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We present analytical calculations and numerical simulations for the synchronization of oscillators interact-
ing via a long-range power law interaction on a one-dimensional lattice. We have identified the critical value
of the power law exponent �c across which a transition from a synchronized to an unsynchronized state takes
place for a sufficiently strong but finite coupling strength in the large system limit. We find �c=3 /2. Frequency
entrainment and phase ordering are discussed as a function of ��1. The calculations are performed using an
expansion about the aligned phase state �spin-wave approximation� and a coarse graining approach. We also
generalize the spin-wave results to the d-dimensional problem.
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I. INTRODUCTION

Synchronization between a collection of oscillating ob-
jects is a common feature in a number of complex systems,
such as the pacemaker cells in the heart, neurons in the ner-
vous system, an array of Josephson junctions and rhythmic
applause in a theater �1�. At the same time, from a purely
theoretical point of view, the phenomenon is interesting as
perhaps the simplest examples of a collective response of
driven dynamical systems, showing many features reminis-
cent of equilibrium phase transitions. Recent technological
advancements in the fabrication of nanoelectromechanical
systems �NEMS� promise large arrays of interacting nonlin-
ear oscillators �2� that will provide good testing grounds for
the theoretical predictions, as well as potential applications
in sensitive detectors and precise frequency sources.

Winfree �3� introduced a simple phase description of
coupled oscillators, and he and Kuramoto �4� demonstrated
synchronization for the case in which each oscillator is
coupled equally to all the other oscillators �all-to-all cou-
pling� using a mean field theory �for a review, see Ref. �5��:
above a critical coupling strength depending on the distribu-
tion of the oscillator frequencies a finite fraction of the os-
cillators become entrained and oscillate at the same fre-
quency, leading to a coherent signal in the summed response
of the oscillators. On the other hand, for nearest-neighbor
coupling Daido �6� and Strogatz and Mirollo �7� showed that
there is no macroscopic entrainment for a one-dimensional
chain. �By macroscopic we mean an O�N� value for N→�
oscillators.� In higher dimensions Strogatz and Mirollo fur-
ther showed that any macroscopic entrained cluster must
have the form of a sponge, i.e. any compact macroscopic
entrained region contains “holes” of unentrained oscillators.
The full behavior of the nearest-neighbor model as a function
of the dimension of the lattice is not completely understood,
although based on approximate analytic arguments �6,8� and
numerics �9� it is conjectured that d=2 is the lower critical
dimension for which macroscopic entrainment occurs.

We consider the phase model for a one-dimensional chain
of oscillators with a strength of coupling between oscillators

that falls off as a power law of their separation, and study
how the synchronization behavior changes as a function of
the power. This system was introduced by Rogers and Wille
�10�. They investigated the system numerically, in particular
finding the critical value of the power law for synchroniza-
tion of a macroscopic system as a function of the coupling
strength. They suggested a critical value �c=2 above which
macroscopic synchronization would not occur for any finite
coupling strength, no matter how large. Marodi et al. �11�
further investigated the system, focusing particularly on the
question of complete entrainment in finite systems for small
enough power laws. For an interaction power law ��1, the
sum of the interactions of a single oscillator with an infinite
lattice of oscillators with aligned phases diverges for fixed
coupling strength. In their study of this range of �, Rogers
and Wille �10� chose a system size dependent normalization
of the coupling strength to remove this divergence. This
choice of normalization allows the investigation of the cross-
over to the all-to-all model of N oscillators, where the cou-
pling to each oscillator is scaled by N−1 so that the synchro-
nization transition occurs at finite coupling constant. On the
other hand, Marodi et al. �11� argued that in physical systems
of interest, the interaction strength would not be expected to
scale with the system size, and they investigated the model
without scaling the coupling constant with system size A
major focus of their study was how the size of the system
needed for complete entrainment then depends on the inter-
action power law and the coupling strength.

A power law interaction is of interest both experimentally
and theoretically. This type of interaction should be relevant
to some implementations of nanomechanical arrays, since
both electrostatic interactions between charges or dipoles on
the devices and elastic interactions through the supporting
substrate may lead to such long-range interactions. Interac-
tions falling off as a power law have also been used to model
the complex long-range connectivity of neurons �12�. Radic-
chi and Meyer-Ortmanns �13� have recently investigated the
case of a single pacemaker oscillator with a different fre-
quency coupled through a power law interaction to many
identical oscillators. From a purely theoretical point of view,
the long-range coupling with an appropriate normalization
factor also allows one to interpolate between the extreme
cases of all-to-all and nearest-neighbor coupling. Finally, the*debanjanchowdhury@gmail.com
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model with power law interactions allows us to assess the
accuracy of various analytic approximation schemes by com-
parison with large numerical simulations.

In this paper we present a more systematic investigation
of the power law model, using analytic perturbation tech-
niques analogous to spin-wave theory in magnets and cluster
arguments following Ref. �7�, as well as numerical simula-
tions on larger systems than in previous work. We study the
range of interaction power laws ��1, and the question of
whether macroscopic synchronization may exist for a large
number of oscillators, and the nature of the synchronized
state, as a function of �. We emphasize that for this range of
interaction power laws, the different choice of normalization
of the coupling strength used in Refs. �10,11� results only in
a finite multiplicative factor of the coupling strength, and
does not change any of the qualitative results. Only for �
�1 is the choice of normalization critical to the questions
being addressed.

The outline of the paper is as follows. In Sec. II we intro-
duce the model and the diagnostics we use to quantify its
behavior. We then describe three approaches to understand
the behavior. In Sec. III we perform an expansion about the
aligned-phase state analogous to the spin-wave approxima-
tion in magnetic systems. In Sec. IV we coarse grain the
system by summing over blocks of oscillators, following the
method used by Strogatz and Mirollo �7� in their discussion
of the nearest-neighbor model. Numerical simulations on
large systems of up to 16 384 oscillators are described in
Sec. V. In Sec. VI we bring together the results, compare
with previous work on the long-range model �10,11�, and
conclude.

