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In soft matter systems the local displacement field can be accessed directly by video microscopy enabling
one to compute local strain fields and hence the elastic moduli in these systems using a coarse-graining
procedure. We study this process in detail for a simple triangular, harmonic lattice in two dimensions. Coarse-
graining local strains obtained from particle configurations in a Monte Carlo simulation generates nontrivial,
nonlocal strain correlations (susceptibilities). These may be understood within a generalized, Landau-type
elastic Hamiltonian containing up to quartic terms in strain gradients [K. Franzrahe et al., Phys. Rev. E 78,
026106 (2008)]. In order to demonstrate the versatility of the analysis of these correlations and to make our
calculations directly relevant for experiments on colloidal solids, we systematically study various parameters
such as the choice of statistical ensemble, presence of external pressure and boundary conditions. Crucially, we
show that special care needs to be taken for an accurate application of our results to actual experiments, where
the analyzed area is embedded within a larger system, to which it is mechanically coupled. Apart from the
smooth, affine strain fields, the coarse-graining procedure also gives rise to a noise field (y) made up of
nonaffine displacements. Several properties of y may be rationalized for the harmonic solid using a simple
“cell model” calculation. Furthermore the scaling behavior of the probability distribution of the noise field (y)
is studied. We find that for any inverse temperature (3, spring constant f, density p and coarse-graining length

A the probability distribution can be obtained from a master curve of the scaling variable X'=x8f/pA>.
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I. INTRODUCTION

Soft matter with its structural and elastic properties offers
an attractive route to the design of new materials. In particu-
lar colloidal dispersions attract a lot of interest in this con-
text. Surface chemistry or alterations in the composition of
the solvent give an excellent control over the effective inter-
actions in colloidal dispersions [1]. By definition colloids lie
in the range of the visible spectrum. Video microscopy [2] is
therefore a straightforward means to gain information of the
microscopic trajectories of the components of the system un-
der study. Thus, microscopic, thermal (or Brownian) fluctua-
tions can be resolved directly in real space, making colloidal
dispersions excellent model systems for the study of funda-
mental questions of the statistical physics of soft condensed
matter. Two-dimensional colloidal dispersions, for example,
have been used successfully in studies on melting in two
dimensions during the last decades [3—6]. In this paper, we
focus on the mechanical properties of such systems and con-
sider how they may be obtained from the microscopic par-
ticle trajectories.

Within linear elasticity (e.g., [7]), a solid in two dimen-
sions is described by eight unknown variables: the three
stresses o07;;, three strains ¢;; and two components of the dis-

ij» ij
placement field u;. Appropriately, there are also eight equa-
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tions, namely the two equilibrium conditions da;/ dx;+f;=0
(with f;, the forces per unit volume within the bodyg, three
geometrical equations €;;=(du;/ dx;+du;/ dx;)/2, and three
constitutive equations o;;=Cj;y, €. This set of equations may
be solved for a given boundary condition in order to extract
either the stresses or strains, given the elastic moduli. If by
contrast the strains are known for a given stress configuration
or vice versa, the elastic moduli themselves can be calcu-
lated. This manner of obtaining elastic moduli would require
us to perturb the system using some external means, e.g.,
laser tweezers [8]. In contrast to this approach, one may also
calculate the tensor of elastic constants C;j, of a system from
fluctuations of the microscopic strains obtained by a coarse-
graining procedure. We follow this second approach, as com-
puting C;;; in this way requires no external forces to be
applied. This is one of the advantages of the approach, as
external forces might change the very properties that are be-
ing measured [9-12]. Another advantage is that the interac-
tion potential of the particles need not be known. Recently,
this procedure was further extended in Ref. [13] to obtain
even the nonlocal elastic susceptibilities.

We intent to establish a precise procedure for obtaining
mechanical properties from microscopic configuration data.
In addition, we aim to study in some detail fundamental as-
pects of the coarse-graining procedure, which is employed in
the calculation of the nonlocal susceptibilities. In this present
paper, we concentrate on the following three points: (1) We
present in detail, how elastic moduli and correlation lengths
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can be obtained from the nonlocal elastic susceptibilities. (2)
We discuss the impact of various parameters on the nonlocal
elastic susceptibilities and their interpretation. For example
different choices of statistical ensemble, changes in the
boundary conditions or system size are considered. (3) The
coarse-graining procedure itself and the nonaffinity it gives
rise to are studied.

One aspect of point (2) we want to emphasize is that an
embedding medium influences the relations between the non-
local susceptibilities and the elastic constants. This is often
the case in experimental systems, if only a subvolume of the
lattice is accessible to the analysis. The proper interpretation
of the correlation functions in such settings and the impor-
tance of finite-size effects are discussed. This shows how the
analysis has to be adapted to the actual experimental situa-
tion and facilitates the adoption of such techniques for rou-
tine analysis of experimental data

In the context of point (3) aspects to consider are for
example the presence of particle configurations within the
coarse-graining volume, which are not describable in terms
of affine deformations of any reference lattice, e.g., incipient
vacancy-interstitial pairs. This is true for all coarse-graining
volumes larger than a unit cell. What is the effect of these
configurations on elasticity? How do they influence mechani-
cal behavior? A study of these fluctuations in ideal solids, as
presented in Sec. IV, may help us understand complex dy-
namics in solids better.

