoring force for oscillations increases,
and thus (wpy) grows. With increasing r, on the other hand,
the peaks in Fig. 4(a) move as indicated by the dotted ar-
TOWS.

The spectrum in Fig. 4(b) belongs to the subharmonically
responding TW at r=1.383 (location B in Fig. 3) with
(wry)=Q/2. Here, the largest contribution to the Fourier
spectrum is at Q—{wy)=/2. We would like to emphasize
that contrary to the large-frequency case where stable sub-
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FIG. 4. (Color online) Fourier amplitudes A in arbitrary units in
the spectrum of w(xy,z=1/2,t) versus frequency w. (a) Amplitude
and phase modulated TW at r=1.399 (arrow A in Fig. 3), (b) sub-
harmonic TW at r=1.383 (arrow B in Fig. 3), (c) synchronous TW
at r=1.337 (arrow C in Fig. 3), (d) modulated TW at r=1.322, and
(e) strongly modulated TW at r=1.222 (arrow D in Fig. 3). Peaks
labeled (wry) are characterized by the average phase velocity
(v, ={wrw)/k. Full (dotted) horizontal arrows in (a) indicate how
the peaks move when r decreases (increases) as a consequence of
the variation of (wgy(r)) shown in Fig. 3(b). Parameters are ()
=0.10y=1.125, 6=0.2, L=0.01, 0=10, and ¢=-0.25.

harmonically responding SWs exist in a finite r interval there
is no frequency locking here: the subharmonically respond-
ing TW exists only at one particular value of r.

The spectrum in Fig. 4(c) corresponds to the harmonically
responding TW at r=1.337 (location C in Fig. 3) with
(wpwy=C. Here, the largest contribution to the Fourier spec-
trum of this periodic convective state is at {). Note that there
is also a sizable contribution at w=0 which appears due to
nonlinear interaction of harmonics at Q—{wsy)=0. So, in
this harmonically modulated TW there is a stationary contri-
bution to the flow field coming from the temporally averaged
velocity w(x,z,1).
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FIG. 5. (Color online) Time variation of the vertical velocity of
periodically responding TWs: (a) subharmonic TW B in Fig. 3 and
(b) synchronous TW C in Fig. 3. Thick lines show w at a fixed
location (xg,z=1/2) and dotted lines show the minimum w,,;, and
maximum w,,,, (2.13) in the whole layer. The oscillation range of
the latter is indicated by w; and w,. The plots cover two modulation
cycles of r(z). Thick dots in (a) identify times for snapshots of the
concentration distribution shown in Fig. 6. Parameters are ()
=0.1wy=1.125, 6=0.2, L=0.01, 0=10, and ¥=-0.25.

Upon further decrease in r the average TW frequency
{wpw) grows beyond (). That brings new peaks in the spec-
trum at locations (4.1) that are lying below the one at {wzy).
Such a situation is shown in Fig. 4(d) where (wpy)
=1.270Q). One can see contributions at (wry)—{) and at
—(wpy)+2Q. Contributions of the form (4.1) that are lying
on the high-frequency side of (w;y) are smaller.

When, with further decreasing r, {wsy) becomes larger
than 2(), the structure of the Fourier spectrum becomes even
more rich. In Fig. 4(e) we show the spectrum for the TW at
r=1.222 (arrow D in Fig. 3) near the lower end " of the
existence interval of modulated TWs. Its average frequency
(wry)=5.24 is about 4.7 times larger than ) and 12 times
larger than that of TW A in Fig. 3(a). It contains on the
low-frequency side sizable peaks down to a frequency of
(wrw)—4€Q and furthermore also a few peaks at (wpy)
+|m|€Q). Again the peak heights at low frequencies are typi-
cally larger than those at higher frequencies.

2. Flow behavior and concentration field

In this section we discuss the advective flow and its influ-
ence on the concentration distribution in the modulated TWs.
We first consider the subharmonic TW (arrow B in Fig. 3)
with Q=2 and the synchronous TW (arrow C in Fig. 3) with
Q=1 before we discuss the strongly modulated and strongly
anharmonic TW labeled D in Fig. 3 with 0=0.214.

