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A cellular automata model for the interaction between seismic faults in an extended region is presented.
Faults are represented by boxes formed by a different number of sites and located in the nodes of a fractal tree.
Both the distribution of box sizes and the interaction between them is assumed to be hierarchical. Load
particles are randomly added to the system, simulating the action of external tectonic forces. These particles fill
the sites of the boxes progressively. When a box is full it topples, some of the particles are redistributed to other
boxes and some of them are lost. A box relaxation simulates the occurrence of an earthquake in the region. The
particle redistributions mostly occur upwards (to larger faults) and downwards (to smaller faults) in the
hierarchy producing new relaxations. A simple and efficient bookkeeping of the information allows the running
of systems with more than fifty million faults. This model is consistent with the definition of magnitude, i.e.,
earthquakes of magnitude m take place in boxes with a number of sites ten times bigger than those boxes
responsible for earthquakes with a magnitude m—1 which are placed in the immediate lower level of the
hierarchy. The three parameters of the model have a geometrical nature: the height or number of levels of the
fractal tree, the coordination of the tree and the ratio of areas between boxes in two consecutive levels. Besides
reproducing several seismicity properties and regularities, this model is used to test the performance of some

precursory patterns.
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I. INTRODUCTION

Seismicity (either regional or single fault-related) is not
prone to regularities, at least to deterministic regularities. Be-
cause of the short period of instrumental earthquake records,
the statistics of naturally occurring earthquakes are poor.
This fact justifies the development of “synthetic seismicity”
models [1], in which long catalogs of events are generated by
computer models of seismogenesis. Such models can be
tuned by making them reproduce what is known of the sta-
tistics of past seismicity to a reasonable degree, and then
used to make inferences about the behavior of seismicity by
making use of much longer and more homogeneous catalogs
of synthetic events.

Of all the statistical regularities of regional or global seis-
micity, the Gutenberg-Richter (GR) law is, together with the
Omori law, one of the most robust. Expressed in term of the
broken area of the fault, the GR law says that the number of
earthquakes breaking an area bigger than A scales as a power
law

N(>A) <A, (1)

where b is the so-called b value which, although around 1 in
most cases, can fluctuate above and below this value [2,3].
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Although the robustness of the GR law for regional seis-
micity is not questioned in the literature, the origin of this
power law is not so clear. Two types of models can explain
this distribution [4]. The first assumes that there is a power-
law distribution of faults and each fault has its own charac-
teristic earthquake. The second assumes that each fault has a
power-law distribution of earthquakes. Observations and
models in favor of and against both hypotheses are plentiful
[5-14], though the first hypothesis has more experimental
backup.

Evidences of power-law distributions of faults (and frac-
tures) have been provided in a huge range of scales, from
millimeters to hundreds of kilometers [15]. compiled a com-
prehensive review of most of them. They give ample proof
that most fracture systems obey the relationship

dN(l) o 17, 2)

where dN(/) is the number of fracture lengths that belong to
the interval [1,[+dl], with dI<1, and a is the fracture-length
exponent. For faults with linear sizes bigger than 100 m, the
fracture-length exponent estimated from two-dimensional
(2D) exposures and maps is in the range 0.8-3.5, with 70%
of the data sets between 1.7 and 2.75 [15]. We will call this
exponent ay,, where FL stands for fracture length as mea-
sured in 2D sections.

An alternative way of approaching the size-frequency re-
lationship of faults is through the fractal theory of fragmen-
tation [16—19]. Each fragment (blocks in three dimensions)
is limited by surfaces that are the expression of the fractures
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created in the original unbroken material during the process
of fragmentation. So, by estimating the size-frequency distri-
bution of fragments in terms of their linear dimension /, the
size-frequency distribution of fractures is also being esti-
mated. If we accept that this theory of fragmentation is not
only valid at small scales but also at crustal scales [17,19],
the exponent of the size-frequency distribution of fracture
lengths and the exponent of the size-frequency distribution
of fragment sizes (when expressed in terms of a linear di-
mension /) must agree. Most experiments and models of
fragmentation are compatible with a power-law function of
the form N(>[)=[™P, where N(>I) is the number of frag-
ments with a linear dimension greater than [ and D is the
fractal exponent of the distribution. For three-dimensional
fragmentation D is most commonly between 2 and 3 [17,20],
with values of D=2.6 favored by many experiments and
models, in particular by comminution models where fracture
probability is maximum for neighboring fragments of the
same size, which evolve toward a geometry where no two
fragments of the same size are in contact at any scale
[18,19,21]. These specific models are most relevant to the
type of constrained loading that affects the Earth’s crust.

As written, exponent D is for a cumulative power-law
distribution of fragment sizes, while exponent ay; is for a
noncumulative power law of fracture lengths. So, the fractal
exponent 1n noncumulative form will be @3> = D+l w1th a
range 3<aF =4 and a most probable value of aF P=~3.6.
Writing the exponent as a; stresses the idea that the expo-
nent has been obtained from three-dimensional (3D) frag-
ments (Fr) of linear 51ze L.

How can a}; and a;° be compared? For fracture systems
with independent and homogeneous geometric parameters
the transition from 2D to 3D is 51mply reflected by adding 1
to the exponent [5,22]: ;> =arp+ 1. When these assumptions
are not met [23], have shown that a};, =aj, +B, with O<B
=1. Thus, to compare the ranges of ar;, with those of a;,
two end-member models can be used, namely B=0 and B
=1. For B=0, we have 1. 7<aFL52 75 (for 70% of the data
sets); and for B=1 we have 2. 7<aFL =3.75 (for 70% of the
data sets). Only this second model is compatible with the
range 3 <a3DS4 of the fractal fragmentation theory. In this
case (B= 1) the common range for both exponents is 3
=a’P =3.75, where the subscript has been dropped to stress
that the only assumption left is the three-dimensional nature
of the objects. A very similar range was given by [24] fol-
lowing a different line of reasoning. Also [25], suggest that
a*P=3 is an attractor in the dynamics of fault systems, which
in early stages of development have a*®>3 and tend to

3D=3 in more mature stages.

In summary, there is ample evidence that faults (and/or
blocks separated by faults) have a power-law distribution of
sizes. If we join this evidence with the characteristic earth-
quake hypothesis (i.e., each fault can produce earthquakes of
just one size that corresponds to its area [26]), the GR law is
an obvious outcome. And if the comminution model is also
taken into account [18,19,21], the picture emerges of a set of
blocks with a power-law distribution of sizes and no two
blocks of the same size in contact at any scale. In this paper,
we will adhere to this point of view and will implement it by
means of a hierarchical model, the hierarchical box model
(HBM).
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The HBM is hierarchical in two ways: in the way the load
is redistributed and in the positioning of the boxes (faults)
according to their size. Faults in our model have a size which
depends on the level of the hierarchy and, as already men-
tioned, can produce earthquakes of only that size. The hier-
archy is implemented in the form of a fractal tree of N levels
and a coordination number c.

The model that we propose here is not the first one to
have a hierarchical structure. In the seismological literature
the first use of a hierarchical structure can be traced back to
the work of [27-30]. In the first two papers the hierarchy is
implemented in the solving stage of the model, which is
carried out by means of a renormalization group approach
[31], and the aim was to predict the “sound” to “broken”
transition in rocks. This line of thought was pursued by
[32-35], who built several models where the hierarchy was
implemented through the size of the blocks (or defects) that
made the transition from sound to broken, differing in the
rules that decide when a block/defect in one level of the
hierarchy breaks as a result of the “weakness” of the blocks/
defects connected to it in the lower level of the hierarchy.
The paper by [34] is most interesting as the authors introduce
for the first time a healing parameter, later incorporated by
[36] in the colliding cascades model.