The organization of this paper together with a short sum-
mary of our main results is as follows. In Sec. II, we derive
an analytic form of the nonlocal elastic response function, or
compliance x,(7,7") (i=x,y). It is defined as the strain
g;;(7") produced at position 7' due to a stress o;(7) at 7. To
this end, we consider a Landau expansion [14] of the free
energy in terms of the strains, keeping up to quartic terms in
the gradients and derive an analytic form of the two-point
correlation functions G;;. These are related to the response
function via x;;=(kzT)™'G;;. For a homogeneous solid with-
out external load (i.e., (¢;(F))=0) the correlation functions
are given by G;; r”)zV(s,-((S)sj(F’)). The (--+) denote a ther-
mal average (and in addition one over the choice of origin)
and kgT is the Boltzmann constant times the temperature. In
Sec. III, we present Monte Carlo computer simulations of a
harmonic crystal. The calculation of the local strain field
corresponds to a coarse-graining procedure and allows us to
construct the strain-strain correlation functions G;; from
simulation data. We compare our results, obtained for a va-
riety of ensembles and boundary conditions to that of the
Landau theory. A common feature in experimental systems is
the presence of an embedding medium, surrounding the ana-
lyzed region of the sample. The effects of such an embedding
medium on the strain correlations are discussed and visual-
ized by use of a statistical sum rule. Section IV discusses the
origin of one of our significant results: though the forms of
the correlation functions and their limiting values as pre-
dicted by the Landau theory are reproduced, the G;; obtained
from simulations through our coarse-graining procedure dif-
fer by an additional background contribution which is not
negligible. We argue that this is a consequence of nonaffine
displacements, which are not considered in the ansatz for the
Landau theory. We analyze the nonaffineness y. Its probabil-
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ity distribution P(x) shows well defined scaling properties
with the spring stiffness f and the coarse-graining length A.
The autocorrelation function for y is shown to be short
ranged decaying rapidly for distances much larger than the
coarse-graining length. Finally, we conclude our paper indi-
cating future directions for research.

II. LANDAU THEORY FOR THE STRAINS

In soft matter systems microscopic, thermal fluctuations
can be resolved directly in real space. Thus the local dis-
placements i, as they are carried by individual particles, are
directly accessible. In order to describe such a system as an
elastic continuum, we need to coarse grain the discrete dis-
placement fields of individual particles over some predeter-
mined coarse graining length. As a result of the coarse-
graining fluctuations of the strains with wavelength smaller
than the coarse-graining length are not considered in the
analysis of such systems. The elastic Hamiltonian describing
the two-dimensional elastic continuum is given below.

Lo
BHy= 3 drCijy€;j€x- (1)

In order to be able to extract information on the elastic prop-
erties of a system from the knowledge of the fluctuations of
the local displacements &7 we formulate a Landau theory in
the strains. Classical, linear elasticity theory assumes that the
strains are purely affine. Within the framework of Landau
theory formulas for the two-point correlation functions can
be derived.

Some of the formalism used in the presented derivation of
nonlocal susceptibilities is similar to that used for deriving
the equilibrium structure of droplet fluctuations of Martensi-
tic products within a parent austenite matrix, see for example
the following references and references therein [15]. Note
however that here we employ the formalism to demonstrate
how information on elastic properties of a one-phase solid
can be obtained from the study of the nonlocal elastic sus-
ceptibilities.

We start from the following, dimensionless ansatz for the
Landau functional [13,14,16]:

3
1
BF= > dsz {aiei2 +¢(Ve)? + ¢} (V2e,)%}. (2)
i=1

Here with (i=1-3) the dimensionless constants a; are the
elastic moduli of the system, while ¢; and ¢/ are phenomeno-
logical coefficients and the three strains e; are given by e;
= €, €y, describing pure volume changes; e,=¢€,,—€,,, de-
scribing deviatoric shear strains and e3:%(exy+e_\,x), describ-
ing pure shear strains. The phenomenological coefficients c;
have the dimension of a length?. Thus we interpret Eori
~ ¢, as a correlation length. Note that unless stated other-
wise throughout the paper all lengths are given in units of a,
the lattice parameter of the underlying triangular lattice in
the simulated systems.

The terms quadratic in the strains e; represent the local
part in this ansatz. Nonlocal contributions are included via
the gradient terms. Note that the Landau functional Eq. (2)
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should be strictly valid for excitations of wavelengths longer
than a short-wavelength cutoff. In this analytic ansatz short
wavelength excitations are suppressed by the gradient terms
[14,16]. We have ignored the possibility of defects.

For nonuniform strains, spatial fluctuations of the strains
couple and only one of the strain variables e; in this ansatz is
an independent variable. This can be seen as follows: all
forces within and on the system must cancel for the system

to be in thermodynamic equilibrium, i.e., %=0 for a solid
under zero external stress; the case of external hydrostatic
stress is presented in Sec. III C The stress tensor o;; can be
obtained directly from Eq. (2), as a,»p%%. For a two-
dimensional crystal this condition reads in Fourier space:

k.a,ey + k.a,e, + kyaze; =0, (3)

kylllgl — kyazgz + kxa3e~3 =0. (4)

In addition, St. Venant’s compatibility condition V X (V
X €)T=0 (e.g., [7,17]) must be considered in the calculations,
which ensures an unique relation between the displacement
field i and the strain fields €;. For a two-dimensional crystal
it simplifies to

- k8, + (k- k)&, + 4k k&, =0 (5)

in Fourier space. These relations may now be used to elimi-
nate any two of the strains from Egs. (3)—(5) and obtain a
free energy functional only in terms of the single remaining
independent strain. The strain variables are related via the

kernels Q»j to each other: e”izé,-je"j. In detail we obtain:

_ 4a; +2a; kk, \_ <~ _
ez=—< l )( . )63=Q23€3,

a;+a, kf—ki
I E
€= L +ay 2 €3 =363,
2 2
~ _ a3_2a2><kx_ky)~_~ ~
el_<2a1+a3 & e, =016;.

Note that the properties of the correlation functions are set by

the wave vector dependence of the kernels Q,»j.

We shall also need kernels relating the strains e; to the
local, microscopic rotations given by the antisymmetric part
of the strain tensor 0= (du,/dx—du,/dy)/2. Local rotations 6
are related to the deviatoric strains e, and the pure shear
strains es. Starting from the definitions of the strain variables
the partial derivative ¢®6/dx>dy can be expressed solely in
terms of e,, e3, and 6. Thus one obtains the following rela-
tion between the three shear strain variables in Fourier space:

Ok, + k) = (k- k)es — k k2.

We may now derive a new kernel relating 1o, e. g., the pure

shear strain e3 using the previously derived kernel QB. This
results in:
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4 4
K-k

da, +2a
2 22, 122 1 3
(kx—ky) +kxky<—

€3=

0= 0s0.
ay+a )

As the considerations in Sec. III D will show, it will be help-
ful to define the strain variable e,,=26. We will analyze its
two-point correlation function in embedded systems, such as
the colloidal crystal discussed in [13].