II. MODEL AND DIAGNOSTICS

In the simplest model of a population of mutually inter-
acting oscillators with different frequencies, each oscillator is
reduced to a single phase degree of freedom which evolves at
a rate determined by its intrinsic frequency and its interac-
tions with the other oscillators proportional to the sine of the
phase differences �4�

�̇ j = 	 j + �
i�j

Kij sin��i − � j� . �1�

The all-to-all model �Kij =K /N� and the short range model,
where only the nearest neighbors interact with each other
�Kij =K for nearest neighbors, zero otherwise� have been
studied in great detail �5�.

In this paper, we consider oscillators with a power law
coupling that varies as Kij =K /rij

�, where rij is the distance
between the oscillators at site i and j. The model is defined
by the equations of motion

�̇ j = 	 j + K�
s=1

N−1
1

s� �sin�� j+s − � j� + sin�� j−s − � j�� . �2�

Here, � j�1� j�N� is the phase of the jth oscillator and 	 j are
the corresponding intrinsic frequencies, assumed to be inde-
pendent random variables with distribution g�	�. Without
loss of generality, g�	� can be chosen such that �	 j�=0 and,

for bounded distributions, �	 j
2�=1. The parameter K sets the

strength of the coupling, with � the exponent for the power
law decay of the interactions. We use periodic boundary con-
ditions so that j+N� j.

We are interested in the synchronization of the oscillators
to one another. A number of different criteria for synchroni-
zation can be introduced.

We will use the term entrainment to denote oscillators that
are evolving with the same frequency. More precisely, we
will define oscillators i , j as entrained if there are no 2

phase slips over arbitrarily long time evolution after initial
transients have died out

Entrainment : 	��ij�t0 + T� − ��ij�t0�	 � 2
 �3�

with ��ij =�i−� j. Note that this is stricter than simply requir-
ing the long-time mean frequencies 	̄i= ��i�t0+T�−�i�t0�� /T
to be equal, since for example phase diffusion 	��ij�t�	

 t1/2 would be consistent with the latter condition but not
the former. A measure of the presence of entrainment over
the whole system or frequency order is the Edwards-
Anderson order parameter

�EA = lim
t−t0→�

1

N
��

j=1

N

ei��j�t�−�j�t0��� . �4�

For a fully entrained state all of the oscillators evolve with
the same frequency, which will be the mean of the frequency
distribution, and �EA=1. This is a particularly simple state: a
periodic solution �limit cycle� in general and a time indepen-
dent solution �fixed point� after setting the mean frequency to
zero.

Another measure of synchronization is phase order giving
the average alignment of the phases of the oscillators. The
degree of phase order over the system is quantified by the
magnitude of the phase order parameter 	�ph�t�	 at any time
with

�ph�t� =
1

N
�
j=1

N

ei�j�t�. �5�

The signal measured in an experiment that sums the signals
from the individual oscillators is proportional to Re �ph�t�.
A state with perfectly aligned phases has 	�ph	=1. In prin-
ciple, any time dependence of �ph is possible, but for the
phase model we expect the synchronized motion for large N
to be close to periodic. A fully entrained state �all oscillators
entrained�, for example, will give a periodic �ph, but typi-
cally with 	�ph	�1 since the phases will not be fully
aligned. We will usually investigate the time average magni-
tude �	�ph�t�	�t after some time t0 to allow transients to de-
cay. We also introduce the phase correlation function given
by

Cij = �ei��i−�j�� , �6�

with the average extending over time and over the lattice i , j
for fixed separation i− j.
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III. SPIN-WAVE ANALYSIS

We first carry out a spin-wave �SW� type analysis of this
model. Such an approach has been applied to the short range
model earlier �8�. This approach studies the small deviations
from a state of aligned phases, and investigates the consis-
tency of this assumption.

A. Preliminaries

For large enough coupling, we might anticipate a fully
entrained state where each oscillator evolves with the same
frequency, and where the phase differences ��ij =�i−� j be-
tween the interacting oscillators are small. The common fre-
quency will be the mean of the frequency distribution, which
we have set to zero, and so the fully entrained state is time
independent. If the phase differences ��ij are small, the sine
functions appearing in the interaction term may be linear-
ized. Introducing the Fourier modes

�m = �
q

�̃qeiqm, �7�

with q=2n
 /N with n integral and the sum running over the
first Brillouin zone −
�q�
, yields

�̇̃q = 	̃q − K�q��̃q, �8�

with the interaction kernel

K�q� = 2K�
s=1

N−1
1 − cos qs

s� . �9�

Since K�q� is positive, each mode relaxes exponentially to a
steady state determined by the Fourier transform of the ran-
dom frequencies 	̃q: we therefore investigate the properties
of this steady state, which corresponds to the fully entrained
state. Solving for the steady state of Eq. �8� and using �	 j

2�
=1, we obtain for the mean square phase difference

�	��ij	2� =
1

N
�
q�0

	K�q�	−2�1 − cos�q�i − j��� . �10�

Important issues are the behavior of �	��ij	2� for large
separations i− j, which depends on the small q terms in the
sum in Eq. �10�, and the possible divergence of �	��ij	2� for
any i− j due to the vanishing of K�q� for small q. For small
q and large N, with q
N−1, we can evaluate K�q� in the
continuum limit by replacing the sums by integrals with the
appropriate density of states

K�q� � 2K

0

�

ds
1 − cos qs

s� . �11�

The integral can be evaluated for 1���3 to give

K�q� = Kcq�−1, �12�

where

c = 2 sin�
�/2����− �� , �13�

with � the Euler Gamma function, except at precisely �=2
where K�q�=
Kq. �This is also the limit of the general ex-

pression for �→2.� In Fig. 1, we show a comparison be-
tween the exact K�q� evaluated from Eq. �9� and the con-
tinuum approximation Eq. �12� for �=3 /2 and N=4096,
demonstrating the accuracy of the approximation for N−1

�q�1, but over a range that is restricted by the finite size
effects. The integral Eq. �11� and the sum Eq. �9� for N
→� both diverge for ��1.