The paper by [29] was intended to explain the stick/slip
transition that causes earthquakes. In this model all the ele-
ments have the same size (they can be considered as small
rupture elements) and what is hierarchically organized is the
way load is transferred from a failing element to other sound
elements in the system. Related to this seminal work and
gathered under the umbrella of fiber-bundle models, several
hierarchical fracture models were later proposed [37-44]
sharing with the original one the way load was hierarchically
transferred between elements following the structure of a
low-coordination fractal tree. Hierarchical trees also emerge
in the discrete scale invariance put forward by [45] for com-
plex systems.

Barriere and Turcotte [46] proposed a novel cellular au-
tomaton to reproduce regional seismicity in an area occupied
by a large number of faults. The model represents the fault
system by a grid of sites (or boxes) with a power-law distri-
bution of sizes. Tectonic load is modeled by the addition of
external load particles, and the probability of each site re-
ceiving a new particle is directly proportional to its size
(area). Each site has a load threshold equal to four times its
area and when the load surpasses that threshold a relaxation
(earthquake) occurs. The model is economical in parameters
(just two) and is able to reproduce power-law statistics for
the size distribution of earthquakes. However, the b values of
these distributions are not realistic. Contrary to the fiber-
bundle type models, the hierarchy in Barriere and Turcotte’s
model applies to the distribution of fault sizes, not to the load
transfer mechanism.

The final model to be mentioned here is the so-called
colliding cascades model [36,47-50]. The original colliding
cascades model [36] is a continuous time, continuous load
model whose dynamics is based on a set of coupled ordinary
differential equations. Its geometry is hierarchical, consisting
of several levels, each of which is composed of several ele-
ments. The number of elements grows downwards according
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to a geometric series of ratio 3 (coordination number of the
fractal tree) and the top level has just one element. All ele-
ments are the same size, irrespective of the level in the hier-
archy. Load is introduced in the model only through the top
element and diffuses downwards. Failures can start only in
the lower-most level and then travel upwards in the hierar-
chy. The interaction between the descending load cascade
and the ascending failure cascade gives its name to the
model. The size (magnitude) of an earthquake is equal to the
highest level element broken in a failure avalanche.

The Colliding Cascades Model aims to reproduce the
seismicity in a large area by using a hierarchical structure of
block sizes. It is not economical in parameters (12 are de-
fined in [36]) and they must be finely tuned to obtain a spe-
cific seismicity regime (the model is not self-organized criti-
cal). Also, the size-frequency relation obtained in the
intermediate regime (the only one with a power-law distribu-
tion) has an unrealistic b value. In spite of these disadvan-
tages the Colliding Cascades model is a compulsory refer-
ence within the hierarchical models of regional seismicity
and has partly served to inspire us to devise the model pre-
sented here.

This paper is organized as follows: Section II presents the
HBM as a pure cellular automaton, its structure, elements
and its rules of updating. The correspondence between the
elements of the HBM and a real network of seismic faults in
a large region is detailed in Sec. III. In Sec. IV the form of
fixing or bounding the three parameters of the model in order
to agree with various basic elements of seismicity is indi-
cated. Two new ingredients are commented on which are
introduced to relax a little the rigidity of the pure cellular
automaton. Once the parameters are fixed, in Sec. V we per-
form simulations of the HBM and explore the synthetic seis-
micity that emerges from it. Section VI contains the basic
ingredients for the forecasting of the main synthetic earth-
quakes of the system. Section VII is dedicated to a general
discussion, including the analysis of a new more physical
pattern of forecasting. Finally, Sec. VIII offers our conclu-
sions.

II. HIERARCHICAL CELLULAR AUTOMATA

The cellular automata model [51] consists of a grid of
cells, each cell in one of a number of finite states. Each cell
state is updated in discrete time steps according to a set of
rules. These rules depend on the state of the cell and its
nearest neighbors in previous or present time steps.

In this model, the grid is a fractal tree and the cells
(boxes) are positioned on its nodes. The tree has N levels,
which are labeled by the integer index m. A fractal tree with
N=3 is shown in Fig. 1. The role of the boxes is to accumu-
late particles up to a maximum occupancy C, called its ca-
pacity, and when the occupancy reaches or exceeds C, the
box relaxes and becomes empty by transferring all the par-
ticles to other boxes. Thus, each box has C sites susceptible
to be occupied and therefore the possible states of occupation
of abox are 0,1,2,...,C—-1.
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FIG. 1. (Color online) Schematic representation of the hierarchi-
cal structure used in the model. In this example the number of
levels is N=3 and the coordination index ¢=4. The faults (boxes)
are the rectangles located on the nodes of the fractal tree, while the
links are the load transfer trajectories. Each level is identified by an
integer m, starting from the lowest level.

The capacity of a box depends on m in the form
C(m)=r"", (3)

where r is a constant to be fixed.

Now, the coordination of the tree, or branching index, will
be denoted by ¢ (in Fig. 1, c=4). Due to the geometry of the
system, colloquially speaking let us say that each box has
one parent, ¢ children, and c¢—1 siblings. In the strict hierar-
chical structure there are no links between a box and its
siblings.

The geometric structure of the model is now fixed. Turn-
ing to the rules for updating the boxes, these rules are similar
to those used by [52] in the Sand-Pile and in other models.

(1) At each basic time unit, one new particle is randomly
added to the system from outside. The probability of any box
in the system receiving this new particle is proportional to its
capacity. After deciding which specific box will receive the
particle, we examine whether this addition completes its ca-
pacity or not. If it does, then the box topples, otherwise, the
state of the box is increased by one unit and after another
time unit a new particle is added to the system. Only when
toppling stops (i.e., the occupancy of all the boxes is lower
than their respective C) is a new particle added to the system.

(2) Whenever a box topples, C/2 of the particles are
transferred upwards to its parent and C/2 are transferred
downwards to its children. On these occasions, all the ¢ chil-
dren receive the same number of particles and any remaining
particle from the square repartition is randomly assigned to
the children. When, as a result of a toppling, a box receives
a bunch of particles, we proceed as in rule 1, assessing
whether this addition exceeds its C or not. If it does, the box
topples, C particles are transferred, and the rest are dissi-
pated; otherwise, the occupancy of that box is increased by
the number of added particles.

Two particular cases of rule 2 are the topplings of the
boxes at m=1 and the box at m=N. In the case m=1, the
particles transferred downwards are lost. Likewise, in the
relaxation of the highest box (m=N) the particles transferred
upwards are also lost. Together with that mentioned above,
this is the dissipation mechanism used by this hierarchical
system to get rid of particles and maintain a mean value of
the global occupancy.

Summarizing, the parameters of this model are N, ¢, and
r. And, as in all the models of this type, we assume the time
taken by the relaxations of boxes to be very short in com-
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parison with the basic time interval between the arrival of the
external particles [51]. This HBM will likely arouse interest
for describing other phenomena, but here we use it to model
the statistical properties of seismicity over a large region.