Appropriate for a comparison with our analysis of simu-
lation data, we switch to a discretized notation on a square
mesh. This facilitates the numerical calculation of Fourier
transforms in the data analysis. Thus we have e;(X) —e; ;

and X —>13,,~,. Here #i, which is a tuple of integer lattice indi-
ces, specifies the position on the square mesh. In this nota-
tion the free energy can be rewritten as,

3
BF= %2 > [a,-eiz,,ﬁ +ci(Veiz)* + ¢l (Ve ).
i i=1

Here v.=V./a* is the dimensionless volume of the square
mesh cell and the summation runs over all N cells. Now one
may use the above relations to finally express BF as a har-
monic functional of only one of the strain components. This
allows the direct calculation of the analytic form of the two-
point correlation functions, as the partition function factor-
izes (see e.g., [18] for details). Here we choose as an ex-
ample the strains €; and obtain the following expression for
the functional, written as a sum over the wave vectors:

1 ' / N A
BF= ZE {a) + Kc; + K| + (ay + cok® + c3kH[ 0o (k) I

i
+(ay+ c3k* + C§k4)[é31(/€)]2}51,1€é?;;

with v=V/a?, the dimensionless volume of the system. It is
now straight forward to calculate the two-point correlation
function. We start from its general definition and take into
account the fact, that the average strains {e;(F)) in a crystal,
which is under no load, is zero. So for the example, the
strains e;, we have

G(7,7") ={ei(Pei (7)) = (e (P))Xey (7))

1 LA LR 7 _ o~
=53 NG ).
kK

The explicit calculation of (&) ;& ;) making use of the given
Landau functional yields the following relation:

@ i@ = i 5K1E i)

ik GV
3 .

a)+ ke + kel + (a;+cik* + c}k“)[Qil(lg)]z
=2

With this result one can now write down the analytic form of
the strain-strain correlation function in Fourier space, as in
Fourier space the expression for the strain-strain correlation

function simplifies to G,,(k)=(|&, g*)/v. Analytic formulas
for the remaining strain-strain correlation functions (viz., e,,
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e, and e,,) were derived using analogous calculations [13].
For i=1,2,3 the structure of the strain-strain correlation
functions is the same, while for i=26 it differs slightly:

Gk #0)=1 a;+ ke + k']
3
+ Y (RGBT (. (6a)
j#ij=1

Gi(0) = 1/a;,

62029(127& 6)= 1 a3+c3k2+c§k4

2
+, (a;+cik* + C;k4)(éj3)2 (03207 (-
j=1

(6b)
62‘920(6) = 4/a3 .

Properties of the strain-strain correlation functions

The analytic strain-strain correlation functions éii(lg)
given in Eq. (6) are plotted in Fig. 1. The set of parameters
a;, ¢;, and ¢/ used in Fig. 1 were obtained from Monte-Carlo
simulations in the NVT ensemble with periodic boundary
conditions of a harmonic triangular lattice, to be discussed in
Sec. III B While the deviatoric and shear strain correlation

functions 622 and 633 have fourfold symmetries, the corre-

lation function of the dilatation 511 has an eightfold symme-
try. The correlation functions may be interpreted as the re-
sponse of the system to a localized perturbation at the origin.
This perturbation is either a dilatation, a deviatoric shear or a
pure shear. The resulting deformation of the solid may be
decomposed into a superposition of the eigenmodes of the
system. The eigenmodes for a square box, are plane waves
with polarization either longitudinal or transverse to the co-
ordinate axes with the eigenfrequencies forming a discrete
spectrum: ®,,,=>2c \n*+m? with n,m e Ny. Thus, the wave
vector of the eigenmodes along the diagonals, i.e., (n=m or
n=-m) as well as those along the coordinate axis (n# 0 and
m=0 or n=0 and m # 0), exhibits a fourfold degeneracy. All
remaining eigenmodes with n #m # 0 have an eightfold de-
generacy. If the local perturbation at the origin is a dilatation,
the resulting local deformation is a superposition of eigen-
modes with four-as well as eightfold degeneracy. This leads
to the eightfold rotational symmetry visible for the strain

correlation function (~}1 1. In contrast to this the two possible
shear perturbations will excite elastic waves that are super-
positions of exclusively eigenmodes with fourfold degen-
eracy. For this reason the corresponding correlation functions

Gy, and 633 exhibit only a fourfold rotational symmetry.
As was discussed in [19], the presence of defects, breaks
the rotational symmetries of the strain correlation functions.
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FIG. 1. (Color online) The analytic form of the strain-strain
correlation functions. For each function a surface plot and next to it
a density plot are shown. In the density plot the maxima are white,
minima are black. The set of parameters used for plotting was ob-
tained from a Monte Carlo simulation of a harmonic triangular lat-
tice in the NVT ensemble with periodic boundary conditions: a;
=974, ay=48.1, a3=1982, ¢=54.3, ¢,=374, c3=1182, c|
=-86.1, c;=—1.3, and c;=-18.8. (a) G,,(k), (b) G (k), (c) G33(k),
and (d) Gy p(k).

The details of the structure of the correlation functions are

dominated by the dependence of the kernels Q,-j on the wave
vector &, especially for the cases k,=k,, k,—0 while k,# 0
and k,— 0 while k,# 0. In particular, we obtain the follow-
ing relations:

0 for k,=k,
(13—2612
~ )-\;77—"] for k,—0, k,#0

as— 2612

for k, — 0, kyaﬁO
0 for kyHO k., #0,
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o for k,=k,
0y3=10 for k,—0, k,#0
0 for k,—0, k,#0.

For the kernel Q3 »p relating e; to e, the behavior along the
specific directions in Fourier space for k— 0 can be extracted
from the behavior of the correlation function (~}33(l€) and

G,(k). Along the coordinate axis the kernel relating &; to &,
becomes a constant,

. -1/2 for k,— 0, ky#O
T2 for ky— 0, k,# 0.

