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Measurement of coefficients of the Ginzburg-Landau equation for patterns of Taylor spirals
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Patterns of Taylor spirals observed in the counter-rotating Couette-Taylor system are described by complex
Ginzburg-Landau equations (CGLE) and have been investigated using spatiotemporal diagrams and complex
demodulation technique. We have determined the real coefficients of the CGLE and their variations versus the
control parameters, i.e., the rotation frequency of cylinders.
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I. INTRODUCTION

The hydrodynamic stability of flows within rotating co-
axial cylinders (Couette-Taylor system) have been exten-
sively reported over the past decades, both from experimen-
tal as well as from theoretical or numerical points of view
[1-3]. Annular flows with rotating cylinders contribute to the
understanding of transition to turbulence in shear flows in
closed systems. These flows are encountered in many indus-
trial applications, such as flow separation processes or drill-
ing operations in the petroleum industry. In the counter-
rotating Couette-Taylor system, centrifugal instability
generates intriguing mechanism of the transition to turbu-
lence, from the circular Couette flow, through spirals and
interpenetrating spirals to intermittent flow [4—6] and turbu-
lent spirals [7—12]. Interpenetrating spirals (IPS) propagate
axially in opposite directions with finite velocity and are
good prototypes of interacting nonlinear waves with a large
group of symmetries [1,13,14]. The properties of spiral vor-
tices have been investigated using theoretical methods of
group theory and numerical simulations [2,15-18], however,
few experimental studies have focused on the characteristics
of spirals and interpenetrating spirals [1,19], because of their
three dimensional character which renders their analysis and
observation very difficult. Interaction between left and right
spirals may generate remarkable spatiotemporal pattern con-
taining a rich variety of coherent structures such as sources,
holes, defects, and sinks. Therefore, the dynamics of single
spirals and interpenetrating spirals can be described in the
framework of amplitude equations [20,22]. Near the thresh-
old the form of the amplitude equation depends on the sym-
metries and the nature of primary bifurcation. The Complex
Ginzburg-Landau equation (CGLE) describes a variety of
dynamical patterns observed in many hydrodynamic flows
[20,22,23,25-27]. The values of its coefficients depend on
the system parameters and vary from one system to another.
Many theoretical and numerical studies of the CGLE in its
scaled form have been recently performed leading to a rich
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variety of states and coherent structures. The applicability of
such a general equation to a given experiment requires an
appropriate experimental determination of CGLE coeffi-
cients. This has been performed for thermal convection in
mixtures by Kolodner er al. [28,29] and for hydrothermal
waves by Burguette ef al. [30].

In this paper, we report experimental results of the transi-
tion from circular Couette flow to spirals and Interpenetrat-
ing Spirals and focus our attention on the properties of IPS
flow have not been reported before. We have determined the
amplitude, frequency and wave number of spirals using a
complex demodulation technique [31]. Assuming that these
patterns can be described by the theory of Ginzburg-Landau
Eqgs. [24,25], we have determined the corresponding real co-
efficients using a method developed by Burguette er al. [30].
The paper is organized as follows: in Sec. II, we describe the
experimental setup and procedure, in Sec. III, we present the
spiral and IPS patterns, the adequateness of the Giznburg-
Landau equations for their description and the method of
coefficient extraction. Results are presented in Sec. IV. The
paper ends with a discussion and conclusion.

II. EXPERIMENTAL SETUP

The Couette-Taylor configuration used in our experiment
has been described in [6]. It consists of two coaxial hori-
zontal counter-rotating cylinders. The inner cylinder is
made of black Delrin with a radius a=4.459 cm. The outer
cylinder is made of transparent plexiglass with a radius b
=5.050 cm. The gap between the cylinders is d=b-a
=0.591 cm over a working length L=27.5 cm. Hence, the
system has a radius ratio n=a/b=0.883, and an aspect ratio
I'=L/d=46, and it can be considered as an extended flow
system. In our experiment, rigid end plates are attached to
the outer cylinder. The cylinders are driven independently in
opposite directions by two DC servomotors. Thus the control
parameters of the Couette-Taylor system are the Reynolds
numbers defined for the inner and outer cylinders respec-
tively: R;=Q,ad/v and R,=Q,bd/v, where (}; and (), are
angular frequencies of inner and outer cylinder respectively
and v the kinematic viscosity of the fluid. We have used
distilled water at 7=21 °C with 2% Kalliroscope AQ1000
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FIG. 1. Pattern of Interpenetrating Spirals (a) photography, (b)
spatiotemporal diagram, for Ry=—1375 and eR;=520.