III. HBM AS A MODEL OF EXTENDED SEISMICITY

The hierarchical model described in Sec. II is used here to
simulate extended seismicity. For this propose, the boxes of
the model represent the faults that exist in a region, and their
relaxations correspond to earthquakes. Assuming the hypoth-
esis of the characteristic earthquake [26], the relaxation of a
box produces an earthquake of a unique magnitude, and this
depends only on the level at which the fault (box) is placed.

In the description of the cellular automaton, three param-
eters have arisen: the constant (r) in the definition of the
capacity [Eq. (3)], the number of levels in the hierarchy, N,
and the coordination number, c. In the pure model, these are
completely free parameters. However, from the point of view
of the application of the model to seismicity, these param-
eters acquire a meaning and therefore their variation ranges
may be restricted. They will thus be analyzed one by one.

(i) Parameter r appears in the definition of the capacity of
a box which is given by Eq. (3). It is the ratio of areas
between boxes placed in two consecutive levels. According
to the definition of magnitude in Seismology (m>log,, A, m
being the magnitude of an earthquake and A the broken area)
[53,54], the value of this ratio depends on the difference in
magnitude corresponding to a change of one level in the
model. For simplicity, a difference of one unit of magnitude
per level has been used. In other words, the relaxation of a
box produces an earthquake of magnitude m, m being the
level of the box in the hierarchical structure. It is also as-
sumed implicitly that earthquakes occurring at the first level
of the hierarchy have a magnitude m=1. In this scenario, the
value of the parameter r becomes fixed at r=10.

(ii) Parameter N is the number of levels in the hierarchy. It
is related to the largest earthquake that is expected in a spe-
cific region. So, this parameter is fixed as soon as the studied
area is selected. In this paper, N=7 is used in all the simu-
lations performed, assuming therefore the largest earthquake
to have a magnitude m=7.

(iii) Parameter c, the coordination number, is an integer
representing the number of faults of a level related in the
hierarchy to one fault of the next higher level. This relation
has been studied in real fault systems as mentioned in the
Introduction, and Sec. IV will be dedicated to analyzing how
the known data from these studies restricts the range of
variation of this parameter.

Apart from the geometrical parameters, the dynamic pro-
cesses of the automaton can also be recast in the language of
seismicity: the external loading process responsible for the
random filling of the boxes (faults) simulates the remote tec-
tonic stress in the modeled region; the relaxation of a box
corresponds to an earthquake; and earthquakes are accompa-
nied by the redistribution and dissipation of stress.

Besides the above-mentioned correspondences, there are
some rules regarding the pure model described in Sec. II that
can be slackened to obtain a less rigid and more realistic
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seismicity model. For example, in some simulations we have
also considered the possibility that the relaxation of a fault
occurs when it is sufficiently loaded but not necessarily full,
i.e., that its occupancy on failure is, for example, 90% of its
capacity and not necessarily 100%. The effect of this change
is only a slight reduction in the length of the simulations, but
the differences in the results are negligible, so this modifica-
tion has not been implemented.

Another modification is to consider that in the process of
redistribution of the load in the relaxation of a fault, a part of
this load is transferred horizontally, that is, to faults of the
same size. This mechanism of “horizontal” load transfer in
the model would simulate stress redistribution in faults of
similar size. Thus, the real number s, 0=s=1, will be the
fraction of the load that is transferred to its two nearest sib-
lings (a similar parameter is introduced in the colliding cas-
cades model [36]). This parameter, s, is assumed to be small,
because this modification is only introduced as a slight per-
turbation of the hierarchical structure which commands the
dynamics of the system. In fact, in all the results shown in
this paper we have used s=0.1 (In Fig. 1, although not de-
picted, it is assumed that the set of children of a same parent
are cyclically connected to each other, which implies that
each box has two nearest siblings for the horizontal trans-
fers).

Finally, because the number of faults in a tree of N levels
is (cV=1)/(c-1) (e.g., in systems with N=7 and c=10, 17,
and 20 this amounts to 1.1X10° 25.6X 10° and 67 X 10°
faults respectively), and the state of the system is specified
by giving the state of all the faults (boxes), a simple and
efficient bookkeeping mechanism of information has been
implemented: the load is expressed as a fraction of the ca-
pacity and is implemented with a counter, a real number in
the range [0, 1] (the number of occupied sites divided by the
capacity), for each fault. In this way simulation times are
kept reasonably low.

The simultaneous operation of all the rules and modifica-
tions mentioned in Secs. II and III (external loading, load
redistribution, and dissipation) makes the model self-
organized critical. This can best be shown by plotting the
degree of occupancy of the model against time (the degree of
occupancy of the system, or total load, is the sum of the box
occupancies). Figure 2 gives the time evolution of load in a
system with seven levels (N=7), and a coordination index of
¢=20. Figure 2(a) shows the time evolution of the total load
on the system, whereas Fig. 2(b) shows the comparative load
evolution in the seventh and sixth levels and the whole sys-
tem, once the system is in a statistically steady state. Note in
Fig. 2(a) that after a sufficiently long period of time, no
matter what the initial condition for the load was, the global
occupancy oscillates around a mean value of 0.51. This prop-
erty, together with power laws for the size-frequency distri-
butions of the relaxations, constitutes one of the require-
ments of any critically self organized model [55]. In Fig. 2(b)
it is apparent that the occurrence of earthquakes of magni-
tude m=7 has a great impact on the occupancy of the m=6
level but not on the occupancy of the whole system. Besides,
when an m=7 earthquake occurs, particles transferred down-
wards to the m=6 level can be transferred upwards again to
level 7, all in the same time unit. For this reason, in Fig. 2(b)
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FIG. 2. (Color online) Evolution of the amount of load (total
occupancy) in the system (N=7; ¢=20; r=10). (a) Evolution in
the whole system. Dashed and solid lines represent a system that is
initially loaded at 70% of its capacity and completely empty, re-
spectively. (b) Comparative evolution in the seventh (green/gray
line) and sixth (blue/light gray line) levels and in the whole system-
black line.

the seventh level is not always empty after the occurrence of
an m=7 earthquake.

IV. MATCHING THE MODEL WITH NATURAL
SEISMICITY

As explained in the previous section, the coordination in-
dex, c, of the hierarchical structure in the model is related to
the ratio of small to large faults in a region: in the model
each fault in a level is directly connected to ¢ other smaller
faults in the immediate lower level. So, the first constraint on
the coordination index comes naturally from the fracture
length exponent. In Sec. I fracture length exponents in the
range 3=a=3.75 were proposed as compatible both with
the size distribution of fractures in 2D sections and with the
3D size distribution of fragments in a fractal model of frag-
mentation. Also, the particular value a=3.6 was considered
important following several lines of reasoning.

In the HBM, the number of boxes in each level is given
by N(m)=c"". Besides, the magnitude of an earthquake, m,
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is defined as m=log;; A+1 (e.g., a relaxation of a box whose
area is A=10, produces and earthquake of magnitude m=2).
Then, the number of boxes with area A is N(A)
=cM*l. o204, This relation can be expressed as a power
law in A: N(A)=cN"1.A71102 10 And, in the continuum limit:

log,. 10

dN(A) = N ATVoec 1071 (4)

Assuming that the characteristic length of a fault, /, is
proportional to the square root of its area, then Eq. (4) be-
comes:

dN(1) o [0z 101 g7 (5)

Comparing this expression with Eq. (2), we conclude that
a:log_—_zm— 1. Therefore, the coordination number of the tree

can be expressed in terms of a as:
c=10%12, (6)

For the lower range value a=3, we have ¢=10; for a
=3.77 (upper limit) we have ¢=24; and for a=3.6 (preferred
value) we have ¢=20. So, coordination indices between 10
and 24 are compatible with the size-frequency distribution of
fault sizes in the Earth’s crust. Remember that r has been
already fixed at r=10 to be consistent with the definition of
seismic magnitude and with the fact that the model has a
difference of one magnitude per level; likewise, N should be
fixed depending on the largest earthquake expected in the
studied region. This fixes or brackets the three parameters of
the model.