Thus the continuous behavior of the correlation function
533(12) for k—0 along the coordinate axis carries over to the

correlation function 62029(E). The behavior along the diago-
nals k,=k, can be extracted from the behavior of the product

of the kernels é%é% »¢ Which can be shown to equal 1.
Upon insertion of these relations into the equations for the
correlation functions their behavior for these limiting cases
can be extracted:
0, ky=k,#0
G (k) =10, k,—0, k,#0
0, k,—0, k,#0,

Vlay+ ok + c5k*], k,=k, #0
Gp(k) =10, ke—0, k,#0
0, k,— 0, k,#0,
03 kx = ky # 0
Gy3(k) =4 1[as + csk® + c5k*], ke —0, k,#0
\l/[a3+c3k2+c§k4], k,—0, k,#0,
Ulay+ e,k + 5k, ke=k, #0
62()23(/2) = 4/[(613 + C3k2 + Cék4)], kx — 0, ky #0
(/[ (a3 + c3k* + 5], k,— 0, k,# 0.

These considerations show, that in certain directions in Fou-
rier space the shear strain variables become independent
from each other and the corresponding correlation functions
are continuous for k— 0. These are the directions, along
which a fit will give direct access to the elastic constants and
correlation lengths of the system.

Figure 2 shows cuts in Fourier space which correspond to
these specific directions for the strain correlation functions

5,-,-(12). For the correlation function of the pure shear strain
Gy(k) a cut along the diagonals is shown, while for the
deviatoric strain correlation function 633(13) a cut along the
coordinate axis is shown. The strain correlation function for

the dilatation G,,(k) in contrast is not continuous for k— 0.
If one considers for example the direction k,=2k, the kernels

Q;; relating the strain variables turn into constant weighting

factors: é21=—(zjl;:)(§) and Q31=(4Z;Z3)(§). Thus along
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—i=1
—i=2
i=3 ]
=26 (k =0)
« 1220 (k=k)
0.02 - |
)
ol
0.01 ]
0—7 0 I
k

FIG. 2. (Color online) Cuts of the analytic strain-strain correla-
tion functions along specific directions in Fourier space. The set of
parameters used for plotting is: a;=100, a,=50, a3=200 and c;
=54.3, ¢,=374, c3=118.2, ¢{=-86.1, ¢)=-1.3, and ¢;=-18.8. The
correlations lengths were obtained from a Monte Carlo simulation
of a harmonic triangular lattice in the NVT ensemble with periodic

boundary conditions. 51](12) is shown along the direction k,=2k,,
Gy(k) along the diagonal ky=ky, G3(k) along the k, axis and
Go¢(K) along the diagonal k,=k, and along the k,-axis.

the direction k,=2k, the strain correlation function for the
dilatation G,,(k) for k—0 is given by

2
Gi=0=1 / for-(252)(3)]
+{(#)<§)r)
“L\4da,—2a3/\2

# é“(]g: 6) = l/al.

So the strain correlation function for the dilatation G,,(k)
exhibits a pronounced discontinuity for k—0. In order to
illustrate this fact, consider the set of parameters used in the
simulations of a harmonic triangular lattice in Sec. III The
choice of the spring constant sets the elastic constants of the
system under consideration to a;=100, a,=50 and a3=200.
For k—0 one has Gj!(k—0)=~3025, which is approxi-
mately 30 times as much as the value for k=0, i.e., éh‘ (k
=0)=a,=100, set by the bulk modulus—showing that non-
uniform dilatations tend to be severely penalized in this
solid.

Nevertheless, provided that the value of the bulk modulus
is determined e.g., from G,;(k=0) the coefficients ¢, and c
can also be obtained by fitting one of the correlation func-
tions along a cut in Fourier space. So in principle all 9 pa-
rameters of the free energy functional can be determined
from an analysis of the strain-strain correlation functions.
Like the correlation function of the dilatation G,,(k), the
correlation function of the microscopic rotations 62,92(,(12)
shows an eightfold rotational symmetry. Unlike én(lz), how-
ever, éz(m(lz) is continuous for k— 0 along the coordinate
axis and the diagonal (compare Fig. 2). Therefore, fits along
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these directions can be used to determine the elastic con-
stants a, and a3 as well as the coefficients ¢,, ¢ and c3, c}.

We shall next discuss the results of a coarse-graining pro-
cedure, which attempts to obtain these correlation functions
and therefore the parameters of the Landau free energy func-
tional from Monte Carlo simulations of the harmonic lattice.
The coefficients of all the second and fourth order terms
involving gradients of strain are found to be nonvanishing
showing that coarse-graining generates these higher order
nonlocal terms in the free energy.

III. MONTE CARLO SIMULATIONS OF A HARMONIC
CRYSTAL

The analysis of a harmonic crystal is convenient for a
comparison with the results of the Landau theory presented
in the last section, since the elastic moduli can be directly
calculated from the spring constants. We consider a harmonic
triangular lattice with a Hamiltonian H=kzT(f/2)=)) ,_ (|7,
—7,|—a)? where f is the spring constant and a the lattice
parameter of the triangular lattice. The elastic moduli are
related to the spring constant f via: K=a,=(\3/2)f, u=a,
=(\V3/4)f and 4u=as=13f. Furthermore the harmonic trian-
gular lattice has been shown to be a successful model for the
interpretation of experiments on colloidal crystals [20]. It is
modeled by N point particles each of them hard wired by
spring constants f to the six nearest neighbors. We have car-
ried out Monte Carlo simulations in the constant NpT and
NVT ensembles with periodic boundary conditions. We also
mention briefly results for a system with open boundary con-
ditions which were presented elsewhere [13]. Next the influ-
ence of hydrostatic pressure is analyzed by Monte Carlo
simulations in the constant NpT ensembles with periodic
boundary conditions. Finally we consider the effect of a sur-
rounding elastic medium and finite size effects in order to
make contact with experiments on colloids.

The knowledge of the configurations and the reference
lattice allows for a direct calculation of the displacement
field (7). In order to calculate the corresponding strain field
partial differentials of the displacement field have to be cal-
culated. We follow the procedure by Falk and Langer [21]
and calculate the strain field by minimizing the error in the
affine transformation that relates the actual configuration {7}

to the reference lattice {R}.
F=R+i(R)=(1+eR.

