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Synchronizing nonidentical chaotic oscillators is very often achieved by using various types of couplings. In
the practice of synchronization the “right choice” of the coupling variable—y for the Rössler system, x for the
Lorenz equations, and so on—is usually stated rather than explained or justified. Using the Rössler and
Rucklidge system, in this paper, it is shown that such “optimal” choices are strongly related to observability
properties which, in turn, can be quantified. In this paper it will also be shown that synchronizability does not
only depend on the observability of the system but it is also a consequence of the dynamical regimes under
study. The paper aims at providing important insight into the critical problem of making the “right choice”
when it comes to choosing the coupling variable in synchronization schemes.
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I. INTRODUCTION

Synchronization of aperiodic oscillators is a key concept
that is found in many different fields �physics, biology, engi-
neering, secure communications, etc.� and was intensively
investigated since the two pioneering papers by Fujisaka and
Yamada �1� and, Pecora and Carroll �2�. A review on the
topic can be found in �3�. In their pioneering work, Pecora
and Carroll stated, more or less explicitly, that the ability to
synchronize two �identical or not� systems depended on the
variable used to couple such systems �2�. In spite of the
impressive amount of contributions to this topic, the required
conditions to ensure a good synchronization are still lacking.
When it comes to choosing the variable to be used in cou-
pling two oscillators, there are no clear guidelines but rather
one has to accept a subjective “know-how” based on which it
is known that when coupling two Rössler systems

�ẋ = − y − z

ẏ = x + ay

ż = b + z�x − c�
� �1�

the y variable should be used �2,4�, but if synchronization is
to be achieved between two Lorenz systems

�ẋ = ��y − x�
ẏ = Rx − y − xz

ż = − bz + xy ,
� �2�

variable x should be used instead, as it provides the best
results �2�. These are a couple of cases of a rather long list
which makes it clear that selecting the variable to couple
oscillators for synchronization is, more often than not, an ad
hoc choice.

Recently, Sorrentino developed an adaptive coupling for
achieving synchronization between two chaotic systems, and
used variable x for the Rössler system and variable z for the
Lorenz system without any explanation for these choices �5�.
Stojanovski and colleagues were successful in using variable
z for coupling two Rössler systems—which is known to pro-
vide quite bad results in general �6�. In fact, they used an

observer based on the map between the original phase space
R3�x ,y ,z� and the differential embedding R3�z , ż , z̈�, that is,
they in fact reconstructed the two “missing” variables x and
y by using

�x = c +
ż − b

z

y =
z̈z2 − ż�ż − b�

z2 − z� �3�

and, apparently, then used the three variables to obtain syn-
chronous states between the two subsystems. Most of the
systems can be treated in that way, but the Lorenz is quite
difficult—if not impossible—to synchronize from y or z.
This could explain why Stojanovski and co-workers only
considered x as the recorded variable.

In modeling similar problems are faced, namely, that the
ease with which global models from a given system are ob-
tained strongly depends on which variable is used. Thus, it is
far easier to obtain a global model from variable y of the
Rössler system than from variable z. In the case of the Lo-
renz system, variable x is the easiest to manage and y the
worse �z being excluded, because rotation symmetry is lost
when using z�. This led us to introduce “observability coef-
ficients” ��7–9� among others� to help understand and quan-
tify the quality of the system variables when it comes to
reconstructing the phase space.

As an illustration, consider Takens’ theorem �10� in the
context of embeddings for the Rössler system. The theorem
states that, a five-dimensional space which is diffeomorphi-
cally equivalent to the original three-dimensional phase
space can be reconstructed from any variable. However, in
practice, it is observed that it is easier to obtain a global
model from variable y of the Rössler system than from vari-
able x, and nearly impossible to achieve a global model from
variable z without a strong structure selection �11�. We
showed that the reason is mainly due to the nature of the map
� between the original phase space R3�x ,y ,z� and the
m-dimensional differential embedding Rm�s , ṡ , s̈ , . . . ,s�m−1��
induced by the observable s �the measured variable� �9�.
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A critical point in Takens’ theorem is the measurement
function h :R3�x ,y ,z��R�s�. The corollary proposed by Sto-
janovksi and his co-workers �6� presents the same critical
aspect. In spite of that, the authors correctly stated that
“whether two dynamical systems synchronize or not depends
not only of the choice of the driving signal, but also on the
underlying synchronization method.” However this state-
ment has to be linked with their comments about their cor-
ollary: “It determines when the synchronization is possible,
but not how.” This is a well-known problem in control theory
and, for instance, the difficulty with variable z of the Rössler
system can be avoided with a coordinate transformation
z� log z=w, because � :R3�x ,y ,z��R3�w , ẇ , ẅ� defines a
global diffeomorphism. This kind of “recipes” only works in
very particular cases—to the best of our knowledge, there is
only another case where the log of a variable provides a
“good” observable �12�.