For N→�, the mean square phase difference Eq. �10� can
be evaluated replacing the sum by an integral

�	��ij	2� =
1






0




dq	K�q�	−2�1 − cos�q�i − j��� . �14�

For small q the kernel behaves as K�q�
q�−1 and the inte-
gral Eq. �14� diverges from the small q behavior for �
�5 /2. We interpret the divergence of �	��ij	2� to signal the
onset of phase slips, and the breakdown of the assumption of
a time independent, fully entrained, solution. This argument
therefore suggests that there is no fully entrained state as N
→� for ��5 /2.

We can also evaluate the large distance behavior of
�	��ij	2�. For i− j→� the function cos�q�i− j�� is rapidly os-
cillating as a function of q and this term in Eq. �14� averages
to zero. The remaining integral diverges, again because of
the small q behavior, for ��3 /2, but is finite for ��3 /2.
This implies that for ��3 /2 and large enough coupling
strength K, the phase difference �i−� j is small even for large
i− j, suggesting a state with long-range phase order, as well
as entrainment. On the other hand for 3 /2���5 /2 the ar-
gument suggests an entrained state without long-range phase
order.

In the following sections we study the properties of the
states in more detail, evaluating the phase correlation func-
tion and the order parameter in the spin-wave approximation
as a function of �.

B. Correlation function

The phase correlation function Cij = �cos��i−� j�� is given
by

FIG. 1. The interaction kernel K�q� �solid� and the continuum
approximation Eq. �11� �dashed� for �=3 /2 and N=4096. The inset
shows the same curves on a log-log scale.
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Cij = �ei��i−�j�� = e−�	��ij
2 	�, �15�

with �	��ij
2 	� obtained from Eq. �14�. We now evaluate this

expression for different ranges of �. The results are summa-
rized in Eq. �26� below.

For ��3 /2 we write Eq. �14� as

�	��ij	2� = �	���	2� −
1






0




dq	K�q�	−2cos�q�i − j�� ,

�16�

with

�	���	2� =
1






0




dq	K�q�	−2, �17�

the finite i− j→� asymptotic value. In the remaining integral
in Eq. �16�, the contribution from the range q� �i− j�−1 is
small since the cosine term is rapidly oscillating here, so that
for large i− j the small q expression �12� can be used for
K�q� and the upper limit replaced by �. This gives for large
r= i− j

Cr = C� exp�−
1

K2����r3−2�� , �18�

�C��1 −
1

K2����r3−2�� , �19�

where

���� = 
c2/sin�
����3 − 2�� , �20�

with the constant c defined in Eq. �13�, and

C� = e−�	���	2�. �21�

Note that ���� is negative for ��3 /2, so that Eq. �19� rep-
resents correlations growing as a power law above the large
distance value as r is decreased.

For ��3 /2, the full integral in Eq. �14� is dominated by
the small q region, so that again the expression Eq. �12� can
be used for K�q� and the upper limit replaced by �. This
gives

�	��ij	2� =
	i − j	2�−3

K2����
, �22�

and the result for the correlation function

Cr = e−r2�−3/K2����. �23�

Two special cases of note are �=3 /2 where there are power
law correlations

Cr � r−1/8
2K2
�24�

�we have not evaluated the proportionality constant�, and �
=2 where the correlations are simply exponential

Cr = e−r/2
2K2
. �25�

In summary, we find the following result for the correla-
tion function C�r� at large separations r and in the limit N
→�

C�r��
=1, � � 1,

=C� exp�− 1/K2����r3−2�� , 1 � � � 3/2,

� r−1/8
2K2
, � = 3/2,

=exp�− r2�−3/K2����� , 3/2 � ���2� � 5/2,

=exp�− r/2
2K2� � = 2.
�

�26�

Thus as � is varied, the spin-wave approximation predicts
long-range phase order for ��3 /2, and then as � increases
the correlation function crosses over from a power law decay
to stretched exponential, exponential, and then superexpo-
nential. Similar results have been obtained using the spin-
wave approximation for the classical XY model �14� as the
dimension is varied continuously between 1�d�2. In that
work they were able to show by other methods that the
stretched-exponential prediction was an artifact of the spin-
wave approximation, and that correlations were bounded by
a simple exponential fall off. We do not know if a similar
result might apply to the present model, although we find
some confirmation of the stretched-exponential behavior in
the numerical simulations presented in Sec. V below.

C. Order parameter

An important measure of the coherence of a set of oscil-
lators is the phase order parameter Eq. �5�. For an infinite
system, the order parameter may be obtained from the
asymptotic value of the correlation function

	�ph	 = �C�. �27�

with C� given by Eq. �21� and then Eq. �17�. The full ex-
pression must be evaluated numerically. However we can get
an analytic approximation using the approximate expression
�12� for K�q�. This should be a good approximation for �
near 3/2 where the small q range dominates the integral. This
gives the estimate

	�ph	 
 Exp�−
1

2
K2�2Sin�
�/2����− ���2


3−2�

3 − 2�
� .

�28�

This approximation is compared with the result calculated
numerically using the full expression for K�q� given by the
sum Eq. �9� for N→� in Fig. 2. For �→3 /2 Eq. �28� be-
comes

	�ph	 → Exp�−
1

16
2K2�3 − 2��� . �29�

Thus, no matter how large K is, for � close enough to 3/2 the
order parameter decreases, and goes to zero at �=3 /2 in the
spin-wave approximation.