For the first two we show the vertical velocity at mid-
height z=1/2 at a fixed lateral position x, in Fig. 5 as a
function of time over two modulation periods by thick lines.
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The oscillations of w,,,.(¢) and of w,,;,(¢) (2.13) are indicated
by dotted lines. They cover the ranges (w,,w;) and (—w,,
—w,), respectively. These extrema are also indicated in Fig.
3(a). Note that the instantaneous global extrema w, and w
are usually not localized at xy,z=1/2.

It is interesting to note that the lateral variation of the flow
in these modulated TWs remains largely harmonic as in the
absence of modulation. Thus, the complete spatiotemporal
behavior of w at midheight can reasonably well be captured
by the first lateral Fourier mode w, in expansion (2.19), so
that

w(x,z=3,1) = Re[w, (r)e™] (4.2a)

is a good approximation. In Sec. IV C we show that the
modulus of W, (1)=|v,(r)]e’*1") oscillates with frequency
between the extrema w, and w; which is well be captured by

w1+ wy
2

wp—w

W, ()| = 2sin(Qr+a),  (4.2b)
with some constant «. The rate of change ¢,(¢) of the phase,
on the other hand, oscillates periodically around (wzy,)

=0/Q in these periodic TWs such that

@1(t) =(ommt + Ag (1) (4.2¢)

increases by 27 within one period 27/{wzy) of the TW. See
Sec. IV C for further details.

Here, we want to show how one can understand with Eqgs.
(4.2) some of the spatiotemporal symmetry behavior of the
periodic TWs with Q=1. We found that subharmonically
responding TWs with even Q=2m show the time-shift sym-
metry

w(x,z,t) = = w(x,z,t + 7/ {wrw)), (4.3)

whereas those with odd Q=2m+1 do not. The reason is that
after half the TW period the exponential term ¢'#1?) changes
sign. But the modulus [W,(f)] needs the time 2/
=21/ (Q{wyyy)) for its restoration. We checked that this time-
shift symmetry of the vertical velocity holds not only at mid-
height but also at other z positions. Furthermore, one can
understand with Eqgs. (4.2) that at any fixed lateral position
x=x, the time average (w(xy,?)) over a period of the TW
vanishes for periodic TWs with Q=2 using simple forms for
the periodic variation of the phase deviation Ag,(¢) from the
mean phase growth in Eq. (4.2¢). On the other hand, for Q
=1 one sees in this way that {(w(xy,)) is nonzero.

The evolution of the concentration field for the subhar-
monic TW at r=1.382 (arrow B in Fig. 3) with Q=2 is
shown in Fig. 6 by two snapshots of C in the x-z plane. The
snapshot times are separated by a period of the modulation.
They are indicated by thick dots in Fig. 5(a). This TW propa-
gates to the left.

With the phase velocity 1.187<v,,<2.33, being small
compared to the extrema w,=3.88 and w;=9.79 of w,,,(?),
this TW is a slow [35] strongly nonlinear state with strong
advective mixing of the concentration field [5]: the differ-
ence between maximal and minimal C is much smaller than
in the unmodulated conductive state; cf. the color bar on the
right side of Fig. 6. Furthermore, there are very narrow
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FIG. 6. (Color online) Snapshots of the concentration distribu-
tion in the subharmonically responding left propagating TW at r
=1.383 (arrow B in Fig. 3). Snapshot times are identified by thick
dots in Fig. 5(a). The time difference between (a) and (b) is 27/).
In the color online version the vertical color bars show the coding in
the unmodulated conductive state with Cgond(z) varying linearly
from —0.125 at the bottom to 0.125 at the top for ¢=-0.25. Param-
eters are (1=0.1wy=1.125, 6=0.2, L=0.01, 0=10, and =-0.25.

boundary layers between the convective rolls and close to the
plates with large concentration gradients. The fluid is diffu-
sively homogenized in the closed-streamline regions of the
rolls leading to anharmonic lateral concentration profiles of
trapezoidal shape.

3. TW close to TV

The time evolution of the low-frequency modulated TWs
close to r,%’l, i.e., in the left part of the bifurcation diagram in
Fig. 3 is strongly different not only from the TWs that are
modulated with a large frequency (Fig. 2, arrows B’ and C')
but also from the TWs that are modulated with low fre-
quency at larger r (Fig. 3, arrows B and C). The differences
come from the fact that the driving r(¢) stays long enough
below the saddle location r?w, so that w,,,, decreases to
small values in a significant part of the modulation interval.