V. SYNTHETIC SEISMICITY OF THE HBM

Notwithstanding the general lack of “premonitory” ob-
servables and deterministic regularities of regional seismic-
ity, there are several statistical regularities that should be
reproduced by any model of seismicity. In this section, we
have analyzed the results that emerge from the HBM for
three important regularities: GR law and b-value, the fraction
of aftershocks, and the energy release rate.

(1) Gutenberg-Richter law and b-value An important
check on the validity of the model is the fulfillment of the
GR law. This law has two characteristics: a power-law rela-
tion between frequency and size, and an exponent of —1.
Figure 3 shows the size-frequency relationship in terms of
seismic magnitude for four values of the coordination num-
ber. It can be seen that the size-frequency relationship is of
the GR type and that the b value is also realistic, very close
to one.

(2) The fraction of triggered events (aftershocks). The
next regularity of regional seismicity which is checked in our
model is the fraction of aftershocks in a seismic catalog. In
our model, after the addition of a new particle of load into
the system, three different outcomes can be expected: (i)
nothing, if the receiver box does not exceed its capacity; (ii)
a single earthquake, when that box surpasses its capacity and
upon load transfer no other box does; and (iii) a sequence of
consecutive earthquakes when the first relaxation produces
more relaxations as a consequence of the transfer of load. In
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FIG. 3. (Color online) Magnitude-frequency distributions of re-
laxations in the HBM for N=7, r=10 and different values of c. A
dotted line with slope equal to —1 has also been plotted.

the second outcome the lone earthquake is a main shock
(which lacks aftershocks). In the third outcome the main-
shock is identified with the biggest fault (highest level) that
has relaxed in the sequence. The other relaxations are defined
as aftershocks, and the number of them is registered for the
statistics. Thus, due to the time-scale separation of cellular
automata models, it is very simple in the HBM to compute
the aftershocks-to-mainshocks ratio and compare it to ex-
pected values of this ratio in regional seismicity.

The percentage of aftershocks in the HBM is of 62% for a
magnitude cutoff of m=2 (for the computation of the
aftershock-to-mainshock ratio, earthquakes in the first level
of the hierarchy are not included as their dynamics differ
from that of the other levels). In real seismicity the exact
proportion of triggered earthquakes depends on the region
and, above all, the magnitude cutoff considered. Most esti-
mates for a cutoff magnitude around m=~2-3 agree on a
percentage of aftershocks between 60 and 80% [56-63]. The
value obtained by the HBM, 62%, is within this range.

Table I separates the aftershock production by the magni-
tude of the mainshock. Mainshocks of magnitude m=3 have
an average of 6 %3 aftershocks, while m=7 mainshocks
have an average of 7577 £4616 aftershocks. As a compari-
son, the m=7.3 Landers earthquake produced around 17 000
aftershocks in the following 370 days. Extrapolating the
number of aftershocks from an m=7 mainshock to an m
=7.3 one in the HBM gives 13 000 = 8500 aftershocks,
which compares well with the actual estimate. The Hector
Mine earthquake (m=7.1) produced around 6000 aftershocks

TABLE I. Number of aftershocks per mainshock of each mag-
nitude in the HBM.

Magnitude of mainshock Aftershocks per mainshock

3 6*3

4 33+18

5 21495
6 1207 = 655
7 7677+ 4616
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FIG. 4. (Color online) Seismic energy output of the system. (a)
Accumulated long-term energy output for three different ranges of
earthquakes: m=5 (blue/lower curve), m=6 (red/middle curve),
and m=7 (black/upper curve); this last curve is the total energy
output of the system as m="7 earthquakes are the biggest an N=7
system can sustain. The total broken area is used as a proxy for the
released seismic energy. (b) Short-term energy output prior to a
large m=7 earthquake. A premonitory acceleration in the released
energy following a power-law with an exponent y=0.38 (inset) is
observed.

in the first 600 days, also compatible with the HBM produc-
tivity. The m=6.2 Big Bear earthquake triggered around 818
aftershocks in a volume of 20X20X 17 km® in 375 days,
while the m=6.1 Joshua Tree earthquake triggered around
2600 aftershocks in a volume of 20X20X 19 km? in 160
days [64]. In this range of magnitude (6.1-6.2) HBM’s main-
shocks have 1500-1800= 1100 aftershocks, which also
compares well with the number of aftershocks in the Joshua
Tree and Big Bear earthquakes.

(3) Energy release rate. Figure 4(a) plots the energy re-
lease rate in terms of accumulated broken area (as a proxy
for energy) for three earthquake size ranges, m=5, m=6,
and m=7. Clearly the long-term energy release rate is con-
stant for the three magnitude ranges, although sudden steps
are more evident in the m =7 curve as a consequence of the
large number of aftershocks that these large earthquakes trig-
ger (actually, m=7 are the largest earthquakes that a N=7
system can sustain). This constant long-term energy release
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rate is to be expected from a self-organized criticality (SOC)
model, and also from what happens in real seismicity due to
the constant long-term energy input into the crust from the
dynamics of plate tectonics. However, prior to some large
events [Fig. 4(b)], energy release is not constant and a pre-
monitory acceleration in released energy can be observed.
This is in agreement with many observations of accumulated
Benioff strain prior to large earthquakes [65-68]. A power
law fit of the form e(r)=A+B(t;~1)” has been suggested,
with exponent y=0.26 £0.15 [66] when €(z) is expressed in
terms of the cumulative Benioff strain (the square root of the
released seismic energy). Here we have obtained an expo-
nent y=0.38 although the comparison with real data is not
direct as we have used the broken area as a proxy for the
released energy.

VI. FORECASTING THE LARGE EVENTS

In addition to the statistical averages of the synthetic seis-
micity delivered by the HBM, it is also interesting to carry
out specific studies of the largest fault in the system, i.e., that
located in the Nth level of the hierarchy, particularly from the
viewpoint of the predictability of the earthquakes that it gen-
erates. Thus, this section is dedicated to the predictability of
the largest earthquakes in an HBM with N=7 levels, ¢=20
and r=10.

A simple way of estimating the predictability of the large
earthquakes in the HBM is by means of their aperiodicity, «,
also known in Statistics as the coefficient of variation. The
aperiodicity is a@=0.50 for the recurrence of the biggest
earthquake in the HBM, and this is within the range of ape-
riodicities estimated for real faults [13,69-72]. This value
means that these large earthquakes in the system have a qua-
siperiodic behavior and quasiperiodicity means some pre-
dictability. Thus, the question now is: how accurately can the
largest event in the model be predicted? For this enterprise
we will use a graphical tool, the so-called error diagrams
[73], together with specific predictive strategies [74-76].