The magnitude of the order parameter in a finite system
can be calculated from the correlation function
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	�ph	 =� 1

N2 �
i,j=1

N

Cij . �30�

We have evaluated this expression, performing the discrete
sums for the spin-wave approximation. These results will be
compared with simulations on the dynamical equations in
Sec. V below.

It is also of interest to get a more approximate estimate of
the order parameter in a finite system for � near 3/2. If the
correlations remain sizable over the whole system we may
estimate the order parameter as 	�ph�N�	
�C�N /2�. �This
estimate fails for large enough N, or when the order param-
eter gets small, so that the correlations become small over
much of the system.� Then we approximate C�N /2� from Eq.
�14�: we use the power law form Eq. �12� for K�q� which is
good for the small q region that dominates the integral for
��3 /2; over most of the range integration �
 /N�q�

�with � an O�1� number� we argue that the cosine term os-
cillates rapidly to zero; and over the remainder of the range
0�q��
 /N we have 1−cos�qN /2��q2 so that the inte-
grand becomes small. This gives the estimate

�	��N/2	2� 


3−2�


c2K2�3 − 2���1 − ��

N
�3−2�� , �31�

and then

	�ph�N�	 
 e−�	��N/2	2�/2. �32�

Note that the expression behaves smoothly through �=3 /2,
and at this value reduces to

	�ph�N�	�=3/2 
 �N/��−1/�16
2K2�. �33�

For K=1 these expression show a very slow scaling to the
N→� limits for � near 3/2: for example to achieve
	�ph�N�	�=3/2�0.5 requires N�3�1047 �setting �=1�.

D. Self-consistency

We might worry, if the order parameter is becoming small
as �→3 /2, that the spin-wave approximation breaks down
in this vicinity due to the failure of the linearization of
sin��i−� j�.

To estimate the typical size of 	�i−� j	 for the interacting
oscillators, we calculate the average of the correlation func-
tion weighted by the strength of the interaction at that sepa-
ration

C̄ =



1

�

Crr
−�dr



1

�

r−�dr

. �34�

Evaluating the integral for the power law correlations at �
=3 /2 given by Eq. �26�, and approximating for large K gives

C̄ � 1 −
1

4
2K2 . �35�

Thus for large enough K, the average phase correlation im-
portant in the interactions is close to unity, as assumed in the
spin-wave approximation, even though the order parameter

is zero. For example, C̄�0.75 requires K�
−1.
For smaller values of �, or in a finite system, the correla-

tions are enhanced, and so the approximation should be even
better in these cases.

E. General dimension

The results of the spin-wave calculation can be general-
ized to d-dimensional lattices. The corresponding results for
the correlation function are: perfect phase ordering with
C�r�=1 for ��d; entrainment with long-range phase order
for ��3d /2; a power law fall off of the phase correlation
function at �=3d /2; and a cross over to exponential decay of
correlations at �= �3d+1� /2 via stretched exponentials.

IV. BLOCK SUMS

A. Preliminaries

In this section, we will analyze the long-range problem by
coarse graining the one-dimensional chain into block oscil-
lators. It is useful to coarse grain the chain into blocks by
summing the equations of motion Eq. �2� for all �i in the
block, since in this way, the internal interactions within a
given block cancel with each other. This means one can look
at the interaction of the block with the rest of the chain. In
the short range model, this turns out to be especially useful,
since the interaction of a block with the rest of the chain
includes the surface terms only. In the long-range model the
situation is more complex, because the oscillators within a
block interact with all the oscillators in the rest of the chain.
In this section, for simplicity we use open boundary condi-
tions rather than periodic ones.

Before we discuss the results for the long-range model, let
us recapitulate the results obtained by Strogatz and Mirollo
�7� for the nearest-neighbor model. A key result which we
will try and generalize to the long-range model is the follow-
ing. They find that it is impossible to have a macroscopic
synchronized cluster in one dimension for finite values of the
coupling constant. In higher dimensions, any macroscopic
cluster takes the form of a sponge, i.e. the cluster is riddled

FIG. 2. Phase order parameter 	�ph	 for an infinite one-
dimensional chain calculated using the spin-wave approximation as
a function of the power law for the decay of interactions �: solid–
full calculation from Eqs. �9� and �14�; dashed—approximation
given by Eq. �28�. The coupling strength is K=1.0.
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with holes, which correspond to unsynchronized oscillators.
We write the basic Eq. �1� in the form

�̇ j − 	 j = �
i�j

Kij sin��i − � j� . �36�

The average frequency 	̃ j of the jth oscillator is defined as
	̃ j =limt→��� j�t�−� j�0�� / t. We define a block S as a contigu-
ous segment of the chain of oscillators. For a synchronized
block the oscillators must all have the same average fre-
quency, 	̃ j = 	̃ for all j�S. We now sum the equations over
a synchronized block Sk of M oscillators entrained at fre-
quency 	̃k.

In analyzing the equation in terms of block sums we need
the properties of two quantities: the frequency sums also
known as the accumulated randomness; and the interaction
sums.

Summing the time averaged equations of motion �Eq.
�36�� over the block Sk will give on the left hand side the
quantity M	̃k−Yk�M� with

Yk�M� = �
j�Sk

	 j , �37�

the accumulated randomness. We will also use

yk�M� = M−1Yk�M� = M−1 �
j�Sk

	 j . �38�

A key point in the arguments below is that the support of
possible values of yk is the same as the support of the indi-
vidual frequencies 	 j, but for large M the typical value of yk
will scale as M−1/2 for frequency distributions with a finite
variance. For example, for a bounded frequency distribution,
there is some probability �very small for large M� that each
	 j in the block will have the maximum possible value 	max,
and then yk will take on the value 	max. On the other hand,
since for large M the central limit theorem means that yk is
given by a Gaussian distribution with standard deviation
scaling as M−1/2, the typical values of yk �those with nonzero
probability for M→�� are of order M−1/2. Obviously, similar
remarks apply to Yk after including an additional factor of M.