The mean-squared error in this mapping y is thus a measure
of how well the given situation can be described within the
framework of linear elasticity theory. It quantifies the non-
affinity of the given displacement field. Falk and Langer [21]
analyzed the temporal development of strains. We use an
analogous definition for y in thermodynamic equilibrium and
evaluate the strains and nonaffineness with respect to the
reference lattice:
Ng 2

2 2
x(7o) = > > (rin_ ”é)_ (6 + Eij)[R{n_R{)]> - (7
1

m=1 i=1 j=

Here 7 is the position, at which the strains are to be calcu-
lated, and Ny is the number of neighboring particles consid-
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ered. This corresponds to a coarse-graining procedure, in
which Ny is set by the choice of coarse-graining length A,
i.e., cutoff radius within which particles are considered in the
calculation. For the results presented in this section, we have
used a cutoff radius of A=1.3 resulting in Nz=6. In Sec. IV
we present some systematics showing how some of our re-
sults depend on the coarse-graining length A.

As mentioned above we map the triangular lattice to a
square mesh in the calculation of the strain-strain correlation
functions. This facilitates the numerical Fourier transforma-
tion of the calculated real space correlation functions. The
wave vectors are limited to the first Brillouin zone, i.e., kj
e [—;’: , fl], with j=x,y. Here [,, represents the lattice param-
eter of the square mesh. Care must be taken in the choice of
1,, to keep the mesh volume large enough so that artifacts due
to the discreteness of the triangular lattice (and insufficient
averaging) are avoided. In most of the results presented here
we used [,,=2.25a, where a is the lattice parameter of the
original, triangular lattice. Lastly, one also needs to be care-
ful about correcting for global rotations and translations of
the lattice so as not to introduce artificial sources of error.

Simulations of the harmonic triangular lattice were done
for three system sizes N=3120, 4736, and 5822. We first
discuss the results for simulations with spring constant
Ba’f=200/+3 in the NpT ensemble with periodic boundary
conditions (and external pressure Sa’p=0) and the NVT en-
semble with periodic boundary conditions.

A. NpT ensemble with periodic boundary conditions

For the simulations of the harmonic crystal in the NpT
ensemble we use the algorithm of Parinello and Rahman
[22]. Here, the information on the actual shape of the simu-
lation volume, which is free to fluctuate in this ensemble, is
saved in the transformation matrix h. One of the advantages
of this implementation is, that from the fluctuations of the
transformation matrix h the fluctuations of the strain tensor
can be calculated directly. The strain tensor is related to the
transformation matrix via [22]:

1
€= E(hg‘lthl -1),

where h, is the transformation matrix of the reference lattice
and G=h"h contains the information of the actual shape of
the simulation volume. Table I shows a comparison of the
elastic moduli for the harmonic, triangular lattice as they are
expected for the chosen spring constant f and the values as
they are obtained from the simulations in the NpT ensemble
by analyzing the fluctuations of the simulation volume.
Figure 3 shows the strain-strain correlation functions in
Fourier space as they are obtained from the simulations in
the NpT ensemble with periodic boundary conditions. The
comparison with the analytic predictions (Fig. 1) shows, that

the eightfold rotational symmetry in G,,(k) is not resolved.
The shear strain correlation functions show clearly a fourfold
rotational symmetry, as was expected from the analytic pre-
dictions.

Cuts along various directions in Fourier space of these
functions are plotted in Fig. 4 for three system sizes. As these
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TABLE I. A comparison of the elastic constants as calculated
from the spring constant f and as obtained by use of various meth-
ods from data of a Monte Carlo simulation of a harmonic triangular
lattice with N=3120 particles in the NpT ensemble at zero hydro-
static pressure Ba’p=0.0 and spring constant Ba’f=200/13.

aj a as
Calculated from f 100/ Ba? 50/ Ba* 200/ Ba?
From fluctuations of h 98.9/Ba>  49.4/Ba*  196.7/Ba®
From G(k=0) 96.8/Ba>  48.6/Ba*  190.8/ Ba>
From fits of G(k#0) 49.1/Ba*  195.7/Ba?

cuts show, there is no systematic dependence on the system
size in the correlation functions.

The discontinuities in the correlation functions are visible
in Figs. 3 and 4. Nevertheless the extreme discontinuity one
expected for G, (k) from the analytic predictions is reduced
to a factor of approximately 1.5 instead of 30. This can be
clearly seen by comparing the cuts in Figs. 2 and 4(a). This

FIG. 3. (Color online) Strain-strain correlation functions of a
harmonic triangular lattice at zero hydrostatic pressure as obtained
from Monte Carlo simulations in the NpT ensemble with periodic
boundary conditions. Results for a system with N=3120 particles
and a spring constant Ba>f=200/43 are shown. For each function a
surface plot and next to it a density plot are displayed. In the density
plot the maxima are white, minima are black.
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FIG. 4. (Color online) Cuts of the strain-strain correlation func-
tions in the NpT ensemble with periodic boundary conditions at
zero hydrostatic pressure along specific directions in Fourier space.
(a) 611(12) along k,=2k,, (b) 622(12) along k,=k,, (c) 533(12) and (d)
526,29(12) along the k, axis. For a comparison the results for different
system sizes are displayed. The horizontal broken lines mark the

value expected from theory for the correlation functions at k= 0.

indicates that there might be excitations in the system that
are not captured by the assumption of purely affine strains.

Along the cuts, for which ézz(E) and 633(12) are continu-
ous for k—0, fitting with a generalize Lorentzian profile
yields the elastic constants and the elastic correlation lengths.
For the system with N=3120 we obtain the shear modulus as
it is given in Table I and the coefficients ¢,=34.3, cé=—0.6,
c3=114.1, and ¢;=-17.6. So the elastic correlation lengths
&1~ \c; are approximately 6 and 11 lattice parameters, re-
spectively.

Figure 4(d) shows cuts of Gy ,,4(k) along the coordinate
axis. One cannot obtain the elastic modulus directly from the

value of 629 29 at the origin in these simulations, as the
system as a whole is not an embedded system and is not free
to rotate. This situation is different in a solid, which is em-
bedded in a larger volume, as will be discussed in Sec. III D

B. NVT ensemble with periodic boundary conditions

Below, we present simulations in the NVT ensemble with
periodic boundary conditions at a reduced density of o*
=1.0. Table II lists the elastic constants calculated with the
fluctuation method given by Squire et al. [23]. These authors
also give a formula for calculating the stress tensor. An
evaluation of the data yields Oy= O'yx:O.O and from the trace
of the stress tensor ,Bazpz—%((rx)ﬁ ay,)=0.1. So we verify
that the simulations represent a solid at approximately zero
hydrostatic pressure.