To elucidate the consequences of this long subcritical in-
tervals we show in Fig. 7 the driving, the mixing number
2M, w at a fixed location, w,,,,, and the phase velocity v, of
the TW D in Fig. 3—over two modulation periods for better
visibility. The latter two velocities and the mixing number
oscillate with the period 7=2m/{) of the heating r(r). Note
the large amplitude oscillations of v,,(¢) and the complex
variation of w. They show already that the flow dynamics of
TW D is significantly more varying and more complex than
those of TWs A-C.

The increase in spatiotemporal complexity is even more
dramatic for the concentration field of TW D; cf. Fig. 8§ with
snapshots of C taken at times that are indicated by thick dots
in Fig. 7. The reason is that v,, is sometimes larger and
sometimes smaller than w or w,,,,. Thus, with the associated
advective characteristics open- and closed-streamline regions
and with it open and closed isoconcentration lines as they
can be seen in TWs under static driving [22,36] for different
r’s appear here as alternating. This alternation between dif-
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FIG. 7. (Color online) Characteristics of the modulated TW
identified by arrow D in Fig. 3 versus time. (a) Variation of r(r).
Stable unmodulated TWs exist only in the gray interval between
rgw and r*. (b) Full line shows vertical velocity w(xy,z=1/2,7) ata
fixed location, while dotted line shows the maximum w,,,,,(7) (2.13)
in the whole layer. The oscillation range of the latter is indicated by
arrows labeled w; and w,. (c) Thick full line labeled 2M refers to
twice the mixing number (2.20) of the concentration field. Thin
lines with dots show the phase velocity v,,,. For better visibility the
plots cover two modulation periods. Intervals delimited by thin ver-
tical lines and labeled 1—6 below the abscissa of (a) are discussed in
the text. Thick dots in (a) and (b) identify times for snapshots of the
concentration distribution shown in Fig. 8. Parameters are r
=1.222, O=0.1lwy=1.125, 6=0.2, L=0.01, 0=10, and =-0.25.

ferent mixing regimes in the modulated TW D explains also
that the relation of its mixing number M(r) to the actual
driving r(¢) differs from the one between M and r for stable
unmodulated TWSs. In the latter M decreases with r as the
advective mixing increases [36]. Here, in TW D one sees
often the opposite: M(r) increases (decreases) with increas-
ing (decreasing) r(r) since the concentration field does not
have time to relax to the instantaneous advective flow. More-
over the strength of the latter is also delayed relative to the
thermal driving r(z).

In order to discuss the spatiotemporal properties of TW D
and in particular the structural dynamics of the concentration
field in more detail we divide the driving period into inter-
vals I, (n=1,...,6) delimited by the thin vertical lines in
Fig. 7. The boundaries are marked by times at which r(z)
reaches characteristic values. So r(¢) varies within these in-
tervals between the following values: I;: (1—8)r—rL", I,:
r§W—> r I r =1+ 0)r, Iy (1+0)r—7r", Is: ¥ —rg", and
Is: r§W—> (1-90)r.

In the first interval I, r(¢) increases but the advective ve-
locity w is so small that the thermodiffusive separation
strongly influences the system dynamics. Here, concentration
gradients and hence M(r) grow following the growth of the
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FIG. 8. (Color online) Snapshots of the concentration distribu-
tion in the TW at r=1.222 (arrow D in Fig. 3) with strong phase and
amplitude modulation. The times from top to bottom,
(0,0.254,0.311,0.601,0.679)27/Q are indicated by thick dots in
Fig. 7. The vertical color bars in the color online version show the
coding as in Fig. 6. Parameters are Q=0.lwy=1.125, §=0.2, L
=0.01, =10, and ¢=-0.25.

applied temperature gradient. In the steady case convective
oscillations would decay in the driving intervals I4,/; that lie
below r§W and the phase velocity and frequency of the de-
caying TW would increase when approaching the regime of
linear damped oscillations close to the conductive state at the
particular value of r<r%" <r,,.. But under modulation con-
vection in the intervals I¢,/; does not have time enough to
decay all the way into the conductive state. Our calculations
show that in /; the phase velocity is practically constant.