In view of this scenario, it seems fair to conclude that �i�
synchronization is, at least to some extent, variable depen-
dent; �ii� in spite of that there does not seem to be a quanti-
tative and systematic approach to address this problem. The
aim of this paper is not to propose yet another synchroniza-
tion scheme, but rather to systematically investigate the dif-
ferent bidirectional couplings provided by the variables of
the systems under study to check whether the conditions of
synchronizability could be related—at least in part—to the
observability coefficients, which are quantitative measures of
aspects relevant to synchronization. Thus, it will be shown
how the observability coefficients can be used to select the
best variable for synchronizing two oscillators or, at least, for
avoiding the worse variable. Empirical choices of coupling
variables, that are not usually explained, will be now theo-
retically justified.

The subsequent part of this paper is organized as follows.
Section II briefly introduces the concept of observability.
Sections III and IV, which are the main part of this paper, are
devoted to the synchronization of nonidentical systems bidi-
rectionally coupled by a single variable. Two systems are
considered, the Rössler system �Sec. III� and the Rucklidge
system �Sec. IV�. Section V gives a conclusion.

II. OBSERVABILITY OF DYNAMICAL SYSTEMS

A. Background

Let us start with a nonlinear system

ẋi = f i�x1,x2,x3�, i = 1,2,3, �4�

described in the three-dimensional phase space R3�x1 ,x2 ,x3�
for the sake of simplicity and where xi�R are the dynamical
variables. Assume that the observable s is obtained using the
measurement function h :R3�x��R�s�. It is thus possible to
reconstruct the phase space from the time series �xi�t�� using,
for instance, derivative coordinates �X=s ,Y = ṡ ,Z= s̈�. The
coordinate transformation between the original phase space
R3�x1 ,x2 ,x3� and the differentiable embedding R3�X ,Y ,Z� is
defined by

�i	
X = s = xi

Y = ṡ = ẋi = f i

Z = s̈ = ẍi =
� f i

�x1
f1 +

� f i

�x2
f2 +

� f i

�x3
f3


 . �5�

Variables X, Y, and Z correspond, respectively, to the deriva-
tives of order zero, one and two of the observable and are
related to the Lie derivative of the vector field. It has been
shown that the observability matrix Oi of a nonlinear system
observed using the ith variable is exactly the Jacobian matrix
of map �i �9�. This correspondence is based on the observ-
ability matrix developed for nonlinear dynamical systems
�13–15�. The system is thus fully observable when the deter-
minant Det�J�i

� never vanishes, that is, when map �i de-
fines a global diffeomorphism ��i must also be injective, a
property observed in most of the cases�.

When Det�J�i
� never vanishes, the map �i can be in-

verted everywhere and the system can be always rewritten
under the form of a polynomial jerk system

�
Ẋ = Y

Ẏ = Z

Ż = Fi�X,Y,Z�

=
�Z

�x1
f1 +

�Z

�x2
f2 +

�Z

�x3
f3

,� �6�

where the model function Fi�X ,Y ,Z� is free of singularities
and subscript i designates the measured variable. Otherwise
a jerk system might be obtained, but with singularities, that
is, with a rational function Fi. This situation occurs when
Det�J�i

�=0 over some subspace in the original space: the
system is said to be not fully observable.

The subspace mentioned in the previous paragraph can be
of dimension 0 or higher. Two different states in such a sub-
space, in the original phase space, cannot be distinguished in
the space reconstructed using the observable. It is then said
that the original system cannot be fully observed from the
recorded variable. From a practical point of view, even two
different states that are close to the aforementioned subspace
are very hard to distinguish in the reconstructed space.
Therefore, in practice such a subspace corresponds to “blind
spots” in the original space when observed through that par-
ticular variable.

Therefore the quality of an observable depends on the
existence of such a singular set �of Det�J�i

��, its dimension
and its location with respect to the attractor. It is hence help-
ful to speak in terms of a degree of observability rather than
in terms of a yes-or-no answer: being observable or not. As
detailed in previous work �see �8,9,16� among others�, it is
possible to compute observability coefficients at each point
of the phase space for each observable �Fig. 1�. Often, the
observability properties, which depend on the map �i which
is not too sensitive to parameter changes, usually do not
depend strongly on the dynamical regime. It was therefore
possible to introduce a simple procedure to compute observ-
ability coefficients directly from the Jacobian matrix of the
system under study �see Appendix A�.
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B. Example