The second quantity of interest is the summed interaction
of the block Sk with other oscillators in the chain. Consider
first the summed interaction of this block, with a second

block Sp of size M̄. The largest possible interaction sum,
when all the phases within each block are aligned is

Ikp = �
i�Sk,j�Sp

Kij . �39�

Using the bound

�
n=p

q

f�n� � 

p−1/2

q+1/2

f�x�dx �40�

for any function f�x� with positive curvature, we can bound
the interaction sum for 1���2 for the two blocks separated
by D oscillators

Ikp � K̄��M + D�2−� + �M̄ + D�2−� − �M + M̄ + D�2−� − D2−�� ,

�41�

with

K̄ =
K

�2 − ���� − 1�
. �42�

Similarly, using the bound

�
n=p

q

f�n� � 

p

q

f�x�dx �43�

for any monotonically decreasing function gives for 1��
�2

Ikp � K̄��M + D�2−� + �M̄ + D�2−� − �M + M̄ + D − 1�2−�

− �D + 1�2−�� . �44�

We will use various limits of these expressions. For ex-
ample, for a block of size M interior to an infinite chain and
interacting with the remainder of the chain we use D

=0, M̄→� for the interaction with the infinite chain in ei-
ther direction, to find for 1���2

Ikp 
 2K̄M2−� �45�

�both bounds lead to the same expression in this limit�. The
essence of the block-sum arguments is to compare the inter-
action sum, scaling as M2−�, with either the range of possible
values of the frequency sum, scaling as M, or the typical
value, scaling as M1/2. This will yield important changes of
behavior at �=1 and �=3 /2. For ��2 the interaction sums
between large blocks are independent of the sizes of the
blocks, and the results essentially reduce to those of the
model with nearest-neighbor interactions.

B. Impossibility of macroscopic clusters for finite coupling
strength and ��1

In this section, we will obtain the regime of � where it is
impossible to have a macroscopic sized synchronized block.
More precisely, define the probability P�N ,K , f� that there
exists one or more contiguous synchronized blocks S con-
taining at least fN oscillators with f some finite fraction.
Then P�N ,K , f� is zero for N→� and K finite. The approach
closely follows the one Strogatz and Mirollo �7� used for the
short range model.

Let us suppose that such a block S is made up of synchro-
nized oscillators at a frequency 	̃. We now divide the block
into R nonoverlapping segments, Sk of length m each. Thus
R= fN /m and k varies from 1 to R. Note that m is an integer,
sufficiently large but finite as N→� and R is O�N�. Sum-
ming the time-averaged equations of motion �Eq. �36�� over
the sub-block Sk and bounding the interaction sum as de-
scribed above, for the sub-block Sk to be part of the synchro-
nized block, we must have, for N
m and 1���2,

		̃ − yk	 � KF��m� , �46�

with, using Eq. �41� for M =m , D=0, M̄→�,
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F��m� =
2

�� − 1��2 − ��
1

m�−1 . �47�

For ��2 the interaction sums converge for large m ,N so
that F��m�= f /m with f an O�1� constant. In the latter case
the expression reduces to the one for the short range model.
For ��1, F��m� diverges as N→�.

Now we argue that for ��1 we can choose m sufficiently
large but finite such that the probability p of Eq. �46� being
satisfied, for block k and a given 	̃, is less than unity. This
follows, because there is some nonzero probability of finding
any value of yk over the support of the 	 j probability distri-
bution, whereas the right hand side may be made as small as
we choose by choosing m sufficiently large. Lemma 3.1
given in �7� makes this argument precise. It then follows that
the probability that the result is satisfied for all R sub-blocks
is pR, and scales to zero as N→� as O�e−cN� with c some
positive constant �remember R is O�N�. Since the block S
can be located at a number of different locations which is
certainly less than N, this means that the probability for mac-
roscopic blocks satisfies P�N ,K , f��O�Ne−cN� which tends
to zero as N→�.

Thus it is impossible to have a contiguous macroscopic
block, containing an O�1� fraction of the oscillators locked to
a common frequency, when ��1. In any macroscopic seg-
ment of the chain there will always be �i.e. probability one as
N→�� some finite blocks of “runaway” oscillators that are
desynchronized from their neighbors. This is the same result
as in the nearest-neighbor model: for the question of the
formation of finite blocks of unsynchronized oscillators, the
power law interactions do not change the conclusions unless
the interaction with a single oscillator can be infinite �as is
the case for ��1�.

C. Synchronization of large separated blocks for ��3 Õ2

For the nearest-neighbor model, the result analogous to
the one of the previous section is sufficient to show that for
a one-dimensional chain there will not be a macroscopic
number of synchronized oscillators for finite coupling, since
the unsynchronized blocks effectively cut the chain into non-
interacting pieces. However, for the long-range model it is
perhaps possible, even for a finite K and ��1, to have a
partially entrained state with a macroscopic number of oscil-
lators having the same frequency. This would correspond to
the system breaking up into disconnected blocks which how-
ever synchronize via the long-range interaction across the
unsynchronized oscillators. In this section we analyze the
mutual interaction between two distant blocks, which are
separated by blocks of unsynchronized oscillators, and inves-
tigate their possible synchronization. It is more difficult to
prove the existence of synchronization, rather than its ab-
sence, and the argument we present is less rigorous than in
the previous section.