In the second interval I, r(¢) further increases staying
above rL". As in the unmodulated situation wsy and the
phase velocity v,,, decrease here with growing (). However,
the flow velocity w is still small and the advective mixing
cannot fully degrade the Soret induced separation, so that M
continues to grow. The modulated TWs in the intervals 1;,/,
are weakly nonlinear with practically harmonic distributions
of all fields. All concentration streamlines of these weakly
nonlinear TWs are open. Figure 8(a) shows as a representa-
tive example the concentration distribution of TW D at time
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t=0 where the advective flow velocity is minimal and the
phase velocity is maximal.

In the interval /5 the advective velocity increases very fast
and its maximum w,,,, is larger than about 3, which marks
the location of the S-shaped deformation on the unmodulated
unstable TW branch [thin dashed line in Fig. 3(a)]. The value
of the vertical velocity for which this deformation occurs
characterizes the transition from weakly nonlinear to
strongly nonlinear TWs with anharmonicities appearing in
the concentration field [36]. Figures 8(b) and 8(c) show
snapshots of typical concentration distributions appearing in
interval I3 when w,,,, grows into the strongly nonlinear re-
gime in which w,,,,>v,;,. The TW in Fig. 8(c) has spiral
concentration distributions with a large amount of internal
boundary layers. From here on the mixing number M/(z)
abruptly decreases.

At the border between I3 and I, the vertical velocity
reaches its maximum equal to the value in the unmodulated
SOC state at the largest value (1+ 8)r of r(¢) in the modula-
tion cycle. In interval I, with r(r) being above the transition
at " to unmodulated SOC states the advective mixing is very
strong, the phase velocity takes on its minimal value, while
M(t) continues to decrease.

In /5 the heating r(r) and with it the advection amplitude
decreases while the phase velocity increases again. In the
intervals I, and I5 w,,,.(¢) follows the driving r(r) practically
without phase shift. The TW in Fig. 8(d) that is representa-
tive for the interval I5 shows regions of closed streamlines in
the comoving frame. In this left propagating TW the right
(left) turning fluid domains are poor (rich) in ethanol and
they are displaced toward the upper cold (lower warm) plate,
where the Soret effect maintains a boundary layer with alco-
hol surplus (deficiency) [5].

At the boundary between /5 and I the vertical velocity
reaches the value w=4 which is realized also by the un-
modulated TW at its lower existence limit, i.e., the saddle
node at .V, Then, in I, the thermal driving r(r) falls again
below r§ . Here, the flow amplitude decreases by a factor of
about 10. In the first part of this interval a strongly nonlinear
TW is still realized as can be seen from the concentration
distribution in Fig. 8(e). But when the advective velocity
falls below w~3 all isoconcentration lines correspond to a
weakly nonlinear TW as in /;. They are open and the field
structures look almost harmonic. Furthermore, the phase ve-
locity reaches its maximum such that v,;,>w,,,, which im-
plies weak nonlinearity [36]. Here, thermodiffusive separa-
tion plays an important role and the mixing number grows.

4. Modulation with 2=0.01wg

Here, we show that modulation of the heating with a fre-
quency as small as =0.01wy causes surprisingly complex
convective response when the relative modulation ampli-
tudes are as large as 6=0.2 as in our case. To explain it we
show in Fig. 9 the time variation of the mixing number M
together with the one, M,,,;, in the modulated conductive
state, the instantaneous frequency w with which the convec-
tive velocity is oscillating, w at a fixed location, and w,,,.
The mean reduced Rayleigh number here is r=1.227 which
is near the lower end of the existence interval of convection
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FIG. 9. (Color online) Characteristics of a TW that is modulated
with the very low frequency of (=0.0lwy=0.1125. Here, r
=1.227 is near the lower end of the existence interval of modulated
TWs. (a) Variation of r(z). Stable unmodulated TWs exist only in
the gray interval between r§" and r*. (b) Frequency w(r), mixing
number M(t), and mixing number M_,,,(¢) in the modulated con-
ductive state. (c) Full line shows the vertical velocity w(xg,z
=1/2,1) at a fixed location, while dotted line shows the maximum
Winax(®) (2.13) in the whole layer. (d) Blowup of a part of (c). Pa-
rameters are 6=0.2, L=0.01, =10, and ¢=-0.25.