Let us assume that one observes the occurrence of a num-
ber of m=7 events during a time period, 7. This strategy
consists of the following: after the occurrence of each event,
one awaits n time units and then sets the alarm; this alarm is
not cancelled until the occurrence of the next event. If the
following event occurs before the alarm is set, it is counted
as a prediction error. In contrast, if the next event occurs
while the alarm is on, it is counted as a prediction success.

The fraction of error f, is the number of missed events, or
errors, divided by the total number of target events. Analo-
gously, the fraction of alarm, f,,, is defined as the total time
the alarm was on divided by the total time of observation, 7.
To evaluate the quality of any forecasting strategy in a quan-
titative setting, we define a loss function, L, which incorpo-
rates the trade off between the cost of missing events and the
cost of keeping the alarm on. We adopt here the simplest
option L=f,+f,. A poor prediction strategy leads to L values
close to unity, and an ideal strategy would give L=0.

In the reference strategy we explore the relation between
time waited to set the alarm, n, and L. There is an optimum
value for n, n*, that produces a minimum value of the loss
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FIG. 5. (Color online) Error diagrams showing the predictability
of the largest earthquake, m=7, in the HBM using the “reference
strategy.”

function L, L*. Figure 5 shows the performance of the refer-
ence strategy in an error diagram [73]. Any point on the
diagonal corresponds to a value L=1, and this would be the
result of a random prediction strategy. The irregular line
shows the fraction of errors and the fraction of alarm for
successive values of n. The circle on this dotted line repre-
sents the best option for the reference strategy, L*=0.63
(f,=~0.45;f,~0.18) corresponding to a waiting interval of
n*=3.38 X 10° time units. In other words, using the reference
strategy we can predict 55% of the largest earthquakes while
keeping the alarm on for 18% of the time. In the Sand-Pile
Model a similar analysis [77] provides a value of L* close to
unity, which was related to the early belief that SOC systems
were completely unpredictable. In the next section we will
try to improve on these figures using a different prediction
strategy that uses additional information from seismicity.

VII. DISCUSSION

A new cellular automaton has been presented in its ge-
neric form. Like any cellular automaton, it has very simple
dynamics and a defined geometry. It has three free param-
eters. The interpretation of this model in terms of seismic
elements, together with a little slackening of the hierarchical
redistribution of load quantified by the parameter s, lead to a
model for extended seismicity. With these ingredients, the
HBM is able to produce synthetic catalogs of earthquakes
which are compatible with some of the most important sta-
tistical regularities observed in Nature, such as the GR law,
the percentage of aftershocks, the mean number of after-
shocks per mainshock of magnitude m, and the rate of re-
leased energy. In spite of the fact that these successes are not
sufficient to guarantee that the synthetic catalogs generated
by the model are completely consistent with real seismicity,
they are absolutely necessary for a synthetic catalog to be
realistic.

016118-7



TEJEDOR, GOMEZ, AND PACHECO

In this section, we are going to analyze a synthetic catalog
from the HBM in order to examine a regularity that has not
hitherto been investigated in depth in real seismicity.

The recurrence interval of an earthquake in a specific fault
is commonly assumed to be independent of fault size, though
there is no reason a priori that this has to be the case. Fol-
lowing [5], if we assume that characteristic earthquakes rup-
ture the entire length of the fault and that smaller earth-
quakes in the same fault have a negligible frequency, we can
combine the scaling relationships for earthquakes (GR law)
and faults (size-frequency relationship for fracture systems)
to express the recurrence interval of earthquakes in a fault, 7,
in terms of the rupture length /. Mathematically the recur-
rence interval is the ratio of the number of faults of a given
length [Eq. (2)] to the frequency of the earthquakes that take
place in those faults [Eq. (1) after differentiation with the
change of variable /=A""?]:

—da

l—2b—1 — le—a+1 . (7)

T(l) =
As b is around 1 and a varies from 3 to 3.75 as explained
in Sec. I, it means that we can expect two types of behavior
for the recurrence interval: (i) that it is independent of fault
length (a=3); and (ii) that it is a decreasing function of fault
length (a>3), although the favored value (a=3.6) suggests
that longer faults have shorter recurrence intervals. We use
the term “recurrence law” for this functional relationship be-
tween recurrence interval and fault (rupture) length.
The recurrence law can be obtained easily in our model.
As the number of faults in a level m is ¢V then, statistically
speaking, the period of recurrence T of a fault in that level is

N—-m

1 O—bm ’

T(m) « (8)

where m is magnitude and b the b value. The denominator in
Eq. (8) is simply the GR law expressed in terms of magni-
tudes. Thus we have

b\ m
T(m) o« CN(ﬁ) . 9)
c

As b=1, Eq. (9) implies that for ¢=10 all faults have the
same recurrence interval and for ¢> 10 longer faults have
shorter recurrence intervals. Several simulations have been
performed for c¢=15, 17, 20 to check these predictions. In
these simulations one specific fault in each level was selected
and its mean recurrence computed. Figure 6(a) shows the
results in a plot of fault size (in terms of earthquake magni-
tude m) against recurrence time. Recurrence time has been
normalized in each case dividing by the time of recurrence of
the largest fault (m=7). It can be seen that the general ten-
dency is a decrease of the time of recurrence as the size of
the fault grows for the three values of the coordination num-
ber, but this tendency changes for the biggest fault in the
cases of ¢=15 and ¢=17, when m=7 earthquakes have a
slightly longer recurrence than m=6 ones.

Figure 6(b) examines the recurrence for an extensive
compilation of active fault data from the USA [78]. Although
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FIG. 6. (Color online) (Color Online) Recurrence law. Graph (a)
recurrence intervals as a function of fault size (expressed in terms
of earthquake magnitude) for three values of the coordination num-
ber: ¢=15, c=17, and ¢=20. (Error bars are smaller than symbols).
Recurrence intervals have been scaled by the recurrence interval of
the m=7 fault in each case. Graph (b) is a compilation of fault data
(1885 faults) from the United States (USGS) for normal (red/gray),
reverse (yellow/light gray), and strike-slip (blue/dark gray).

with large scatter, a negative correlation between fault length
and recurrence interval is seen, compatible with the behavior
of the model as shown in Fig. 6(a) (c=20). The result shown
in Fig. 6(b) of longer faults having a shorter recurrence in-
terval has been proposed previously [4,5], although it is by
no means universally recognized [14,79]. In a recent study
[14], carried out an in-depth study of six fault systems in
New Zealand, USA, Greece and Italy and conclude that re-
currence data (taking into account the large scatter) do not
preclude a recurrence interval independent of fault length. If
this is the case [see Eq. (7)], either the fracture length expo-
nent for all the analyzed fracture systems is a’°=3, or the
assumption of each fault having a characteristic earthquake is
not valid.

Although the specific recurrence law followed by real
seismicity is still under debate (mainly due to the scarcity of
studies and possibly to the diversity of recurrence laws), it
seems clear that a relationship exists between the recurrence
law and the fracture length exponent, and between the latter
and the parameter ¢ in the HBM.

To conclude this Section, we now explore another predic-
tion strategy for the m=7 earthquakes in the HBM which is
based on the observation of aftershocks [80], and which has
been applied in natural seismicity. This is a type of premoni-
tory pattern where a significant clustering of earthquakes in
time is observed. It was established in intermediate-term
earthquake prediction algorithms [81] and used in the collid-
ing cascades model [47] and is one of the first premonitory
seismicity patterns for which statistical significance has been
established [81,82].