In this ensemble, the k=0 values of the correlation func-
tions cannot be used to calculate the elastic constants di-
rectly. We are simulating an undeformed state of the crystal,
thus the integral over the fluctuations of the strains over the
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TABLE II. A comparison of the elastic constants as calculated
from the spring constant f and as obtained by use of various meth-
ods from data of a Monte Carlo simulation of a harmonic triangular
lattice in the NVT ensemble with periodic boundary conditions with
N=3120 particles and spring constant Ba>f=200/ V3.

ai a as
Calculated from f 100/ Ba* 50/ Ba* 200/ Ba*
Using Squire ef al. [23] ~ 97.4/Ba®  483/Ba*  194.8/Ba?
From fits of G(k #0) 48.1/Ba*  198.2/Ba?

complete simulation volume tends to zero in this ensemble.
Therefore, only fits along the directions, for which the cor-

relation functions are continuous for k— 0, give access to the

elastic constants in this ensemble. As GII(E) has no such
direction, the bulk modulus cannot be obtained in this way.
From these considerations one expects the strain-strain cor-
relation functions in the NVT ensemble to differ from those
in the NpT ensemble for small absolute values of k. Figure 5
shows surface plots and density plots of the strain-strain cor-
relation functions in Fourier space. As in Sec. III A the
anisotropies are recovered well. Only the eightfold rotational
symmetry of Gy,(k) is not resolved. The expected discon-
tinuous jump to G;(k=0)=0 (i=1,2,3) is clearly visible.
Besides this, the correlation functions coincide with those
obtained in the NpT ensemble. This can be seen by compar-
ing Figs. 4 and 6, showing the same cuts in Fourier space for
the various correlation functions. The elastic constants a,
and a;, as they are obtained from fitting the strain-strain
correlation functions, are listed in Table II. They fall within
3%—-4% of the theoretical values. Thus, they have the same
accuracy as the values obtained via Squire’s fluctuation for-
mulas [23]. In addition the elastic correlation lengths could
be obtained from the coefficients: ¢,=37.4, c¢;=-1.3, ¢3
=118.2, and ¢;=18.8. So consistent to the results obtained
from the simulations in the NpT ensemble &,,~6 and 11

lattice parameters, respectively. Fitting e.g., 522(12 * 6) along
the direction k,=2k, allows the determination of the coeffi-
cients ¢;=54.3 and ¢;=-86.1. Correlations of volume fluc-
tuations thus decay over approximately 7 lattice parameters.
The harmonic, triangular lattice in the NVT ensemble was
also analyzed with open boundary conditions. The results
were discussed in detail in [13].

C. Influence of hydrostatic pressure

How does an external, hydrostatic pressure—i.e., o,
=0,,=0 and o,,=0,,=—p—influence the strain-strain corre-
lation functions? Simulations of a harmonic, triangular lat-
tice with spring constant Ba’f=200/ V3 subjected to an ex-
ternal, hydrostatic pressure Ba’p=20/v3 were carried out.
They show, that the shape of the correlation functions is not
affected. The NpT ensemble was chosen for this study.
Strains were calculated with respect to the average lattice
positions, that is the compressed lattice. The lattice param-
eter of this reference lattice a’=1.010 465 is smaller than the

PHYSICAL REVIEW E 82, 016112 (2010)

FIG. 5. (Color online) Strain-strain correlation functions of a
harmonic triangular lattice as obtained from Monte Carlo simula-
tions in the NVT ensemble with periodic boundary conditions. Re-
sults for a system with N=3120 particles and a Ba’f=200/3 are
shown. For each function a surface plot and next to it a density plot
are displayed. In the density plot the maxima are white, minima are
black.

—

lattice parameter a=(2/3)"? in the zero-pressure simula-
tions. Therefore, for a comparison with the theoretical val-
ues, which were given in units of ,Baz, the a; obtained from
the simulation must be rescaled to these units. Simulations
were run for a system with N=3120 particles. For a direct
comparison of the correlation functions in systems with and
without a hydrostatic pressure cuts in Fourier space of the
G,(k) (i=1,2,3,26) are shown in Fig. 7.

These show clearly the shift in the absolute values and the
persistence of their shape. When relating the parameter a; to
the elastic moduli of the system, one has to recall the follow-
ing. The strain-strain correlations are related to the stiffness
tensor Bjjy;. This tensor is defined via the stress-strain rela-
tions. These relate the variation of stress to the variation of
strain, to first order in the strains, for the case, that an arbi-
trary initial configuration {R} is transformed to a final con-
figuration {7} by an applied uniform stress. Thus Bijkl({ﬁ})
= (do; ({7 / dew) iy = %(a'ilajk"' 010t OO+ 030y —=207;0)
+Cyjy [24]. The stiffness tensor explicitly depends on the
applied stress. Only for the case that 0;;=0 is it equivalent to
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FIG. 6. (Color online) Cuts of the strain-strain correlation func-
tions in the NVT ensemble with periodic boundary conditions along
specific directions in Fourier space. (a) Gy;(k) along ky=2k,, (b)
Gy (k) along ky=k,, (c) G3(k) and (d) Gog4(k) along the k, axis.
For a comparison the results for different system sizes are dis-
played. The horizontal broken lines mark the value expected from
theory for the correlation functions at k= 0.

the tensor of the elastic constants C;;,. For the calculation of
the elastic moduli the following combinations are needed:

1 1 1
E(Bxxxx + Bxxyy) = E(Cxxxx + Cxxyy) - E(p - P) =K,
0.015 ~ 0.03
0.01F 5 40.02
0005+ ¢ - <o 1001
= “xBa'p=00 | 2 < Ba’p=00
\ Gl l(k) o0 Ba’ p = 20W3 Gzz(k) o Ba’p=20"3
0 0 i 0 T 0 i
k Kk
0.03—— ;
0.0075
0.005 10.02
0.0025F 40.01F 3
-  Balp=00 N ‘[33213=0»0
S o =2
Gk 1. Ba’ p = 2013 G50(K) . Bap =203

(=]

-1 0 I -1 0 1
k k

FIG. 7. (Color online) Cuts of the strain-strain correlation func-
tions in the NpT ensemble with periodic boundary conditions along
specific directions in Fourier space. Shown are the correlation func-
tions obtained in a system_without (crosses) external pressure and a
system with Ba’p=20/v3 (circles). Both systems have N=3120
and a spring constant Ba2f=200/\e‘“§. (a) G,(k) along ky=2k,, (b)
Gy(k) along ky=ky, (c) G3(k), and (d) G (k) along the k,, axis.
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1 1 1
E(Bxxxx - Bxxyy) = _(Cxxx - Cxxyy) - E(p +P) =pM—Pp,

2

B nyxy_pzlu’_p'

xyxy =

Thus the bulk modulus can be directly obtained from a,

while from Ga,(k) one extracts a,=u—p and from Gs3(k)
one obtains a;=4(u—p). The values of the elastic moduli
calculated according to this scheme are given in Table III.
They lie within 4.4% of the theoretical values.