Let us consider the two large blocks, Sk and Sp, of size M
each, where M 
1, and � in the range 1���2. From the
general expression Eq. �44� we obtain the following results.
For a separation D�M �e.g., D finite and M =O�N� for N
→��

Ikp � 2K̄�1 − 21−��M2−� �48�

independent of the separation D with O�D /M� corrections.
Also, for blocks k , p separated by p−k−1 blocks of size M

Ikp � cpkK̄M2−� �49�

with cpk an O�1� number

cpk = 2�p − k�2−� − �p − k + 1�2−� − �p − k − 1�2−�. �50�

In both cases, the lower bound on the maximum interaction
sum scales as M2−�. �It can be shown the upper bound scales
in the same way�.

On the other hand the frequency sums Yk ,Ym Eq. �37� are
described, for large M, by independent Gaussian distribu-
tions with standard deviation scaling as M1/2. The typical
difference between the frequency sums will also scale as
M1/2. This means that two large, fully, aligned blocks, each
of M oscillators, separated by finite blocks of unsynchro-
nized oscillators, or even by O�M� oscillators, will typically
synchronize for ��3 /2 for coupling strengths K
�O�M�−3/2�. We would expect this result to extend to blocks
that are not fully aligned, provided each block has a nonzero
value of the phase order parameter �k ,�p, since we would
expect the interaction sum to be reduced by a factor of about
	�k�p	. Thus, for ��3 /2 the small blocks of unsynchro-
nized oscillators, necessarily present by the arguments of the
previous section, do not necessarily act to break the chain
into finite lengths of synchronized oscillators, and macro-
scopic synchronization is possible.

For ��3 /2 the typical difference of the frequency sums
exceeds the maximum interaction sum, and so synchroniza-
tion of separated blocks would not be expected for finite K.
Comparing the scaling of the interaction and frequency sums
with M suggests that an interaction strength scaling with
system size N as N�−3/2 is required for macroscopic synchro-
nization for ��3 /2. This reduces to the result K
N1/2 for
�=2 where the block sums reduce to the nearest-neighbor
results, consistent with the rigorous result of Strogatz and
Mirollo �7� for the nearest-neighbor model.

V. NUMERICAL SIMULATIONS

The numerical evolution of Eq. �2�, has been carried out
for five different system sizes, namely N=256, 1024, 4096,
8192, and 16384. Periodic boundary conditions were im-
posed.

In order to integrate the equations of motion, we have
used the fourth order Runge-Kutta method with a time step
typically �t=0.05. For the long-range model with a system
size N, there are NC2 interaction terms. Therefore, evaluation
of the interaction kernel using the direct method in real space
would be an O�N2� operation at each time step. Instead we
express the interaction as a convolution

�
i�j

Kij sin��i − � j� = Im�e−i�j�
i�j

K�	i − j	�ei�i� , �51�

which can be efficiently evaluated in O�N log N� operations
using fast Fourier transforms.
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The initial phases are randomly distributed between −

and 
. The intrinsic frequencies are Gaussian random num-
bers with zero mean and unit variance. The first t0=200 time
units are discarded as transients while integrating the equa-
tions. The data is then accumulated for tf − t0 additional time
units. We use tf − t0=600 for most of the results, but increase
this to 2400 to analyze the synchronized clusters in Sec. V C.
The phase order parameter has been time averaged over the
entire range tf − t0, while the Edwards-Anderson order pa-
rameter has been calculated as �EA= 	� j=1

N ei��j�tf�−�j�t0��	 /N.
The data for the order parameters and the correlation func-
tions have also been averaged over 30 different initial con-
figurations, by repeating with different seeds for the random
number generator. We present the results for a coupling
strength K=1.

A. Order parameters

We show the magnitude of the phase order parameter Eq.
�5� as a function of the power law � of the interaction, for
coupling strength K=1 and for the five different system sizes
in Fig. 3. The order parameter decreases rapidly for a value
of � that decreases with increasing system size, with the
half-height 	�ph	=0.5 value occurring at about �=1.6 for the
largest system size used. As we have seen in Sec. III C we
expect strong finite size effects for � near 3/2, so that it is
hard to extrapolate the numerical data to the infinite size
limit. For comparison we show in Fig. 4 the finite size esti-
mate of the order parameter from Eqs. �32� and �31�. We do
not expect a quantitative agreement for any � due to the
crude approximations made, and the behavior for small 	�ph	
is not correct as explained in Sec. III C, but the overall trends
are quite similar.

A comparison between the full spin-wave predictions,
performing the discrete sums without approximations, and
the results from the simulations of the time evolution, both
for system size 8192, is shown in Fig. 5. The plot shows
quantitative agreement between the simulations and the spin-

wave sums for ��1.4. As � approaches 1.5 and the order
parameter decreases, there is increasing disagreement, as
would be expected since the theory is an expansion assuming
well aligned phases.

Although the strong finite size effects preclude reliably
extrapolating to infinite system sizes, the numerical simula-
tion results appear to be consistent with the prediction of the
spin-wave theory, that phase ordering and entrainment is
possible for ��3 /2, but that phase order is not possible for
N→� for ��3 /2.

The Edwards-Anderson order parameter evaluated from
the simulations for the same parameter values is shown in
Fig. 6. For all system sizes used and coupling strength K
=1, �EA remains unity up to �=3 /2, showing perfect en-
trainment, suggesting a single block of all the oscillators
evolving at the mean frequency of the distribution for the
system sizes used. For ��3 /2 the order parameter de-
creases, showing that the system has broken up into more

FIG. 3. The phase order parameter 	�ph	 as a function of the
power law � of the interaction for five different system sizes. The
strength of the coupling is K=1. The system size increases from the
upper curve to the lower: squares—256; circles—1024; triangles—
4096; pluses—8192; diamonds—16 384.