Let us describe a simple example to explain how observ-
ability can affect the quality of the synchronization in
the case of the Rössler system. When the observable is
variable y the case is very simple since map
�y :R3�x ,y ,z��R3�y , ẏ , ÿ� defines a global diffeomorphism
�Det��y��0, ∀x�R3�. The Rössler system is, therefore,
fully observable from variable y. In that case, the observabil-
ity coefficient is constant over the whole phase space. This is
not the case for variable x and z. The observability coeffi-
cients were computed over a trajectory for these two latter
variables �Fig. 1�. From variable x the Rössler dynamics is
only observable when the trajectory evolves along the un-
stable manifold of the inner fixed point �mainly parallel to
the x−y plane�. When the trajectory leaves that plane, the
observability coefficient �x becomes nearly null, indicating
that, in practice, x conveys very little information about how
the other variables of the system evolve off the unstable
manifold of the inner fixed point �Fig. 1�a��.

The case where the Rössler attractor is observed through
variable z is the complement to the previous situation. This
variable—that is, by definition orthogonal to the x−y plane,
has no information on the evolution of the others while the
trajectory is along the unstable manifold of the inner fixed
point. This is confirmed by the observability coefficient that
nearly vanishes in this region of phase space �Fig. 1�b��.

Consequently, variable z only conveys sufficient information
during the bursts along the z axis.

Now consider the case in which bidirectional synchroni-
zation is performed using a given variable s. If the observ-
ability coefficient �s is low there might not be sufficient in-
formation transmitted from the first oscillator to the second,
and vice versa. In other words, the dynamics of one oscilla-
tor will be very hard to “recognize” by the other oscillator
whenever the state of the first system is close to “blind spots”
of the first system. When a poor observable is used to couple
two systems, it could become very difficult to achieve syn-
chronization because the two systems are only sporadically
coupled. As pointed out by Parlitz and co-workers �17�, a
sporadic driving considerably reduces the amount of infor-
mation transmitted from one system to the other and thereby
our ability to obtain a good synchronization. These features
explain why many works devoted to synchronization of two
nonidentical Rössler systems use y coupling �see �2,4� for
instance�. From the observability point of view, good syn-
chronization would not be expected when a coupling through
variable z is used.

III. SYNCHRONIZATION OF TWO NONIDENTICAL
RÖSSLER SYSTEMS

Let us start with two coupled nonidentical Rössler sys-
tems

ẋ1,2 = �1,2�− y1,2 − z1,2� + �x�x2,1 − x1,2�

ẏ1,2 = �1,2�x1,2 + ay1,2� + �y�y2,1 − y1,2�

ż1,2 = �1,2�b + z1,2�x1,2 − c�� + �z�z2,1 − z1,2� , �7�

where the subindices indicate the system, e.g., x1,2 stands for
both x1 and x2. Parameters �1, �2, and �s are constant. Bidi-
rectional couplings are, thus, here considered. In system Eq.
�7�, �1,2 will be used to slightly detune the two oscillators.
As in �4�, we use ��=�2−�1=0.04 with �1=1. In this pa-
per, the bidirectional coupling was applied to a single vari-
able, that is, a single �s was nonzero. Only nonzero terms
will be reported.

A. Complete synchronization

Complete synchronization is the simplest and the stron-
gest form among the different kinds of synchronization. It
corresponds to a regime where the two oscillators present
synchronous states �18�: the synchronous state x1=x2 is es-
tablished only when the coupling parameter � exceeds a criti-
cal value. Pecora and Carroll explicitly wrote that “only the y
drive configuration will synchronize” �2�. As we will see,
this was also observed with our bidirectional coupling term
in the case of a funnel Rössler attractor �Fig. 2�.

We started our study by checking whether the synchroni-
zability between two non-identical Rössler systems depends
on the dynamical regime. The latter was varied by increasing
the value of the bifurcation parameter a from a=0.36 �first
limit cycle of the period-doubling cascade� to a=0.555, just
before the ejection to infinity that occurs at a=0.556. For the

FIG. 1. �Color online� Observability coefficients �x and �z pro-
jected onto the x−y plane. Higher peaks indicate higher observabil-
ity. �x ��z� measures the local observability when only variable x �z�
is used. Case of the Rössler system with a=0.52, b=2, and c=4.
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largest values, the attractor boundary was very close to the
boundary of the attraction basin and it is nearly impossible to
perturb the dynamics—to attempt synchronization—without
provoking an ejection to infinity as shown by the ejection
curve when the two systems are coupled with variable x. For
this reason, in the case of the x variable, two critical curves
have to be plotted: �i� if complete synchronization occurs, we
show the �“synchronization curve”� lowest value of the cou-
pling terms �0 for which this happens. To decide if complete
synchronization had occurred we compute the mean distance
� between the state and the first bisecting line on the plane
y1−y2. If ��0.1, the two nonidentical oscillators were con-
sidered as completely synchronous. On the other hand, ii� if
complete synchronization did not happen, we show the
�“ejection curve”� coupling strength �� at which the trajec-
tory was ejected to infinity. This means that, for the particu-
lar value of the bifurcation parameter, if �x��� the coupled
system is stable but is not synchronized, and if �x	�� the
coupled system becomes unstable.