This prediction strategy can be applied to the HBM in the
following way. Having specified the magnitude of the target
earthquakes, m="7, we will observe all the mainshocks with
magnitude m’(m’<m) and the number of their respective
aftershocks, B,,. When B, is equal to or bigger than a given
threshold, Cp,
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FIG. 7. (Color online) Error diagram showing the predictability
of the largest earthquake, m=7, in the HBM using the strategy Bg.
Results from the Reference Strategy (Sec. VI) are also shown (light
gray) for comparison.

Bm’ = CB (10)

the alarm is connected during a fixed time interval n. If an
m=" earthquake does not occur in this interval, the alarm is
eliminated (obviously, the alarm is also immediately can-
celled if the event of m=7 occurs). As said in Sec. VI, a
prediction success is considered when the m=7 earthquake
occurs while the alarm is on. On the other hand, it is consid-
ered an error when an event of magnitude m=7 occurs when
the alarm is off. Thus, the two parameters to be explored in
order to obtain the optimum value of L(L*) are C and n.

Figure 7 shows the results of carrying out this strategy
where the magnitude of the mainshocks is m’'=6(Bg). The
full circle represents the best option for this strategy, L
=0.45 (f,=0.05 and f,=0.40) corresponding to a value of the
alarm interval n*=2.5X10° and a number of aftershocks
within the burst equal to or bigger than Cy=2400. Compared
with the reference strategy, now 95% of the earthquakes can
be predicted, although the alarm time rises to 40%.

Besides, in this strategy, in contrast with the reference
strategy, there are false alarms. The fraction of false alarms,
fp is defined as the number of times the alarm has been
lifted without a prediction success, divided by the number of
times the alarm has been connected. In our computation of
L*=0.45 its value was f;=0.65.

VIII. CONCLUSIONS

The new HBM presented here to model the interaction
between seismic faults in a wide region is standard in the
sense that it is a cellular automata model whose elements
(boxes) are located on a hierarchical scaffolding. A box re-
ceives load from the exterior and from the relaxation of its
neighbors (parent, children and also from its closest sib-
lings). When a box of the m™ level topples, it simulates the
occurrence of an earthquake of magnitude m. This implies
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that in this model each fault relaxes by means of its unique
characteristic earthquake. The load of the toppled box is
mostly transferred up and down along the links of the hier-
archical tree inducing new relaxations.

Of the new ingredients of the HBM not found in other
seismicity simulators, we should stress two.

(1) The faithful representation of the logarithmic nature of
the magnitude of an earthquake: boxes placed on level m
+1 have ten times the capacity of those placed on level m.

(2) The coordination of the tree had never received any
particular attention. A sort of universality had been taken for
granted in the sense that the properties derived from a tree
had to be similar to those derived from other trees no matter
what their respective coordination, number of levels, etc.
Here, we show that ¢ is not arbitrary but is bounded by the
empirical exponent of the fracture length distribution of
faults and by fragmentation theory.

This model is economical in parameters. Besides the three
geometrical parameters, 7, N, and ¢, we have introduced a
minor parameter s for the horizontal stress transfer. The re-
sults presented in this paper correspond to the values, r=10,
N=7, 10=c=24, and s=0.1. For these values, the model is
able to reproduce fundamental properties of real seismicity
such as: (i) size-frequency distributions of earthquakes of the
GR type with a b value equal to 1, (ii) a constant long-term
rate of energy release and an accelerating short-term energy
release before major earthquakes, and (iii) a number of after-
shocks per mainshock of a specific magnitude, all of them in
agreement with real statistics.

If the study is focused on the largest events, several re-
sults arise. The aperiodicity in the return time of the m=7
earthquakes is around «=0.50, a reasonable value for large
seismic faults [13]. There exists a tight correlation between
m=7 and 6 events. This is natural because between these two
levels there is a direct transfer of load. This fact has been
used for forecasting purposes, the success of the By strategy
being the manifestation of the mentioned correlation. Thus,
the HBM puts in evidence the fact that in spite of exhibiting
a power-law behavior for the size frequency of relaxations,
which is one of the genuine manifestations of the SOC sys-
tems, some important properties such as the recurrence of the
largest events can be predicted with significant accuracy.

So far we have seen some of the virtues of the model.
However, it does also have its shortcomings. As mentioned,
this is a cellular automata model, so both time and load are
discrete magnitudes. The discrete time together with the
separation of temporal scales makes it impossible to estab-
lish a chronological order within an aftershock series. On the
other hand, the discrete geometric structure of the hierarchi-
cal tree, ¢, being a constant integer, would make the repre-
sentation of noninteger magnitudes difficult.

An important ingredient in most models of seismicity is
heterogeneity. Heterogeneity has been introduced in models
in many ways, affecting all possible parameters, variables or
even “constants” of the models. In this sense the HBM, as
presented here, is highly homogeneous: (i) all faults located
at the same level have the same size; (ii) each fault can
generate earthquakes of one specific size; (iii) all faults are
directly connected to ¢ other faults, ¢ being a constant in
each simulation; (iv) all boxes (faults) fail at the same thresh-
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old load (when the occupancy is equal to its capacity); (V)
the “stress drop” is equal in all faults as a box empties com-
pletely after a relaxation, etc. Most of these homogeneity
constraints can be relaxed. Likewise, the symmetric option
chosen for the direction of the load transfers upwards and
downwards could be also relaxed. The results presented in
this paper can be used as a benchmark against which the
nonhomogeneous versions of the model can be assessed.

PHYSICAL REVIEW E 82, 016118 (2010)
ACKNOWLEDGMENTS

We acknowledge Ilya Zaliapin and Maria Luisa Osete for
useful comments and suggestions. Alvaro Gonzilez provided
Fig. 6(b). Many of the numerical simulations of this model
were carried out using the computational facilities of the
BIFI at the University of Zaragoza. This work was supported
in part by a project of the Spanish Ministry of Science.

[1] R. Robinson and R. Benites, J. Geophys. Res. 100, 18229
(1995).

[2] I. Main, Rev. Geophys. 34, 433 (1996).

[3]J. F. Pacheco, C. H. Scholz, and L. R. Sykes, Nature (London)
355, 71 (1992).

[4] D. L. Turcotte, Fractals and Chaos in Geology and Geophys-
ics, 2nd ed. (Cambridge University Press, Cambridge, En-
gland, 1997).

[5] R. Marrett, Geophys. Res. Lett. 21, 2637 (1994).

[6] S. G. Wesnousky, Bull. Seismol. Soc. Am. 84, 1940 (1994).

[7] T. T. Cladouhos and R. Marrett, J. Struct. Geol. 18, 281
(1996).

[8] R. B. Hofmann, Eng. Geol. (Amsterdam) 43, 5 (1996).

[9] M. W. Stirling, S. G. Wesnousky, and K. Shimazaki, Geophys.
J. Int. 124, 833 (1996).

[10] G. Yielding, T. Needham, and H. Jones, J. Struct. Geol. 18,
135 (1996).

[11] M. V. Matthews, W. L. Ellsworth, and P. A. Reasenberg, Bull.
Seismol. Soc. Am. 92, 2233 (2002).

[12] R. Lépez-Ruiz, M. Vdzquez-Prada, J. B. Gémez, and A. F.
Pacheco, Terra Nova 16, 116 (2004).

[13] L. R. Sykes and W. Menke, Bull. Seismol. Soc. Am. 96, 1569
(2006).