FIG. 4. Estimate of the phase order parameter 	�ph	 �solid
curves� as a function of the power law � of the interaction based on
Eqs. �31� and �32� for the same five system sizes used in Fig. 3,
increasing from the upper curve to the lower. The strength of the
coupling is K=1 and a value of �=0.5 was used. The spin-wave
prediction for an infinite system size is shown for reference �dashed
curve�.

FIG. 5. Comparison between the spin-wave sum �dashed line�
and the simulation results �squares joined by solid line� for the
phase order parameter 	�ph	 as a function of the power law � of the
interactions in a system of size 8192 and for coupling strength K
=1. The inset shows the same comparison over a smaller range
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than one synchronized cluster. Qualitatively, the fall off
above �=3 /2 is similar to the fall off of the phase order
parameter. Thus we do not find stronger correlations in the
oscillator frequencies than in the phases. This does not ap-
pear to be consistent with the predictions from the spin-wave
theory of a state with entrained oscillators but without long-
range phase order for the range 3 /2���5 /2. On the other
hand the result is consistent with the block-sum arguments
which show that for ��3 /2 blocks of oscillators may syn-
chronize across regions of unsynchronized oscillators,
whereas this does not typically happen for ��3 /2.

B. Correlation function

As a further test of the results of the spin-wave approach
we show in Fig. 7 a comparison between the phase correla-
tion function Eq. �15� evaluated from the spin-wave discrete
sums and the full numerical simulations for six values of � in
the range 1���3 /2 for a system size 4096. The plots show
quantitative agreement for ��1.3. As � approaches 1.5, the
difference grows, which is consistent with what we saw ear-
lier in Fig. 6.

For 3 /2���2 the spin-wave analysis predicts a phase
correlation function with a stretched-exponential decay, see
Eq. �26�. Based on these predictions, we fit the correlation
function obtained from the simulations in this range of � to a
function

C�r� = e−brc
�52�

for �=1.6, �=1.7, and �=1.8 and system size 8192, see Fig.
8. An exponential correlation would be a straight line on
these log-linear plots, and clearly does not fit the data. The fit
parameters for the stretched exponential and the predictions
of the spin-wave theory are shown in Table I. The agreement
between the exponents is reasonably good for �=1.7 and �
=1.8. The deviation from the predictions for �=1.6 can be
ascribed to finite size effects, since the correlations tend to a
finite value for large r corresponding to separations of N /2
for this value of �, and so should not be compared with the

theoretical predictions for an infinite size system. In the next
section we discuss the size of the synchronized clusters. The
range over which the stretched-exponential fit is good in Fig.
8 is comparable to the maximum cluster size.

C. Clusters

In this section we present results from our simulations for
the size of synchronized clusters as a function of the power
law of the interaction. For long-range interactions both con-
tiguous blocks, and disjoint blocks entrained through the
long-range interaction across unentrained oscillators, are of
interest.

FIG. 6. The Edwards-Anderson order parameter �EA as a func-
tion of the power law � of the interaction for five different system
sizes as in Fig. 3 and coupling strength K=1.

FIG. 7. Comparison between the spin-wave sum and the simu-
lation results for the correlation function Cr as a function of sepa-
ration r for six values of the interaction power law exponent � and
a system size of 4096 and coupling strength K=1: dark lines—spin-
wave prediction; light points—simulation results.

FIG. 8. Phase correlation function as a function of separation for
system size 8192: light points—simulations; dark lines—stretched-
exponential fits, Eq. �52�. The values of the interaction power law �
are, top to bottom, �=1.6, �=1.7, and �=1.8.
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We identify an entrained cluster from the simulations as a
set of oscillators that are phase locked: over the time of the
simulation no oscillator phase undergoes slips �changes of
about �2
� with respect to the mean phase. In a simulation
over a time T this is equivalent to the frequency being within
2
 /T of the mean frequency of the cluster. The expected
frequency difference between large but distinct clusters of
size about L is of order L−1/2. Thus the simulation time
should exceed 2
L1/2. We compute the phase-winding num-
ber, nw, for every oscillator along the chain. The phase-
winding number is calculated as

nw = 2� limt−t0→���i�t� − �i�t0��

4

� , �53�

where �x� denotes the nearest integer to x.
An example of the raw data of winding numbers, com-

puted over a run time T= t− t0 of 2400, is shown in Fig. 9 for
a system size N=8192, coupling strength K=1 and interac-
tion power law �=1.7, Only a portion of the full system is
shown. Note in particular blocks with the same winding
numbers entrained across oscillators with different winding
numbers, a novel consequence of the long-range interaction.

Histograms of the phase winding number for the same
system are shown in Fig. 10 for four values of �. We use the
total number of oscillators with the same winding number,
shown by the bar length, to define the overall cluster size,
and this is divided up into the individual contiguous blocks

�containing no oscillators with different winding numbers�
given by the lengths between the points on the bars. For
clarity, only a restricted range of winding number is shown:
there are additional small clusters with more distant winding
numbers outside the range plotted. For �=1.6 almost all the
oscillators have the same winding number nw=0, so that the
cluster of entrained oscillators spans the whole system, with
only a few oscillator of different winding numbers breaking
the global cluster into four smaller contiguous blocks. As �
increases, more clusters of smaller size develop. In each case
a number of contiguous blocks join to form a large cluster
with entrainment across unentrained oscillators.

The full distribution of contiguous block sizes is shown in
Fig. 11. This is a plot of an ordered list of the sizes of con-
tiguous blocks. A log-linear plot of the same data shows a
good fit to an exponential fall off for small block sizes �the
large block number end of the plot�.

VI. CONCLUSIONS

We have studied the synchronization of oscillators de-
scribed by a phase only model with interactions falling off
with separation r as a power law r−� using an expansion
about the aligned phase state �spin-wave method�, arguments
summing the equations of motion of blocks of oscillators
�block-sum method� and numerical simulations on systems
of up to 16384 oscillators. We focused on the range ��1,
since previous work �11� has looked at ��1 in some detail.