D. Effects of an embedding medium and finite-size

Often the strain-strain correlations cannot be evaluated
over the complete crystal. In experiments as for example a
two-dimensional colloidal crystal [10,13] configurational
data is taken via video microscopy. Here, the area accessible
to the video camera is far smaller than the complete sample
size. In these cases only a subsystem embedded in a larger
continuum is analyzed. As Zahn et al. [10] noted the pres-
ence of an infinite, embedding medium alters the relation of
the strain fluctuations to the elastic moduli.

The strain-strain correlation functions are the response
functions to a strain perturbation at the origin. Figure 8
shows schematically the resulting displacement field and
strain fields for the cases that this perturbation is a) a dilata-
tion and b) a rotation. The connection between the strain
correlations and the elastic moduli was derived under the
assumption, that the considered functional of the free energy
accounts for the free energy of the complete system (equi-
partition theorem). For the case that the volume Vj over
which the strain-strain correlation function are calculated is
not equal to the complete system volume V this assumption
is not fulfilled any more. As can be deduced from the sche-
matic plots of the strain fields in Fig. 8 the energy related to
the resulting strain field outside Vj cannot be neglected for
Vg#V.

Following the argument by Zahn et al. [10], but consid-
ering a finite embedding continuum, we show that the influ-
ence of the surrounding medium on the strain fluctuations
within the analyzed volume Vj depends on the relative size
of Vj in comparison to the complete system volume V, i.e.,
the ratio of Vz/V. For the derivation of the formulas we
consider first a homogeneous dilatation of a disk Vz=7Rj in
a surrounding medium of volume V=mR?. Second we con-
sider a pure shear, which can be realized by a rotation by an
angle 6 of the disk with volume V3. For these considerations
we work in polar coordinates, where we have e;=(¢,,+€,,),
e,=(€,—€,,) and e3=¢,,. In both cases considered here it is
assumed that the displacement field on the boundary of the

complete system is given by ﬁ(?:ﬁbounda,y)=6.

1. Homogeneous dilatation

An isotropic expansion of a disk embedded in a finite
medium is given by Rz— Rp+Ar. The resulting displace-
ment field in polar coordinates is given by
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TABLE III. The elastic moduli of the harmonic system calculated from the spring constant Ba’f

=200/ \5 in comparison to simulation results. Listed are the elastic constants a; as obtained from 5,-,-(/3: 6) for
a simulation in the NpT ensemble with periodic boundary conditions of a harmonic, triangular lattice with
Ba’p=20/+3. For comparison with the theoretical values the a; obtained in units of the lattice parameter a’
of the compressed reference lattice have to be rescaled to the lattice parameter a of the zero-pressure
reference lattice and the relation between the stiffness tensor B;j, and the tensor of elastic constants Cyj, in

a system with 0;;# 0 need to be considered.

given by E

Calculated from f 100/ Ba? u=a,+p=50/Ba’ 4p=a3+4p=200/ Ba>
From G(k=0) 88.8/Ba’? a,=36.0/ Ba’? a3=137.6/ Ba’?
Rescaled values 100.4/Ba®>  a,=40.7/ Ba®>— u=52.2/Ba*>  a3=155.6/ Ba>—4u=201.8/Ba>
L —r =3[K(e,+ 5¢¢)2+M((frr—€<p¢)2+4ff¢)] of the system under
r Ry rr B load. Thus the total energy needed for such an expansion in a
Uy= 0, u,= R finite system of volume V= 7R? s
Ar=E for r> Ry =3 [Rrdpdrf=(Vy/2)(AV/ V) K+ u[1-(Vg/V)]}.  For
’

From this it is straight forward to calculate the resulting
strain field and consequently the Free Energy density f

a) Dilatation b) Rotation

FIG. 8. (Color online) A schematic drawing of the displacement
field #(7) and below the corresponding strain fields as they result
from a given perturbation at the origin: (a) a dilatation and (b) a
rotation a the disk at the origin. If the analyzed volume Vj (broken
red line) does not coincide with the volume of the complete system
V (black line), the energy needed for the displacements in the em-
bedding medium (V-Vp) must be taken into account in the inter-
pretation of the correlation functions.

such a system equipartition tells us thus, that the strain fluc-
tuations are no longer set by the bulk modulus of the system,
but acquire in the embedded system a term dependent on the
shear modulus and on the ratio Vy/V:

1

=0

Therefore the strain-strain correlation function G;,(7) no
longer provides access to the bulk modulus, but to a
V! V-dependent combination of bulk and shear modulus.

kgT
L(e%} —
Ve

K+ pu

2. Pure shear

A rotation of the disk as a rigid body within the embed-
ding medium by an infinitesimal angle A¢ changes a given
orientation ¢ to ¢+Ag. The resulting displacement field is
given by

0 for

u.=0, wu,= R>
' €7 Ap—2 for r>Ry.
r

r<Rp

From the corresponding strain field the free-energy density
can be determined and integration over the complete system
yields the energy required for such a rotation: E
=u(2A)?Vy(1=(Vp/V))/2. In case of infinitesimal rotation
angles Ao this angle can be identified with the antisymmetric
part of the strain tensor 6= (du,/dx—du,/dy)/2. Equipartition
relates the fluctuations in e, to the shear modulus wu:

kT 1
- <e§0>=
Vg (VB>
Ml 1-

Vv

The obtained relation also depends on Vj/V. This is consis-
tent with the fact, that the energy required for the rotation of
a disk, which is not embedded in a surrounding medium
(Vg—V), tends to zero. The analysis of the strain variable 26
offers thus an independent, direct route to the determination
of the shear modulus in an embedded system.