modulated with frequency (2=0.01wy. For this value of r the
reduced heating rate r(¢) periodically leaves the existence
interval (rgw,r*) of unmodulated TWs on both sides [cf. Fig.
9(a)]. Some aspects of the behavior of the resulting convec-
tion are similar to the previous case of (=wy/10. However,
there are also significant differences:

(i) In part of the modulation period mixing by advection
becomes very small as w,,,(f) drops down to O(107°) in
Figs. 9(c) and 9(d). Furthermore, since the system has time
enough to get very close to the conductive state the behavior
during these times can be described within linear theory.

(ii) During the time 0.17<7<<0.37 the phase velocity is
zero and convection occurs in the form of a SW with a very
small oscillation amplitude. Here, we used the local instan-
taneous oscillation frequency w shown in Fig. 9(b) to char-
acterize the convective solution.

(iii) The mixing number M shows a linear growth over
almost half the modulation cycle and comes close to the
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FIG. 10. (Color online) Fourier amplitudes A in arbitrary units
in the spectrum of w(xg,z=1/2,7) versus frequency w for the TW
that is modulated with Q2=0.01wy at r=1.227 (cf. Fig. 9). Param-
eters are 6=0.2, L=0.01, 0=10, and =-0.25.

conductive state’s value M, [cf. Fig. 9(b)].

(iv) In the other part of the modulation period a spikelike
behavior of TW activity appears [cf. Fig. 9(c)], that is similar
to relaxation oscillations. In the first stage of this activity the
advective velocity increases very fast and after that it
smoothly relaxes to zero. Simultaneously the mixing number
abruptly decreases in the first stage due to the increasing
advective mixing.

(v) The frequency w(z) in Fig. 9(b) is strongly modulated
and shows for our case of slowly modulated heating quite
similar behavior as M(t), albeit with some delay between
them. To understand this behavior one has to know that for
steady heating the size of the Soret induced concentration
gradients determines the magnitude of the restoring force for
oscillatory convection and that the frequencies of TWs and
of SWs obey the relation w/wy~M (Fig. 3 of Ref. [20]):
above r* the heating has become so large that the advective
mixing is strong enough to reduce the Soret induced concen-
tration gradients to effectively zero, so that w=0 in the SOC
state. On the other hand, when moving downward along the
unmodulated TW solution branch in Fig. 3(a) all the way to
T,sc» the flow intensity and with it the advective mixing de-
crease all the way to zero; the Soret induced concentration
gradients and with it the mixing number increase to their
maximum value M =1 in the quiescent conductive state; and
the restoring force for oscillations, i.e., the oscillation fre-
quency, increases to its maximal value wy at 7.

(vi) The temporal Fourier spectrum in Fig. 10 of the TW
velocity in Fig. 9 is quasicontinuous. It contains many har-
monics and their combinations. The difference between
neighboring peaks is the modulation frequency ().

C. Fourier dynamics of the flow

To elucidate in detail the spatiotemporal complexity of the
different convection solutions considered above we used also
the lateral Fourier decomposition (2.19) of velocity, tempera-
ture, and concentration in particular at midheight position z
=1/2. The behavior of the fields there is representative also
for other vertical positions. Here, we present results only for
the vertical velocity field. In contrast to the concentration
field the lateral variation of w is largely harmonic, so that the
first Fourier mode w; in representation (2.19) of w(x,z
=1/2,t) characterizes the flow behavior.

The trajectory of w,(¢) is the projection of the spatiotem-
poral flow dynamics of the convective state in real space into
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FIG. 11. (Color online) Trajectories of the first lateral Fourier
mode W () in the expansion (2.19) of the vertical velocity w(x,z
=1/2,1) in the plane spanned by the real and imaginary parts of W;.
(a) Amplitude and phase modulated quasiperiodic TW A with Q
=2.579 at r=1.399, (b) periodic TW with Q=3 at r=1.405, (c)
subharmonic TW with Q=2 at r=1.383, (d) synchronous TW C
with Q=1 at r=1.337, (e) periodic TW with Q=1/3 at r=1.262,
and (f) strongly modulated quasiperiodic TW D with 0=0.214 at
r=1.222. Parameters are (1=0.1wy=1.125, 6=0.2, L=0.01, =10,
and ¢=-0.25.

lateral Fourier space. It complements the picture of the TW
dynamics of w at a fixed location. In Fig. 11 the time evolu-
tion of the complex mode w,(¢) is presented in the plane
spanned by its real and imaginary parts, respectively, for dif-
ferent convective solutions.