suspension for visualization. With a light from a fluorescent
tube, the flow was visualized from the front side. To obtain
spatial information about the flow dynamics, a linear 1024-
pixel charge-coupled device (CCD) array recorded the inten-
sity distribution I(z) of the light reflected by Kalliroscope
flakes from a line along the axis at the middle of the cylin-
ders. The recorded length was from 20 to 25 c¢m in the cen-
tral part of the system [Fig. 1(a)], corresponding to a spatial
resolution of 41 to 51 pixels/cm. The intensity was sampled
at 256 values, displayed in gray levels at regular time inter-
vals along the time axis to produce space-time diagrams
I(z,1) of the pattern [Fig. 1(b)]. The complex demodulation
technique [31] was applied in order to extract some spatial
and temporal properties of the pattern. The dynamics of pat-
terns is investigated using the reduced control parameter
e=(R;—R,.)/R;, where R;, is the critical value of the inner
Reynolds number.

III. SPIRALS AND INTERPENETRATING SPIRALS

In our counter-rotating Couette-Taylor system and for a
fixed external Reynolds number R,<<-1200, the first bifur-
cation occurs at R;. (which depends on R,) and gives rise to
a pattern of propagating helicoidal vortices named spirals.
Above the onset, because of the large axial extent of the
system, left and right propagating spirals appear separated by
a source [Fig. 2(a)]. The source is an “active” coherent struc-
ture, which sends out waves to both directions with approxi-
mately the same frequencies and wave numbers. The source
appears randomly in the pattern at any positions which may
change when the control parameter is varied abruptly. For
(£>0), the lifetime of the source is short because the left
and right spirals interact nonlinearly, invade each other [Fig.
2(b)] and lead to interpenetrating spirals [Fig. 2(c)]. For &
=0.012, the lifetime of the source is approximately 60 s.
During this short period, spirals vanish slightly in space be-
fore reaching the ends of the system, suggesting that the IPS
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FIG. 2. Spatiotemporal diagram of counter-propagating spirals
and interpenetrating spirals for a fixed outer Reynolds number
R,=-1200. (a) R;=486 or £=0.012; (b) R;=490 or £=0.02; and (c)
R;=501 or £=0.04.

pattern has soft boundaries near the threshold (no reflection
from the boundaries). The increase of the inner Reynolds
number (or &) reduces considerably the lifetime of the
source. Figure 2(b) shows a typical spatiotemporal diagram
of IPS at an early stage of their life just after that source
disappeared from the system. Three regions are clearly ob-
served. Two regions in left and right side of the diagram
contain only left or right spirals, respectively. A third region
in the middle contains left and right spirals traveling in op-
posite directions. As the control parameter increases the re-
gion of interpenetrating spirals increases in size. Figure 2(c)
shows the space-time diagram for £=0.04 in which very
complex structures are observed. The structure of the spirals
and IPS patterns depends on two control parameters, the in-
ner and outer Reynolds numbers R; and R, respectively. In
order to simplify the presentation, we will describe the dy-
namics of interpenetrating spirals for fixed values of the
outer Reynolds number R,=-1200, —1500, and —2000 and
increasing values of R;.

A. Complex Ginzburg-Landau equations (CGLE)

The signal of the interpenetrating spirals in an extended
Couette-Taylor system can be represented as follows [32]:

I(Z,t) — Re[A(Z’t)ei[qz—meo] + B(Z,t)ei[q“wr_mo]] (1)

where Re(x) represents the real part of the quantity (x),
A(z,t) and B(z,1) are the amplitudes of right and left travel-
ing spirals, w is the frequency, m is the azimuthal wave num-
ber, g is the axial wave number. As the spiral pattern appears
through a supercritical Hopf bifurcation, the amplitudes
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A(z,t) and B(z,f) of the opposite traveling waves
can be described by the coupled complex Ginzburg-Landau
equations [26,33]:

GA  0A . 2 PA

T E+U&_Z 28(1 +lC0)A+§0(1 +lCl)(9_Z2
—g(1 +ic,)|AlPA - 8|BA, (2)