When the two oscillators were y-coupled, complete syn-
chronization was obtained �Fig. 2� for all dynamical regimes
between the first period-doubling cascade and the ejection of
the trajectory to infinity �=0.556�. The critical coupling pa-
rameter �y,0 has its minimal value when the symbolic dy-
namics built on the unimodal map is complete, that is, for
a=0.43295 �19�. Beyond this a value, the dynamics becomes
multimodal and is phase noncoherent. It was observed that
the critical coupling �y,0 increased as the dynamics was de-
veloped. This is not so surprising since it is known that phase
noncoherent attractors are more difficult to synchronize than
coherent attractors �4�. This feature confirms that synchroni-
zability depends on the dynamics.

When variable x was used to couple the two nonidentical
Rössler systems, complete synchronization was only ob-
tained over the range a� �0.425;0.455� �Fig. 3� that corre-
sponds to a situation for which the neighborhood of the inner
fixed point is visited during quite a long time. As previously
seen, this neighborhood of the inner fixed point corresponds
to the domain where the dynamics is observable. Bursts
associated with excursions of the trajectory outside the un-
stable manifold of the inner fixed point where the observabil-
ity is poor are thus too sparse and short to prevent synchro-
nization of the two subsystems. Outside this range, it was not

possible to achieve complete synchronization. At a rather
constant coupling strength ���1�, the trajectory was ejected
to infinity before achieving complete synchronization.

When the two oscillators were coupled via variable z, it
was never possible to obtain a complete synchronization.
The critical coupling �� at which the trajectory was ejected
monotonically decreases with a. In a certain sense, it reflects
the distance between the attractor boundary and the bound-
ary of the attraction basin. A typical behavior observed just
before the crisis is shown for a=0.36. For this parameter
value the uncoupled oscillators settle to a limit cycle which
is quite far from the boundary of the attraction basin. How-
ever, when coupled, depending on the coupling strength the
solution of the coupled pair is ejected to infinity. Let us call
�� the critical coupling in such a way that values greater than
�� will eject the system to infinity. If we choose to couple the
system with a value slightly smaller than the critical value,
that is, �z
�� the result is a non synchronous �hyperchaotic�
state �Fig. 4�. Therefore, in this case, even just before ejec-
tion the oscillator are far from being synchronized.

The monotonic decrease of the ejection threshold for �z
results from the fact that the boundary crisis occurs in the
neighborhood of the outer fixed point, a point that is ap-
proached when the trajectory leaves the x−y plane. The ejec-
tion limit is in fact proportional to the distance between the
attractor boundary and the stable manifold of the outer fixed
point. At a=0.55, the attractor is very close to this manifold,
and the smallest perturbation is sufficient to send the trajec-
tory across the manifold.

Complete synchronization was easily obtained when the
two systems were coupled using variable y; was only ob-
tained over a rather small range of parameter a when vari-
able x was used, and it was never achieved using z. There-
fore, to achieve complete synchronization, the best variable
for coupling the two Rössler systems is y, the worse is z, and
variable x is somewhere in between. This is exactly the order
provided by the observability coefficients: �y2 =1, �x2 =0.88
and �z2 =0.44. Complete synchronization thus also depends
on how the oscillator dynamics are “seen” through the vari-

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54
Bifurcation parameter a

0

0.5

1

1.5

2

2.5
C

ou
pl

in
g

co
ef

fi
ci

en
tρ

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

ρ
x

Synchronization curve
ρ

x
Ejection curve

ρ
y

Synchronization curve

ρ
z

Ejection curve

FIG. 2. �Color online� Critical coupling curves that correspond
to the onset of synchronization �synchronization curve� and the
ejection of the trajectory to infinity �ejection curve�, respectively.
Below the synchronization curve, the average distance between
points and the first bisecting line of plane y1−y2 is greater than 0.1.
Case of the Rössler system, b=2, c=4, and ��=0.04.

-6 -5 -4 -3 -2 -1 0 1 2 3 4
y

1

-6

-5

-4

-3

-2

-1

0

1

2

3

4

y
2

FIG. 3. Projection on the y1−y2 plane of the attractor solution to
the coupled non-identical Rössler systems when �x is at its minimal
value for a successful complete synchronization �Fig. 2�. Both sys-
tems are, thus, synchronous to produce a chaotic attractor very close
to the attractor solution to the original Rössler system. Parameter
values: a=0.455, b=2, c=4, �x,0=0.51, and ��=0.04.