We start our discussion with TW A which is not only
amplitude but also phase modulated. Its frequency spectrum
is presented in Sec. IV B 1. The trajectory of w(¢) for this
TW shown in Fig. 11(a) moves in the annular domain be-
tween the two circles of outer radius w, and inner radius w,
that mark the extrema of w,,,(¢) [cf. Fig. 3(a)]. That is so
since the field w is very well represented in Eq. (2.19) by the
first lateral Fourier mode w,.

The time between successive maxima of |W,(7)], i.e., the
period of the amplitude modulation is 7, the period of the
temperature modulation. At steady heating, w;=w,, the tra-
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jectory in Fig. 11(a) contracts to a circle along which w,(z)
would move with constant rotation frequency ¢; such that
|@1]= o7y

Left and right propagating TWs being symmetry
degenerate—also in the presence of temperature
modulation—have oppositely rotating w;. The mean fre-
quency {wzy) (2.17) of our modulated TWs is the mean fre-
quency {|¢,|) with which the complex number W, rotates in
the planes of Fig. 11.

In general the two characteristic frequencies {wzy) and ()
of the modulated TW are not rationally related to each other.
Thus, the TW is quasiperiodic and the trajectory of w,(¢) is
not closed. The TW A is an example for such a quasiperiodic
TW with Q=Q/wry=2.579. So, here the mean rotation fre-
quency {wry)={|¢|) of W, is by a factor of 2.579 smaller
than the oscillation frequency of its modulus |Ww,|. In Fig.
11(a) we show the trajectory over 11 periods of the modula-
tion. Thus, during this time w,(f) moves 11 times from the
outer circular boundary of the annular domain at radius w; to
the inner one at radius w, and back. For the convenience of
the reader we have indicated the start by 0. Consecutive
maxima of || are numbered from 1 to 11.

In Figs. 11(b)-11(d) we show the trajectories for periodic
TWs with Q=3, 2, and 1, respectively. Here, the orbits of
W, (2) are closed after three, two, and one period of r(z), re-
spectively. Like the one in Fig. 11(a) they can be well ap-
proximated by the simple formulas for [#,(7)| (4.2b) and for
¢;(¢) (4.2¢c). In these TWs the phase velocity is significantly
modulated such that |¢,| is large when || is small.

The trajectory in Fig. 11(b) belongs to a TW at r=1.405
with a mean frequency {(wpy)=€)/3 that is slightly smaller
than the one of TW A shown in Fig. 11(a). The subharmoni-
cally responding TW B at r=1.383 that is shown in Fig.
11(c) has with (wry)=/2 a frequency that is larger than
that of TW A since according to Fig. 3(b) (wy) increases
with decreasing r. For the synchronous TW C in Fig. 11(d) at
r=1.337 one has {wpy)=C. Its trajectory with its center be-
ing displaced from the origin has less symmetry than the
ones for Q=2 and 3. This explains with representation (4.2)
that the synchronous TW with Q=1 does not display the
time-shift symmetry (4.3) (cf. Sec. IV B 2).

Figure 11(e) shows an example of the periodic motion of
w,(¢) for a TW with Q=1/m; here, Q=1/3. The trajectory is
closed after the time 7, i.e., after one period of r(z). This is
also the periodicity of the convective response. The mean
TW frequency {wgy), on the other hand, is defined via the
long-time average of the velocity of the nodes of, say,
w(x,z=1/2,1)= W, (t)|cos[ ¢(t) —kx] according to Egs. (2.16)
and (2.17). Here, this quantity is three times larger than )
since the rate of change ¢; of the phase in Fig. 11(e) is on
average three times larger than (). The asymmetry of the
trajectory of w,(r) implies also here like in the case for Q
=1 in Fig. 11(d) that the time average of the vertical velocity
is nonzero, giving rise to a stationary laterally periodic con-
tribution.