For 1���3 /2 we find results consistent with macro-
scopic entrainment and long-range phase order for large

TABLE I. Parameters of the stretched-exponential correlation
function Eq. �52� from fits to numerical results for system size 8192
and three values of ��1.5 compared with predictions from spin-
wave theory for the infinite system.

b �numerical� b �SW� c �numerical� c �SW�

�=1.6 0.094�0.001 0.093 0.330�0.001 0.2

�=1.7 0.151�0.001 0.064 0.456�0.001 0.4

�=1.8 0.151�0.001 0.055 0.583�0.002 0.6

FIG. 9. Winding numbers over a portion of the system for �
=1.7 and K=1 and a system size of 8192.

FIG. 10. Phase winding numbers nw as a function of cluster size
for a system of size 8196 and interaction strength K=1. The lengths
of the bars define the total number of oscillators with the same
winding number, and the lengths between the points on the bars
give the sizes of the individual contiguous blocks making up the
whole. The four plots are for different interaction power laws: �a�
�=1.6; �b� �=1.7; �c� �=1.8; �d� �=1.9. Only a restricted range of
winding number is shown.
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enough coupling strengths. The spin-wave type analysis,
based on the assumption of a time independent solution
�fully entrained state� and an expansion of the interaction
term linearly in �i−� j, predicts a state with long-range phase
order and a nonzero phase order parameter. For large enough
coupling strength K the mean square phase deviation ���i
−� j�2� is small, and the average phase correlations weighted
by the power law interaction are close to unity, so that the
linear expansion of the nonlinear interaction function is a
good approximation on average. The block-sum argument
shows that despite the long-range interaction, the coupling of
a finite block to the rest of the chain remains bounded above
by some finite value, and there is a nonzero probability of
finding a finite block of oscillators with frequencies suffi-
ciently far from the mean that they are not synchronized to
the rest of the chain for finite coupling. This argument shows
that for N→�, there are no macroscopic �O�N�� contiguous
blocks of synchronized oscillators for any finite K, so that the
assumption of a time independent solution as made in the
spin-wave approach is not correct �15�. However, for �
�3 /2, the interaction is sufficiently long range that large
blocks of oscillators are likely to synchronize across the un-
synchronized oscillators �see Fig. 9 for examples from the
simulations�, leading to the entrainment of a finite fraction of
the oscillators, long-range phase correlations, and a nonzero
order parameter for sufficiently large K, even for N→�.
These results follow the predictions of the spin-wave theory,
although the finite blocks of unsynchronized oscillators will
reduce the order parameter and phase correlations below the
value predicted by spin-wave theory, as seen in the compari-
son of the simulations with the spin-wave predictions.

For 3 /2���5 /2 the spin-wave approach predicts a fully
entrained state, but with no long-range phase order, although
for ��2 the phase correlations are predicted to be of
stretched-exponential form. However the block-sum method
shows that finite unsynchronized blocks again exist, and now
large blocks of oscillators will typically not synchronize

across the unsynchronized oscillators. Thus for finite cou-
pling strength K and ��3 /2 we expect no macroscopic en-
trainment �no finite fraction of oscillators at the same fre-
quency for N→��. The results of the numerical simulations
show the Edwards-Anderson order parameter which mea-
sures frequency entrainment, decreasing as � increases
above 3/2 in a way that is broadly similar to the phase order
parameter, consistent with the picture that the unsynchro-
nized blocks disrupt both the phase and frequency correla-
tions. The simulations show results consistent with the spin-
wave predictions of a stretched-exponential decay of
correlations up to a distance comparable with the largest
cluster size.

Rogers and Wille concluded in their paper that the critical
interaction exponent �c such that the oscillators do not syn-
chronize for ���c even for very large coupling strengths is
�c�2. Our results suggest a lower critical value of �c
=3 /2 and our numerics on larger systems than used in Ref.
�10� approach this value. The diagnostic used by Rogers and
Wille was the average plateau size as a fraction of the system
size. In their simulations they found this quantity to switch
quite rapidly as a function of increasing � for reasonably
large K from unity to close to zero. The plateaus were de-
fined as contiguous blocks of oscillators with the same fre-
quency, and so oscillators synchronized across unsynchro-
nized blocks were not counted as in the same plateau. This
means that their diagnostic does not detect long-range syn-
chronization occurring through this mechanism. However,
we believe the main reason that their value of �c is greater
than the value 3/2 that we propose is due to the strong finite
size effects for � near 3/2, so that for the range of sizes they
used, too large a value of � is needed for desynchronization
to appear, and their extrapolation scheme to large N was not
adequate.

Marodi et al. have also looked at this problem numeri-
cally for sizes up to 1000 in one dimension �as well as two
dimensions�. The main focus of their work was ��1, where
complete entrainment occurs for N→� for the scaling of the
coupling constant they use. They do not attempt to identify a
critical value of ��1 above which partial synchronization is
no longer possible. Their numerics on system sizes up to
1000 and for K=1 show the phase order parameter decreas-
ing for � close to 3/2—in fact closer than we find for these
system sizes �compare their Fig. 2 with our Fig. 3� perhaps
because of the open boundary conditions they use. They also
remark that the order parameter approaches a steady value
for ��2.5, but we believe this value tends to zero for large
N, which is consistent with the trends in their numerics.
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FIG. 11. Ordered plot of contiguous block sizes for four values
of the power law �: squares–�=1.6; circles–�=1.7; triangles–�
=1.8; diamonds–�=1.9. The ordinate is the size of a contiguous
entrained block, and the abscissa the index number in the list of
blocks ordered by size. Other parameters are as in Fig. 10.
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