OB OB . N

TO(E - vﬁ_z> =e(1 +icy)B+ f%(l + lcl)é,_zz
- g(1+ic,)|B|*B - 8|AI’B, (3)

where 7, is the characteristic time, v the axial group velocity,
e control parameter and &, the coherence length, g the non-
linear saturation coefficient, & the coupling coefficient, ¢ is
the linear correction to the frequency, c¢; and c¢, represent
linear and nonlinear dispersion coefficients of the waves. For
the stability of IPS, d<<g, i.e., the coupling is not destructive
but allows a coupling at any position. The complex
Ginzburg-Landau equations have solutions of the form:

Az.1) = |A(z, )| D) 4)

B(z,1) = |B(z,1)|"4pe ") 5)

where g, and w, are wave number and frequency of pertur-
bations. The real amplitudes |A(z,7)| and |B(z,t)| are experi-
mentally obtained. The Eqgs. (4) and (5) are substituted in
Egs. (2) and (3) in order to separate the real and imaginary
parts of the Complex Ginzburg Landau equations. To adapt
the theoretical CGL equations to the experimental condi-
tions, specific hypothesis should be considered. In this study
the experimental results are focused on the small growth of
perturbations near the threshold when the amplitude of right
and left waves are stationary [Fig. 2(a)]. Therefore, CGL
equations are restricted to the case in which dA/df=0, and
linear and nonlinear coefficients of dispersion c¢;,i=0,1,2
are ignored.

B. Extraction of CGLE coefficients

Real coefficients of Eq. (2) are extracted from spatiotem-
poral diagram of spirals using the demodulation technique
with a Hilbert Transform to analyze the space-time diagrams
of the pattern signal /(z,7). The Hilbert Transform technique
[31], consists of a first Fast Fourier Transform of the original
signal I(z,t) which is filtered in space with relatively large
band; this allows the elimination of large-scale lighting inho-
mogeneities and small-scale noise. In the spectral space, the
components of negative frequencies are set to zero with a
smooth filter. After a bandpass filter with a band carefully
adapted to each pattern, centered on the rolls frequency, an
inverse Fourier Transform is applied to the truncated signal.
For the clarity of the paper, we describe the technique for the
right spiral; a similar procedure is applied for the left spiral.
The real signal of the right spirals |A(z,7)]| is transformed in
its complex equivalent expression as follows:
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A(z.1) = |A(z,1) ], (6)

The space-time diagram of amplitude |A(z,#)| and the to-
tal phase ®(z,7) are analyzed separately. The wave numbers
and frequencies are determined as the spatial and temporal
phase gradients:

q(z,t) = 90/ 9z. (7)

w(z,t) =2mf = D/ dt. (8)

Spatiotemporal diagram of spirals near the threshold [Fig.
2(a)] shows a source which separates right and left spirals. In
the region of right spirals, the particular solution Eq. (4),
substituted into the real part of the CGL Eq. (2), leads to the
following equations for amplitude A(qi) and frequency
w,(q,) at equilibrium.

2 2

e—&q
o e 22 ©
w,=27f,=—V,q,= (10)

To extract experimentally the CGLE coefficients from the
spatiotemporal diagrams of spirals (|A(z,#)|), we have used
the procedure developed Burguette er al. for hydrothermal
wave patterns [30]. At each point i of the real spatiotemporal
diagram, we have computed the amplitude |A|(z;,;), the
wave number and frequency as follows:

q(zpt) =9, P;  o(z,t) == 9,P. (11)

Several points have identical wave number with different
values of amplitude and frequency. Statistical modes of am-
plitude A and frequency f,=w),/2 are classified for each
class g,g. All modes are plotted versus the perturbed wave
number g, in Figs. 3(a) and 3(b). The variation of |A| with
g, is shown in Fig. 3(a). Experimental data of Fig. 3(a),
plotted in term of Az(qf,) are compared with theoretical Eq.
9). At q[2,=0 the amplitude Eq. (9) becomes |A |*=&/g. From
the experimental data of Fig. 3(a) the nonlinear coefficient g
is extracted. The slope of the curve Az(qlz,) allows measure-
ment of the value of —&/g and extraction of the coherence
length &,.

The experimental value of axial group velocity v is ob-
tained from Fig. 3(b) as the slope of the linear part of dis-
persion curve w,(q)=vq. The group velocity determines the
propagation of small perturbations.