CHRISTOPHE LETELLIER AND LUIS A. AGUIRRE PHYSICAL REVIEW E 82, 016204 �2010�

016204-4



ables used to couple the oscillators. This is quantified by
observability coefficients.

B. Cross-section synchronization

Although complete or identical synchronization is simple
to understand and to define, unfortunately such a behavior is
often too demanding, especially for simple coupling schemes
such as the one used in Eq. �7�. For the purposes of this
paper it is important not to increase the complexity of the
coupling used to synchronize the two systems. Therefore,
alternative definitions of synchronization should be sought.
A commonly used definition is that of phase synchronization
�18�. Unfortunately, when the dynamics is nonphase coher-
ent, it is rather tricky to define a phase �4,20�, mainly be-
cause the trajectory spirals around the inner fixed point and a
curve connecting the latter to the outer fixed point �21�. For
this reason, alternative definitions of phase were required, as
the one proposed by Osipov and his co-workers based on the
curvature of the trajectory �4�.

In what follows, an alternative approach will be sought in
order to be able to define phase synchronization even in the
case of phase-non-coherent dynamics. The aforementioned
approach is based on the fact that a proper Poincaré section
for Rössler attractors can be defined in a way that is inde-
pendent on the dynamics �19�. This directly results from the
fact that, although the dynamics is phase noncoherent, funnel
Rössler attractors can be enclosed by a genus-1 bounding

torus leading to a single component Poincaré section �see
Appendix B�. From this point of view, it seems natural to
consider a Poincaré section related phase �19,22�.

According to a procedure described in �18�, it is possible
to define a phase based on a Poincaré section as follows. The
time interval between two intersections of the trajectory with
the Poincaré section corresponds to one complete oscillation;
therefore the phase increase during this time interval is ex-
actly 2� rad. Hence, we can assign to the time Tk the values
of the phase �Tk�=2�k rad. For an arbitrary instant of time
Tk� t�Tk+1, the phase is just provided by a linear interpola-
tion between these values �23�,

�t� = 2�k + 2�
t − Tk

Tk+1 − Tk
�rad� . �8�

It is believed that the relevant dynamical features—
especially recurrence properties —are more efficiently inves-
tigated on a Poincaré section �24�. This motivated our choice
for using linearized phase . We will thus refer to “cross-
section-synchronized” systems when the linearized phase er-
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ror between such systems, 2−1, remains around zero and
is nearly constant.

As before, we varied the coupling �nature and strength�
and verified if cross-section synchronization was attained. In
the case of phase coherent attractors �Fig. 5�a�� we observed
that it is very easy to obtain cross-section synchronization
using y a the coupling variable. The robustness of the syn-
chronization was slightly less with two x-coupled sub-
systems. But it was nearly impossible to obtain cross-section
synchronization using the z variable. A very narrow range of
coupling strength around �z=0.26 led to a nearly constant
but not null phase shift.

A different situation was observed for phase noncoherent
attractors �Fig. 5�b��. Cross-section synchronization was pos-
sible using the y variable for values of coupling strength in
the range �y � �0.2;1.5�. Using x to couple the oscillators
resulted in cross-section synchronization for �x�0.6 and no
such synchronization was obtained using z couplings. Once
again, the synchronizability—here of the cross-section
type—depends on the dynamical regime and on the observ-
ability of the dynamics through the coupling variable.

IV. TWO NONIDENTICAL RUCKLIDGE SYSTEMS

The Rucklidge system is reviewed in Appendix C. This is
a Lorenz-like system with a rotation symmetry Rz���. As a
consequence, variable z is left invariant under the symmetry
and it is not possible to know on which spiral the trajectory
is. This specific dynamical property is not taken into account
by observability coefficients �16�. Another interesting topo-
logical property that the Rucklidge system has—like most of
Lorenz-like systems �26�—is that, depending on its param-
eter values, it can produce a genus-1 or a genus-3 attractor
�see Appendix C�. In the former case, the trajectory always
visits one spiral after the other, for one revolution each. In
the latter, transitions from one spiral to the other occur cha-
otically. As we may expect, such dynamical characteristics
will have a strong impact on the synchronizability of two
nonidentical Rucklidge systems.

A. Complete synchronization

The observability coefficients computed for the Rucklidge
system �see Appendix A� are:

�x2 = 0.88 � �z2 = 0.44 � �y2 = 0.34. �9�

According to them, complete synchronization should be
easier with an x-coupling �Table I� than using the other vari-
ables. This remained true for genus-one and genus-three at-
tractors.