[14] V. Mouslopoulou, J. J. Walsh, and A. Nicol, Earth Planet. Sci.
Lett. 278, 186 (2009).

[15] E. Bonnet, O. Bour, N. E. Olding, P. Davy, 1. Main, P. Cowie,
and B. Berkowitz, Rev. Geophys. 39, 347 (2001).

[16] G. King, Pure Appl. Geophys. 121, 761 (1983).

[17] D. Turcotte, Tectonophysics 132, 261 (1986).

[18] C. G. Sammis, G. King, and R. Biegel, Pure Appl. Geophys.
125, 777 (1987).

[19] C. G. Sammis and S. J. Steacy, in Fractals in Earth Sciences,
edited by C. C. Barton and P. R. L. Pointe (Plenum, New York,
1995), pp. 179-204.

[20] G. Corvin, Fractal Models in the Earth Sciences (Elsevier Sci-
ence, New York, 1992).

[21] S. J. Steacy and C. G. Sammis, Nature (London) 353, 250
(1991).

[22] R. Marrett and R. W. Allmendinger, J. Struct. Geol. 13, 735
(1991).

[23] H. G. Borgos, P. A. Cowie, and N. H. Dawers, J. Geophys.
Res. 105, 28,377 (2000).

[24] D. L. Turcotte and J. Huang, in Fractals in Earth Sciences,
edited by C. C. Barton and P. R. L. Pointe (Plenum, New York,
1995), pp. 179-204.

[25] D. Sornette and P. Davy, Geophys. Res. Lett. 18, 1079 (1991).

[26] D. P. Schwartz and K. J. Coppersmith, J. Geophys. Res. 89,

5681 (1984).

[27] C. J. Allegre, J. L. Lé Mouel, and A. Provost, Nature (London)
297, 47 (1982).

[28] T. R. Madden, J. Geophys. Res. 88, 585 (1983).

[29] D. L. Turcotte, R. F. Smalley, and S. A. Solla, Nature (London)
313, 671 (1985).

[30] R. F. Smalley, Jr., D. L. Turcotte, and S. A. Solla, J. Geophys.
Res. 90, 1894 (1985).

[31] L. Kadanoff, Physics 2, 263 (1966).

[32] G. S. Narkunskaya and M. G. Shnirman, Phys. Earth Planet.
Inter. 61, 29 (1990).

[33] C. J. Allegre, J. Louis Le Mouél, H. Duyen Chau, and C.
Narteau, Phys. Earth Planet. Inter. 92, 215 (1995).

[34] E. M. Blanter and M. G. Shnirman, Phys. Rev. E 53, 3408
(1996).

[35] E. M. Blanter, M. G. Shnirman, and J. L. L. Mouél, Phys.
Earth Planet. Inter. 103, 135 (1997).

[36] A. Gabrielov, V. Keilis-Borok, I. Zaliapin, and W. 1. Newman,
Phys. Rev. E 62, 237 (2000).

[37] S. Pradhan, A. Hansen, and B. K. Chakrabarti, Rev. Mod.
Phys. 82, 499 (2010).

[38] W. I. Newman and A. M. Gabrielov, Int. J. Fract. 50, 1 (1991).

[39] W. I. Newman, A. M. Gabrielov, T. A. Durand, S. L. Phoenix,
and D. L. Turcotte, Physica D 77, 200 (1994).

[40] W. I. Newman, D. L. Turcotte, and A. M. Gabrielov, Phys.
Rev. E 52, 4827 (1995).

[41]7J. B. Gémez and A. F. Pacheco, Nonlinear Processes Geophys.
4, 207 (1997).

[42] J. B. Gémez and A. F. Pacheco, Phys. Rev. E 73, 047104
(2006).

[43] M. Viézquez-Prada, J. B. Goémez, Y. Moreno, and A. F.
Pacheco, Phys. Rev. E 60, 2581 (1999).

[44] Y. Huang, H. Saleur, C. Sammis, and D. Sornette, EPL 41, 43
(1998).

[45] D. Sornette, Phys. Rep. 297, 239 (1998).

[46] B. Barriere and D. L. Turcotte, Phys. Rev. E 49, 1151 (1994).

[47] A. Gabrielov, 1. Zaliapin, W. I. Newman, and V. Keilis-Borok,
Geophys. J. Int. 143, 427 (2000).

[48] 1. Zaliapin, V. Keilis-Borok, and M. Ghill, J. Stat. Phys. 111,
815 (2003).

[49] 1. Zaliapin, V. Keilis-Borok, and M. Ghill, J. Stat. Phys. 111,
839 (2003).

[50] M. Ghil, 1. Zaliapin, and B. Coluzzi, Physica D 237, 2967
(2008).

[51] B. Malamud and D. Turcotte, [IEEE Comput. Sci. Eng. 2, 42
(2000).

[52] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381

016118-10


http://dx.doi.org/10.1029/95JB01569
http://dx.doi.org/10.1029/95JB01569
http://dx.doi.org/10.1029/96RG02808
http://dx.doi.org/10.1038/355071a0
http://dx.doi.org/10.1038/355071a0
http://dx.doi.org/10.1029/94GL02408
http://dx.doi.org/10.1016/S0191-8141(96)80050-2
http://dx.doi.org/10.1016/S0191-8141(96)80050-2
http://dx.doi.org/10.1016/0013-7952(95)00085-2
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05641.x
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05641.x
http://dx.doi.org/10.1016/S0191-8141(96)80039-3
http://dx.doi.org/10.1016/S0191-8141(96)80039-3
http://dx.doi.org/10.1785/0120010267
http://dx.doi.org/10.1785/0120010267
http://dx.doi.org/10.1111/j.1365-3121.2004.00538.x
http://dx.doi.org/10.1785/0120050083
http://dx.doi.org/10.1785/0120050083
http://dx.doi.org/10.1016/j.epsl.2008.11.031
http://dx.doi.org/10.1016/j.epsl.2008.11.031
http://dx.doi.org/10.1029/1999RG000074
http://dx.doi.org/10.1007/BF02590182
http://dx.doi.org/10.1016/0040-1951(86)90036-3
http://dx.doi.org/10.1007/BF00878033
http://dx.doi.org/10.1007/BF00878033
http://dx.doi.org/10.1038/353250a0
http://dx.doi.org/10.1038/353250a0
http://dx.doi.org/10.1016/0191-8141(91)90034-G
http://dx.doi.org/10.1016/0191-8141(91)90034-G
http://dx.doi.org/10.1029/2000JB900260
http://dx.doi.org/10.1029/2000JB900260
http://dx.doi.org/10.1029/91GL01054
http://dx.doi.org/10.1029/JB089iB07p05681
http://dx.doi.org/10.1029/JB089iB07p05681
http://dx.doi.org/10.1038/297047a0
http://dx.doi.org/10.1038/297047a0
http://dx.doi.org/10.1029/JB088iB01p00585
http://dx.doi.org/10.1038/313671a0
http://dx.doi.org/10.1038/313671a0
http://dx.doi.org/10.1029/JB090iB02p01894
http://dx.doi.org/10.1029/JB090iB02p01894
http://dx.doi.org/10.1016/0031-9201(90)90092-C
http://dx.doi.org/10.1016/0031-9201(90)90092-C
http://dx.doi.org/10.1016/0031-9201(95)03033-0
http://dx.doi.org/10.1103/PhysRevE.53.3408
http://dx.doi.org/10.1103/PhysRevE.53.3408
http://dx.doi.org/10.1016/S0031-9201(97)00063-0
http://dx.doi.org/10.1016/S0031-9201(97)00063-0
http://dx.doi.org/10.1103/PhysRevE.62.237
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1016/0167-2789(94)90134-1
http://dx.doi.org/10.1103/PhysRevE.52.4827
http://dx.doi.org/10.1103/PhysRevE.52.4827
http://dx.doi.org/10.5194/npg-4-207-1997
http://dx.doi.org/10.5194/npg-4-207-1997
http://dx.doi.org/10.1103/PhysRevE.73.047104
http://dx.doi.org/10.1103/PhysRevE.73.047104
http://dx.doi.org/10.1103/PhysRevE.60.2581
http://dx.doi.org/10.1209/epl/i1998-00113-x
http://dx.doi.org/10.1209/epl/i1998-00113-x
http://dx.doi.org/10.1016/S0370-1573(97)00076-8
http://dx.doi.org/10.1103/PhysRevE.49.1151
http://dx.doi.org/10.1046/j.1365-246X.2000.01237.x
http://dx.doi.org/10.1023/A:1022850215752
http://dx.doi.org/10.1023/A:1022850215752
http://dx.doi.org/10.1023/A:1022802432590
http://dx.doi.org/10.1023/A:1022802432590
http://dx.doi.org/10.1016/j.physd.2008.07.006
http://dx.doi.org/10.1016/j.physd.2008.07.006
http://dx.doi.org/10.1103/PhysRevLett.59.381