To measure the characteristic time 7,, we have used the
dynamics of pattern in the neighborhood of the source in the
spatiotemporal diagram. The characteristic time of the Inter-
penetrating Spirals is defined as the time needed for the sys-
tem to generate the first spirals when the critical control pa-
rameter is reached. Near the threshold (in presence of the
single source), the pattern has soft boundary conditions, so
we can neglect the term #*A/dz> and the nonlinear term. The
resulting equation is

T =€A. (12)
Jz

with its corresponding solution
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FIG. 3. Variation of amplitude (a) and frequency (b) of pertur-
bations versus g, for R,=—1200 and £=0.012.

ln<£>:i . (13)

ToU

As the value of v has been determined before, one de-
duces the characteristic time 7, using the Eq. (13). The co-
efficient g, &, v, and 7, are extracted for the right spirals.
Similar process is used for measuring the corresponding left
spirals coefficients.

Measuring the coupling coefficient 6 required particular
attention to region of space-time diagram where both spirals
coexist together [such as region three in Fig. 2(b)]. It should
be noticed that the measurement of & is valid only if the
region of interpenetrating spirals remains stationary in time.
It is very difficult to find such regions as right and left spirals
travel in the system with a small difference in their frequency
and wave number. Using previous coefficients for left and
right spirals, (g, &, v, and 7y), the real part of Ginzburg-
Landau equations are applied to a spatiotemporal diagram
where both spirals coexist. An estimated value of coupling
coefficient J is given in the next section.

IV. RESULTS

All coefficients are measured for a range of control pa-
rameter 0 <<e<<0.05 for three value of fixed outer Reynolds
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FIG. 4. Fundamental wave number (a) and frequency (b) of
interpenetrating spirals versus e for a fixed outer Reynolds number
R,=-1200.

numbers R, € {~1200,-1500,-2000}. For a fixed outer Rey-
nolds number R,=—-1200, the first instability of the base flow
occurs at critical value of the control parameter R;.=480 and
gives rise to a pattern of traveling left or right spirals: no
hysteresis has been observed when ramping up and down.
In order to study the behavior of spirals near the threshold,
the wave number and fundamental frequency of right and left
spirals are measured versus €. As shown in Fig. 4(a), from
0<e<0.02 the wave number of both spirals decrease
slightly reaching a constant value of g=2md/A=4, where
A=0.929 cm is the pattern wavelength. For £>0.02 the
characteristics of the flow changes. The interpenetrating
spirals travel in the system with a constant wave number.
A similar characteristic is observed for the fundamental
frequency [Fig. 4(b)]. Near the threshold 0<e<0.02,
because of the difference in their axial extent, left and
right spirals have different frequencies which converge
slightly to common value f=d*f;,/v=15 with f,;,
=0.43H7 for & € ]0.02,0.032[.

A. Characteristic time scale (7)

The characteristic time scale 7, is measured for different
values of outer Reynolds numbers (Fig. 5). It is approxi-

016306-4



MEASUREMENT OF COEFFICIENTS OF THE GINZBURG-...

PHYSICAL REVIEW E 82, 016306 (2010)

24
L ) Ro = -2000 |
- ® Ro=-2000 (R)
0.008 5--Renclom O Re=2000()
i A Ro=-1500 (R)
| A Ro=-1500 (L)
29 L3 Ro =-1200 (R)
i . <& Ro=-1200 (L)
0.006 — I o .
: ®, . ¢ 8 ¢ o & ¢
% a1 2 ' & b a & a 2fa a s a ¢ ¢
o
(3] 3 @ A % * > 2F
0.004 & H e
* * [ORNG] e O e
i * 5 |
- i A A A L A A A a
0.002 181
0 L 1 L 1 L 1 L 1 6 I N 1 n 1 L 1 L
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 003 0.04 0.05

FIG. 5. The relaxation time versus &.

mately constant versus & and it is sensitive to values of R,.
For R,=—1200, the average value of 7is 7,=4.10"° leading
to a relaxation time 7=7y/e=0.2 for £=0.02.