Synchronization of two non-identical Rucklidge systems
with z-couplings was nearly achieved for the genus-one at-
tractor �Fig. 6�a�� but never in the case of the genus-three
attractor �Fig. 6�b��. The fact that significantly better results
were obtained with the genus-one attractor was not so sur-
prising: in this case, the trajectory does not visit the neigh-
borhood of the saddle fixed point at the origin of the phase
space and, consequently, does not leave any possibility to the
two subsystems to drastically diverge one from the other
even with a lack of information on the location of the trajec-
tory. In spite of the symmetry, the case is nearly similar to
the case of systems without symmetry.

When the genus-three attractor was considered, it was not
possible to obtain a complete synchronization with z-coupled
subsystems. The information transmitted by variable z con-
tains nothing about which spiral is visited, the two sub-
systems are therefore “� phase free.” In a chaotic manner, a
� phase shift is induced when the trajectory visits the neigh-
borhood of the saddle fixed point, preventing any complete
synchronization.

Thus, when the two subsystems are not � phase-shift—
case of the genus-one attractor—the synchronizability is in
agreement with observability coefficients. Such a result does
not remain true for the genus-three attractors since there is a
strong dynamical property—the lack of information in vari-
able z about the spiral actually visited—that prevents any
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FIG. 6. Best cross-section
synchronization obtained with
two z-coupled nonidentical Ruck-
lidge systems. Parameter values:
�a� �=−6.7 and �=−2 and, �b�
�=−39.7 and �=−4.4.

TABLE I. Coupling strengths corresponding to the best synchro-
nization obtained with the different couplings. Case of two noniden-
tical Rucklidge systems.

Observability
coefficients Genus-one Genus-three

�x2 =0.88 �x,0=1.4 Complete �x,0=0.6 Complete

�z2 =0.44 �z,0�10.5 Nearly complete Never complete

�y2 =0.34 �y,0=18.0 Complete �y,0=5.0 Complete
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complete synchronization in spite of a rather good observ-
ability. Such a feature is associated with the lack of �global�
observability which, unfortunately, is not measured by our
coefficients �16�.

B. Cross-section synchronization

Depending on the genus of the bounding torus enclosing
the attractor, the global Poincaré section has one or two com-
ponents. The phase  is set to 0 in each of the components.
The analysis is then performed in a similar way as for the
Rössler system. The mean phase shifts � with their stan-
dard deviation are reported in Figs. 7�a� and 7�b� for the
genus-one and genus-three attractors, respectively. The criti-
cal coupling strengths at which the cross-section synchroni-
zation was obtained are reported in Table II, where the ob-
servability coefficients are reprinted.

As observed with complete synchronization, in the case of
genus-one attractor, the critical strength to cross-section syn-

chronize the two subsystems is in agreement with the quality
of the coupling variable and cross-section synchronous states
can be obtained with the three variables. It is interesting to
notice that such critical strength is related to the cost of syn-
chronization �27� which not only depends on the similarity of
the dynamics being synchronized but also, as shown in this
paper, it depends on the coupling variable. The situation is
slightly less obvious with the genus-three attractor since, as
expected, it was not possible to perfectly cross-section syn-
chronize the two subsystems �the standard deviation always
remained significantly large as shown in Fig. 7�b�� using
variable z. This last example thus confirmed that the syn-
chronizability of two nonidentical systems depends on both
the observability induced by the coupling variable and on the
dynamics.

V. CONCLUSION

Since the seminal paper by Pecora and Carroll it is known
that synchronizability depends somehow on the coupling
variable. But the reasons for that seem not to be known.
Using observability coefficients that quantify the quality of a
phase space induced by a given variable, we showed that a
significant part of this dependence can be explained. How-
ever, such coefficients cannot explain everything. In fact, it is
also known that synchronizability depends on dynamical
properties, as phase coherence, to which observability mea-
sures are essentially insensitive.

These ideas were illustrated with two worked examples.
In such examples it was shown that two dynamical properties
that can affect the synchronizability are the phase coherence
and the symmetries. The clear dependence between observ-
ability and the ability to synchronize two systems is believed
to be quite general. In fact, the strong correlation between
observability coefficients and the ability of modeling from
one recorded variable using a sufficiently general model
class has been verified for a large number of different sys-
tems. The dependence between observability and synchroni-
zability might be blurred by the underlying dynamics which
also play an important role.