HIERARCHICAL MODEL FOR DISTRIBUTED SEISMICITY

(1987).

[53] B. Gutenberg and C. F. Richter, Bull. Seismol. Soc. Am. 34,
185 (1944).

[54] H. Kanamori and D. L. Anderson, Bull. Seismol. Soc. Am. 65,
1073 (1975).

[55] H. J. Jensen, Self-Organized Criticality: Emergent Complex
Behavior in Physical and Biological Systems, Lecture Notes
in Physics Vol. 10 (Cambridge University Press, Cambridge,
England, 1998).

[56]J. K. Gardner and L. Knopoff, Bull. Seismol. Soc. Am. 64,
1363 (1974).

[57]1 S. D. Davis and C. Frohlich, J. Geophys. Res. 96, 6335
(1991).

[58] Y. Kagan, Geophys. J. Int. 106, 135 (1991).

[59] L. Knopoff, Proc. Natl. Acad. Sci. U.S.A. 97, 11880 (2000).

[60] J. Zhuang, Y. Ogata, and D. Vere-Jones, J. Geophys. Res. 109,
B05301 (2004).

[61] D. Sornette and M. J. Werner, J. Geophys. Res. 110, B08304
(2005).

[62] I. Zaliapin, A. Gabrielov, V. Keilis-Borok, and H. Wong, Phys.
Rev. Lett. 101, 018501 (2008).

[63] D. Marsan and O. Lengline, Science 319, 1076 (2008).

[64] M. C. Robertson, C. G. Sammis, M. Sahimi, and A. J. Martin,
J. Geophys. Res. 100, 609 (1995).

[65] C. G. Bufe and D. J. Varnes, J. Geophys. Res. 98, 9871
(1993).

[66] H. G. Bowman, G. Ouillon, C. G. Sammis, A. Sornette, and D.
Sornette, J. Geophys. Res. 103, 24359 (1998).

[67] H. G. Bowman and G. C. P. King, Geophys. Res. Lett. 28,

PHYSICAL REVIEW E 82, 016118 (2010)

4039 (2001).

[68] G. Zéller and S. Hainzl, Geophys. Res. Lett. 29, 1558 (2002).

[69] S. P. Nishenko and R. Buland, Bull. Seismol. Soc. Am. 77,
1382 (1987).

[70] W. L. Ellsworth, M. V. Matthews, R. M. Nadeau, S. P. Nish-
enko, P. A. Reasenberg, and R. W. Simpson, United States
Geological Survey Open-File Report 99, 552 (1999).

[71] A. G. Lindh, Seismol. Res. Lett. 76, 3 (2005).

[72] T. Parsons, J. Geophys. Res. 110, B05S02 (2005).

[73] G. M. Molchan, Pure Appl. Geophys. 149, 233 (1997).

[74] C. G. Sammis and S. W. Smith, Pure Appl. Geophys. 155, 307
(1999).

[75] M. Vizquez-Prada, A. Gonzdlez, J. B. Gémez, and A. E
Pacheco, Nonlinear Processes Geophys. 10, 565 (2003).

[76] V. Keilis-Bork and A. Soloviev, Nonlinear Dynamics of the
Lithosphere and Earthquake Prediction (Springer, New York,
2003).

[77] S. L. Pepke and J. M. Carlson, Phys. Rev. E 50, 236 (1994).

[78] A. Gonzilez, J. B. Gémez, and A. F. Pacheco, Geophys. Res.
Abstr. 8, 02284 (2007).

[79] A. Nicol, J. Walsh, T. Manzocchi, and N. Morewood, J. Struct.
Geol. 27, 541 (2005).

[80] V. I. Keilis-Borok, L. Knopoff, and I. M. Rotvain, Nature
(London) 283, 259 (1980).

[81] V. I. Keilis-Borok and P. S. Shebalin, Phys. Earth Planet. Inter.
111, 179 (1999).

[82] G. Molchan and O. Dmitrieva, Phys. Earth Planet. Inter. 61,
99 (1990).

016118-11


http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1029/90JB02634
http://dx.doi.org/10.1029/90JB02634
http://dx.doi.org/10.1111/j.1365-246X.1991.tb04607.x
http://dx.doi.org/10.1073/pnas.190241297
http://dx.doi.org/10.1029/2003JB002879
http://dx.doi.org/10.1029/2003JB002879
http://dx.doi.org/10.1029/2004JB003535
http://dx.doi.org/10.1029/2004JB003535
http://dx.doi.org/10.1103/PhysRevLett.101.018501
http://dx.doi.org/10.1103/PhysRevLett.101.018501
http://dx.doi.org/10.1126/science.1148783
http://dx.doi.org/10.1029/94JB02463
http://dx.doi.org/10.1029/93JB00357
http://dx.doi.org/10.1029/93JB00357
http://dx.doi.org/10.1029/98JB00792
http://dx.doi.org/10.1029/2001GL013022
http://dx.doi.org/10.1029/2001GL013022
http://dx.doi.org/10.1029/2002GL014856
http://dx.doi.org/10.1785/gssrl.76.1.3
http://dx.doi.org/10.1029/2004JB003190
http://dx.doi.org/10.1007/BF00945169
http://dx.doi.org/10.1007/s000240050267
http://dx.doi.org/10.1007/s000240050267
http://dx.doi.org/10.5194/npg-10-565-2003
http://dx.doi.org/10.1103/PhysRevE.50.236
http://dx.doi.org/10.1016/j.jsg.2004.10.009
http://dx.doi.org/10.1016/j.jsg.2004.10.009
http://dx.doi.org/10.1038/283259a0
http://dx.doi.org/10.1038/283259a0
http://dx.doi.org/10.1016/S0031-9201(98)00171-X
http://dx.doi.org/10.1016/S0031-9201(98)00171-X
http://dx.doi.org/10.1016/0031-9201(90)90098-I
http://dx.doi.org/10.1016/0031-9201(90)90098-I