B. Coherence length (&)

Extended systems contain a high degree of nonlinear
competition of linearly unstable modes, due to the presence
of boundaries, which break the original symmetries of the
system. We have observed that near the walls, amplitude of
counterpropagating spirals and interpenetrating spirals al-
ways vanished. The influence of boundaries is expressed us-
ing the comparison between the linear size of the system L
with the coherence length &,. To investigate the influence of
control parameters on the coherence length, we have plotted
in Fig. 6 the measured value of &, versus ¢, for three differ-
ent values of R,. As shown Fig. 6, the coherence length & is
approximately constant versus € but it increases with R,. The
right and left waves have approximately the same coherence
length with similar behavior versus inner Reynolds number.
For Ry=—2000 and £=0.02, we have £=£,/&"?=0.28, which
is comparable to 1/g(=0.234 where ¢, is the average wave
number. Therefore & <<1/g,<<I', this confirms the extended-
ness of the flow system.
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FIG. 6. The coherence length versus &.

FIG. 7. The velocity group v versus .

C. Group velocity (v)

The axial group velocity is measured versus & and pre-
sented in Fig. 7. It is constant versus & and has approxi-
mately the same value for different values of the outer Rey-
nolds number R,=-1200 and R,=-2000. However, it can be
observed that the right spirals for R,=—1500 has lower ve-
locity group compared to the others. This difference could be
related to the transient nature of the corresponding state. The
values of the group velocity (v ~2) are very small compared
to those of the phase velocity c=2f/q~24.

D. Nonlinear saturation coefficient (g)

The measured value of the nonlinear saturation coefficient
g is plotted versus e for three different values of the outer
Reynolds number (Fig. 8). As shown in Fig. 8, the nonlinear
saturation coefficient g increases with &: g(g)=ae+g,, where
the values of the slope a for few values of R, are given in the
Table I.

The dependence of the coefficient g upon the external
Reynolds number (Fig. 8) is more pronounced for
R,=-2000 than for R,=-1200 or R,=-1500. However,
the slope of the nonlinear saturation coefficient is higher for
R,=-2000.

0.1
3 o Ro = -2000 (R)
L @ Ro =-2000 (L)
[ A Ro=-1500 (R)
A Ro =-1500 (L)

0.08 - o &  Ro=-1200(R)
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0.06 |- ? e Dy

| " be +
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0.04 @ Lok
L Q Oé ;

. X3 A@ L e
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FIG. 8. The nonlinear saturation coefficient versus &.
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TABLE I. Slope of the nonlinear coefficient for values of R,.

R, ag 10%go, ag 10%gor
-1200 1.46 0.60 1.35 1.3
—1500 2.04 1.30 1.52 7.20
-2000 3.73 2.60 3.02 13.0

E. Coupling coefficient ()

As has been discussed before, the coupling coefficient &
could be measured only if the region of interpenetrating spi-
rals remains stationary in time. This condition requires the
selection of a specific spatiotemporal diagram where both
spirals are traveling with exactly same wave number and
frequency. It is, therefore, very difficult to measure the value
of 6. The coupling coefficient & was measured for only one
case where R,=-2000 and £=0.012. The estimated value is
0=0.018. It should be noticed that coefficient of coupling is
comparable to the value of the nonlinear saturation coeffi-
cient g=0.021.

V. DISCUSSION

Table II gives values of the determined coefficients for
£=0.012. The knowledge of the coefficients of the Ginzburg-
Landau equation is of great importance in the description of
the pattern in extended systems with fixed boundaries. In
fact, these coefficients enter into the scaling units of length,
time, group velocity, and amplitude as follows:

12 12 12

€ §

z%-z,t%-t,v%-rw,A%(-) A (14)
& 70 & €

in order to reduce the CGLE to the form:

A 9A PA
ot At (1 +ic1)a—Z2 —(1+icy)|APA.  (15)

The scaled domain length becomes I=Le!"?/&,. So in or-
der to compare experimental results with numerical simula-
tions from Eq. (14), one has to rescale the corresponding
variables, depending on boundary conditions used in simula-
tions. One should recall that for patterns in finite length do-
mains or in the presence of counter-proapagating waves, the
Galilean invariance is not valid and the group velocity can-
not be eliminated from the single CGLE equation or the
coupled system of CGLE equations [34,35].

The analysis of the behavior of real coefficients of
Ginzburg-Landau equation helps to understand the influence

TABLE II. Experimental values of Ginzburg-Landau coeffi-
cients for £=0.012.