General conclusions can be proposed as follows. When
the attractor is phase-coherent �bounded by a genus-one
torus and characterized by a unimodal map�, the synchroni-
zability is in agreement with the observability coefficients; in
particular, an observability coefficient close to one ensures us
to be able to synchronize two nonidentical systems. In the
other extreme cases, as the observability coefficient becomes
smaller, it is good synchronization becomes gradually harder
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FIG. 7. Mean phase shift computed for the three different type
of couplings and the two type of attractors produced by the Ruck-
lidge system.

TABLE II. Critical coupling coefficients �s,0 at which the two
nonidentical Ruklidge systems were cross-section synchronized �or
nearly in one case�.

Observability coefficients Genus-one Genus-three

�x2 =0.88 �x,0�0.75 �x,0=0.1

�z2 =0.44 �z,0�1.25 �z,0=1.0 Not perfect

�y2 =0.34 �y,0=7.5 �y,0=4.5
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and could become nearly impossible for very low observabil-
ity.

It is not yet completely possible to address the problem
analytically, and since synchronizability is dynamics depen-
dent, a general theory might not be “just around the corner.”
On the other hand, by using concepts related to observability
of nonlinear dynamics and the quantification provided by
observability coefficients, it is believed that a significant step
forward was given in the direction of improving our insight
to the problem of synchronizability and suggesting tools to
further investigate it.
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APPENDIX A: ESTIMATION OF THE SYMBOLIC
OBSERVABILITY COEFFICIENTS

In this appendix, we propose an algorithmic procedure to
compute the symbolic observability coefficients. This proce-
dure is obtained from the procedure detailed in �28�. It is
here explained for three-dimensional �3D� systems.

Step 1, write the so-called fluency matrix by replacing

each �non�constant element of the Jacobian matrix with �1̄�1,
and zero otherwise. This corresponds to �non�linear terms in
the vector field.

Step 2, choose a variable to “reconstruct” the dynamics.
Define a column vector C1 where 1 corresponds to the “mea-
sured” variable and 0 otherwise. Then replace the diagonal
element of the fluence matrix F corresponding to this vari-
able by a dot and multiply each row of it by the correspond-
ing element in C1. The matrix H1 is thus obtained.

Step 3, count the number p1 of linear elements and the
number q1 of nonlinear elements in H1.

Step 4, replace the dot in H1 by 0, 1 or 1̄ according to the
Jacobian matrix, and transpose H1.

Step 5, count the sum of the elements of each row, both 1

and 1̄ should be counted as 1. This defines the new column
vector C2.

Step 6, H2 is obtained by �i� replacing each nonzero ele-
ment of H1

T by a dot and �ii� replacing each remaining ele-
ment by its corresponding element in the fluence matrix mul-
tiplied by the corresponding element of the column vector
C2.

Step 7, count the number p2 of 1 and the number q2 of 1̄.
Step 8, the observability coefficient is thus given by

� =
1

2
� p1

p1 + q1
+

q1

�p1 + q1�3 +
p2

p2 + q2
+

q2

�p2 + q2�2 ,

where pi+qi is replaced with qi+1 when pi=0.
Example: The Rucklidge system Eq. �C1� has a Jacobian

matrix equal to

J = � 0 1 0

− � + z � − x

− 2x 0 − 1
� .

Step 1, the fluence matrix F is

Fij = �0 1 0

1̄ 1 1̄

1̄ 0 1
� .

Step 2, let us choose variable y. Thus, we have C1= �
0

1

0

�,

and

Exterior boundary

Interior disk

Poincare
section

FIG. 8. �Color online� Genus-one bounding torus enclosing the
funnel Rössler attractor. Parameter values: a=0.520, b=2, and
c=4

FIG. 9. Two topologically inequivalent attractors solution to the
Rucklidge system. Parameter values: �a� �=−6.7 and �=−2 and, �b�
�=−39.7 and �=−4.4.
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H1 = �0 0 0

1̄ · 1̄

0 0 0
� .

Step 3, p1=0 and q1=2.
Step 4, we replace the dot in H1 with 1, and we then

transpose the matrix to obtain

H1
T = �0 1̄ 0

0 1 0

0 1̄ 0
� .

Step 5 C2= �
1

1

1

�.

Step 6

H2 = �0 · 0

1̄ · 1̄

1̄ · 1
� .

Step 7 p2=1 and q2=3.
Step 8
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FIG. 10. Chaotic attractors so-
lution to the Rucklidge system.
Parameter values: �a� �=−6.7
and �=−2 and, �b� �=−39.7 and
�=−4.4.
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�y2 =
1

2
�0

2
+

2

23 +
1

4
+

3

42 = 0.34.