Figure 11(f) shows the motion of w(¢) for the strongly
amplitude and phase modulated TW D with 0=0.214. Here,
w,=0.3 and w;=8.
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D. Harmonic response with fixed spatial phase

When the mean heating rate is increased the mean TW
frequency (wzy) decreases as in the absence of modulation.
Thus, the peaks in the Fourier spectrum of Fig. 4(a) at
QO *{wry) approach each other as indicated by the dotted
horizontal arrows in Fig. 4(a). At r=1.430 the TW frequency
(wry) drops to zero [cf. Fig. 3(b)]. Beyond this r value,
convective solutions with a fixed spatial phase are realized to
be oscillating synchronously with r(z): in the regime marked
as MC in Fig. 3 only one main peak remains in the Fourier
spectrum of w(xy,z=1/2,1) that is located at the imposed
modulation frequency () plus higher harmonics thereof.

In this MC regime, the flow basically just oscillates
around the unmodulated SOC state’s flow. Also the mean of
Woax(?) (2.13) is practically given by w,,,, in the SOC state
for stationary driving: the thin line in Fig. 3(a) lies in the
middle between the thick lines for w; and w,.

Furthermore, one observes also for modulated heating the
6=0 scenario for the transition from TWs to SOCs: the phase
velocity decreases with increasing » since advection in-
creases. Thereby the regions of closed streamlines grow at
the expense of the open ones. Consequently, the former also
come closer to the respective opposing horizontal boundary
layers. This decreases the asymmetry of the boundary layer
feeding into oppositely turning rolls. As a consequence, the
concentration contrast between adjacent TW rolls—which
drives the lateral phase propagation of the TWs—decreases
until in the MC state with v,,=0 the oppositely turning rolls
are fed symmetrically by both boundary layers.

The concentration field in the MC solution looks like the
one in SOC states for stationary driving [20] with the advec-
tive mixing being much stronger than in TWs. The qualita-
tive behavior of the concentration field in the MC state is
also the same as for modulation with larger frequencies [24].
However, for our low-frequency modulation the concentra-
tion distribution is more homogeneous at the maximum of
the vertical velocity (M is smaller) and when w is minimal
the boundary layers near the two plates are more pro-
nounced.

Finally, we note that the end of the modulated TW solu-
tion branch and the beginning of the MC regime are shifted
to larger r when the modulation frequency ) decreases. The
reason is that with decreasing () the concentration difference
between top and bottom plates increases as shown in Fig. 1.
Thus, it is necessary to apply a larger r causing a larger
advection to mix the binary fluid.
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V. CONCLUSION

The bifurcation properties and the spatiotemporal behav-
ior of oscillating convection rolls in binary fluid mixtures
subject to low-frequency harmonic modulation of the bottom
boundary’s temperature were investigated in a cross section
perpendicular to the roll axes. Finite difference numerical
simulations were performed for parameters adapted to ex-
periments that use ethanol-water mixtures with sufficiently
negative Soret coupling to show subcritical Hopf bifurca-
tions into SWs and TWs. Various visualization and diagnos-
tic tools were used to elucidate the spatiotemporal structure
and bifurcation properties of the rich and rather complex
strongly nonlinear response behavior to the modulation of
the thermal driving.

Quasiperiodic as well as different periodic modulated
traveling waves and synchronously modulated patterns with
a fixed spatial phase (MC) are found as stable solutions. The
full bifurcation behavior of TWs and MCs has been pre-
sented and their typical temporal oscillations, frequency
properties, and concentration field structures are discussed in
detail. It is shown that low-frequency modulation shifts the
lower and upper ends of the existence interval of TW con-
vection to larger mean Rayleigh numbers in comparison to
stationary heating. Under temperature modulation the
buoyancy-induced advection gets modulated and leads in
particular for the modulated TWs to complex nonlinear mix-
ing behavior. The symmetry properties of the various peri-
odic TWs are discussed. It is shown that contrary to the case
of large-frequency modulation [24] a stable SW solution
does not exist under low-frequency heating. Anomalous
variations of the mixing number relative to the magnitude of
the advective velocity are observed and explained. Peculiari-
ties of the response to very low frequencies are discussed
when the heating remains for a long time below the saddle
Rayleigh number of the backward bifurcating TW under sta-
tionary heating.
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