R, 1037, v 10%¢, 10%g 1025
~1200 3.8 2.09 4.6 1.6
~1500 54 2.06 5.7 1.6
~2000 55 2.16 56 2.1 1.8
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of the control parameters on the counter-rotating Couette-
Taylor flow. Previous experimental studies [5,6,12] were fo-
cused on different role of inner and outer rotating cylinders
on the dynamics of intermittency regimes in the Couette-
Taylor system. In their theoretical and numerical studies,
Coughlin et al. [4] observed that the radial field velocity is
separated by a nodal surface where the velocity is zero. This
nodal surface divides the radial velocity profile into an inner
region with a centrifugal instability and an outer region
where the flow is stable. They conclude that the centrifugal
instability is very active near the inner cylinder and the
growth rate of the finite amplitude perturbations is stratified
in the radial direction. The present results complement the
previous paper as it discusses the influence of inner and outer
parameters on the interpenetrating spirals flow which repre-
sents the first instability appearing before the intermittency
regimes.

When the inner control parameter R; increases in the sys-
tem, the linear properties of the perturbations (the coherence
length &, the group velocity v and the characteristics time
Tp) remain constant while the nonlinear coefficient g in-
creases linearly with a slope depending on R, (Table I). The
increase in the inner Reynolds number R; amplifies the non-
linear interaction of perturbations in the unstable zone close
to it without changing sensitively its extent since the coher-
ence length does not vary with R;. The variation of the satu-
ration coefficient with the criticality g(e) has been addressed
in the theoretical study by Eckhaus et al. [36]. The variation
of the slope with R, can be linked to the structure of the flow
for different external Reynolds number. In the stability dia-
gram published by Andereck et al. [1] the transition from
interpenetrating spirals to turbulent bursts appear for external
Reynolds numbers —1200 and —1500 (for a constant inner
Reynolds number R;=488). However, for the same inner
Reynolds (R;=488), the transition is different for external
Reynolds number R,=-2000. At R,=-2000 when the criti-
cal values of inner Reynolds number is reached, the interpen-
etrating spirals are suddenly replaced by turbulent spirals in
the system. For a given value of R;, the outer control param-
eter R, has a sensitive influence on the linear and nonlinear
coefficients of the Ginzburg-Landau equation. This is due to
the variation of the unstable zone with the rotation of the
outer cylinder.

Previous experimental results [8] concluded that the
amount of perturbations in the system depends on the bound-
ary condition at both sides of the system. It was observed
that when boundary conditions rotate with the external cyl-
inder the flow is more stable. This condition is satisfied in
our experimental setup. Therefore the influence of rotating
boundary conditions (rotating with the outer cylinder) are
expressed through the coherence length which depends on
the outer Reynolds number and remains constant with the
increase of inner Reynolds number. The obtained results are
therefore consistent with previous experimental results as the
coherence length increases with the increase in perturbations,
generated from the boundaries of the system. Recent studies
[19,21] have shown that Ekman cells have influence in the
formation of the Taylor vortices when the outer cylinder is at
rest; no known similar theoretical and numerical studies are
available in the case of counter-rotating cylinders and the
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role of Ekman cells on the spiral vortices. In that case the
flow induced by rotating the endplates attached to the outer
rotating or inner rotating cylinder is more complex.

The behavior of sources in the transient state of IPS per-
mits us to understand how waves appear in the system. The
spatial and temporal stability of sources shows that both
waves appear in the system with same value of wave number
and slightly different frequency. Therefore the coupling phe-
nomenon between the right and left waves is important.
However, the short lifetime of sources shows that the cou-
pling phenomenon collapses rapidly because each wave trav-
els independently in the system (IPS). Furthermore, the rota-
tion velocity of the inner cylinder increases, the lifetime of
sources diminishes, and the coupling coefficient becomes
rapidly negligible.

This result gives an idea about the behavior of the cou-
pling coefficient 6 which is difficult to determine experimen-
tally in the system.
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VI. CONCLUSION

The coupled complex Ginzburg-Landau equations is used
to describe the dynamics of interpenetrating spirals in the
counter-rotating Couette-Taylor system. The real coefficients
of Ginzburg-Landau equations have been measured and their
variation with the flow control parameters has been clarified.
While the linear coefficients do not vary with R;, the nonlin-
ear saturation coefficient increases linearly with R; for each
investigated value of R,. The variation of the saturation co-
efficient with the criticality g(e) is an important property that
should lead to results in the numerical studies of the ampli-
tude equations.
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