APPENDIX B: SPIRAL AND FUNNEL
RÖSSLER ATTRACTORS

The Rössler equations �25�:

�ẋ = − y − z

ẏ = x + ax

ż = b + z�x − c�
� , �B1�

produces different chaotic attractors depending on the pa-
rameter values �19,22�. This system has two fixed points

F� = 	
x� = az�

y� = − z�

z� =
c � �c2 − 4ab

2a


 . �B2�

F− is the inner fixed point—that is surrounded by the
attractor—and F+ is the outer fixed point. The stable mani-
fold of the latter corresponds to a part of the attraction basin
boundary. A curve—corresponding to the vortex around
which secondary oscillations take place—can be identified
�21�. As investigated by Farmer and his co-workers �29�,
one can distinguish phase coherent regime �0.126�a
�0.43295� and phase noncoherent regimes �0.43295�a
�0.556� for b=2 and c=4 �19�. Phase coherent attractors
correspond to a simple topology—the simplest suspension of
a logistic map—and are characterized by a well-pronounced
peak in the power spectrum. Phase noncoherent attractors are
associated with more complicated topologies—for instance,
they correspond to the simplest suspension of a three-modal
map for a=0.520 �19�—and have rather broad band spectra.
Rössler designated coherent attractors by “spiral attractor”
and phase noncoherent attractors by “funnel” attractors �30�.

Chaotic attractors can be described in terms of branched
manifolds �or template� which, in turn, are enclosed in
bounding tori. The latter serve to organize branched mani-
folds in the same way that branched manifolds organize pe-
riodic orbits embedded within chaotic attractors �31�. All
Rössler attractors—coherent as well as noncoherent— re en-
closed in a genus-one bounding torus as shown in Fig. 8.
This represents a projection of a two-dimensional surface
without self-links in R3 down onto a plane. The projection
can always be brought in a canonical form �31,32�. Such
projection is made of the outer boundary of a disk and g
interior disks. These interior disks are of two types: nc circles
around which the flow is in the same direction as the flow on
the exterior boundary, and np interior polygons with 2n sides
�n�1� and 2n singularities. The former correspond to a
point of a focus type and the latter to a point of saddle type.
An illustrative example �Fig. 9� will be provided in Appen-

dix C devoted to the Rucklidge system. The relevant point is
that the “global” Poincaré section of any flow bounded by a
genus-g torus has g−1 disconnected components �31,32� �for
g	3 and one for g=1; there is no genus-2 bounding torus�.
Component of the global Poincaré section always connect
one circle interior disk to the exterior boundary.

APPENDIX C: THE RUCKLIDGE SYSTEM

In his investigation to model different configurations of
convection, Rucklidge proposed the set of differential equa-
tions �33�.

�ẋ = y

ẏ = − �x + �y − xz

ż = − z + x2 � , �C1�

that has an algebraic structure quite close to the structure of
the Lorenz system. This Lorenz-like system is invariant un-
der a rotation symmetry around the z axis as the Lorenz
system is. This system has three fixed points, one located at
the origin of the phase space and two symmetry related with
coordinates x�= ��−�, y�=0 and z�=−�.

Like the Lorenz system, depending on its parameter val-
ues, the Rucklidge system may produce two topologically
inequivalent attractors. The first one is a “Lorenz-like attrac-
tor” �Fig. 9�a��. It can be enclosed by a genus-three bounding
torus and, consequently, its global Poincaré section has two
components that may be chosen as shown in Fig. 9�a�. This
attractor is a double suspension of a Lorenz map. The second
attractor �Fig. 9�b�� is topologically equivalent to the so-
called “Burke and Shaw attractor” �34�. This attractor is en-
closed by a genus-one bounding torus. Like Rössler attrac-
tors, the global Poincaré section has a single component as
shown in Fig. 9�b�. This attractor is a double suspension of a
unimodal map with a differentiable maximum.

The x-induced embedding �Fig. 10�a�� provides a clear
representation of the attractor structure and its symmetry. It
can be easily seen that the Lorenz-like attractor can be
bounded by a genus-3 torus. Each of the three holes are
associated with one fixed point �see �31� for more details�.
The “Burke and Shaw” attractor is bounded by a genus-1
torus. It is therefore easier to define a phase in the latter case.
This will have consequences when attempt to synchronize
two Rucklidge systems.

The y-induced embedding �Fig. 10�b�� still presents a
clear representation of the symmetry of the attractors but the
central structure of the attractor is blurred. This results di-
rectly from the fact that the three fixed points are not distin-
guished by variable y. The z induced embedding �Fig. 10�c��
provides a clear representation of the attractor structure but
the symmetry is modded out. This means that there is no
information in variable z about in which spiral the trajectory
is located. From the observability point of view, this means
that two different states in R3�x ,y ,z� cannot be distinguished
in R3�z , ż , z̈�.
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