These considerations show that in order to obtain accurate
elastic moduli from the analysis of the strain fluctuations the
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relative size of the analyzed system to the complete, finite
system should to be known. Nevertheless for the case of the
colloidal crystal [13] the situation is close to the limiting

Ve

case of 5, —0. Here, the influence of the surrounding me-
dium on the analyzed system is dominant. The strain vari-
ables e; and e,y can be used to extract the elastic moduli.
Thus the two-dimensional colloidal crystal, as discussed in
detail in [13,19] is an example for a completely embedded
system. In contrast to this in simulations the complete system
can be analyzed, which corresponds to the limiting case of

%—ﬂ. For this case each of the strain-strain correlation
functions of the strain variables e;, e,, and e; give directly
access to the corresponding elastic moduli ;. The effect of
the embedding medium can be visualized by looking at a
statistical sum rule, as will be discussed in the next para-
graph.

3. Analysis of a statistical sum rule

The sum rule for the generalized susceptibility provides
another way of extracting the elastic moduli from the strain-
strain correlation functions. The coarse-grained system rep-
resents a homogeneous continuum and is thus translationally
invariant. For such systems the susceptibilities are directly
related to the correlation functions. In Fourier space this

reads ¥7(k)=BG(k). From this the static susceptibility sum
rule follows [18]:

xr=lim %7(k) = BG(K) i =B | dFG(7).
k—0

Thus an integration of the correlation functions in real space
yields directly the generalized susceptibilities 7. Here, these
correspond to the elements of the compliance tensor ;.
The compliance tensor is the inverse of the stiffness tensor
Bijji- In the case that no external stresses act on the system
this is equivalent to the tensor of the elastic constants C;jy,
[24]. The S;j, obtained from such an analysis depend on the
integration volume V. Thus in order to obtain systems-size
independent values an additional finite-size scaling analysis
should be employed.

Figure 9 shows the compliances S;; (i=1, 2, 3, and 26) as
a function of the ratio of the integration volume Vjp to the
complete simulation volume V, i.e., Vp/V=Lg/L. These were
obtained from the simulation data of the harmonic triangular
crystal at zero external pressure in the NpT and NVT en-
semble with different boundary conditions. A comparison
shows directly how the choice of ensemble and the choice of
boundary conditions influences the results. These are so
called explicit and implicit finite-size effects [25]. In addition
this analysis visualizes the effects of the embedding medium
on the compliances S;;.

Figure 9(a) shows the results from simulations in the NpT
ensemble with periodic boundary conditions. The complete
system contains N=5822 particles connected via springs of
spring constant Ba’f=200/ V3. The strain-strain correlation
functions are directly related to the elastic moduli in this
ensemble, due to the fact that the volume itself fluctuates.
Thus one can obtain the elastic moduli directly from the §;; at
Ly/L=1. For the considered system we find: S(1L1)=0.01025,
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FIG. 9. (Color online) Compliances S;; as they are obtained from
the sum rule as a function of the ratio of analyzed volume VBzLé to
the complete simulation volume V=L2. Shown are the results of
Monte Carlo simulations of a harmonic triangular lattice with N
=5822 particles and spring constant Ba’f=200/3. Lines are a fit
to the data with the formulas given in the text, while the dotted lines
are a guide for the eyes. ( a) NpT ensemble with periodic boundary
conditions. (b) NVT ensemble with periodic boundary conditions.
(¢) NVT ensemble with open boundary conditions. Here dashed
lines show the value for Lz/L=1 as a comparison.

§8=0.02050, $1£'=0.00512, and S&),—0, resulting in a;
=97.5, a,=48.7 and a3=195.2. These values lie within 2.5%
of the expected values. The accuracy of this approach com-
pares to that of the methods for the calculation of the elastic
moduli discussed before. From the considerations in Sec.
IID 1 one expects the following functional dependence of
Sipon Ly/L:

S8 = Vi) (kg T) = {K + [ 1 = (L/LH].

The black solid line in Fig. 9(a) is a fit with this equation to
the data (crosses). From the fit parameters the following elas-
tic moduli are extracted: a;=K=93.4 and u=a,=45.8. Fig-
ure 9(a) shows clearly the increasing impact the surrounding
medium has on Sy; as Lg/L diminishes. In the limit Vz/V
—0 it yields the sum of the elastic moduli K and w. It is
apparent from Fig. 9(a), that as soon as Vz/V <1, the com-

016112-11



FRANZRAHE, NIELABA, AND SENGUPTA

pliances S,, and S33 cannot be directly related to the shear
modulus any more.

The considerations in Sec. III D 2 suggest, that the com-
pliance S, 4 should diverge as V/V— 1. This relates to the
fact, that the energy needed for rotating an embedded disk
goes to zero as the embedding material is removed. This
divergence cannot be seen in the simulation data. In simula-
tions with periodic boundary condition the system as a whole
cannot rotate. The fact, that there is no divergence of S,y
for V3/V—1, is therefore an implicit finite-size effect. In
order to extract the shear modulus from the compliance S,
a polynomial in (Lg/L) was fitted to the data (open tri-
angles). From the limit Vz/V—0 the shear modulus is ex-
tracted: u=48.9.

In the NVT ensemble with periodic boundary conditions
the compliances as a function of Lg/L exhibit a different
dependence on Lg/L, as Fig. 9(b) shows. An unstrained state
of the triangular lattice is analyzed in these simulations.
Thus, the integral of the correlation functions over the com-
plete system goes to zero and gives no access to the elastic
moduli. This is an explicit finite-size effect. Nevertheless
from the limit Vz/V— 0 one can extract the elastic moduli as
in the case of the simulations in the NpT ensemble with
periodic boundary conditions from the compliances S;;
(crosses) and S, 44 (open triangles). Fits with a polynomial in
(Lg/L) are plotted as solid lines in Fig. 9(b). From the case
of maximum embedding one extracts a;+a,=K+u=148.3
from S}, and a,=51.5 from S, in Fig. 9(b). These values
compare to the values obtained by different methods as they
are given in Table II.

The compliances Sﬁ’* shown in Fig. 9(c) are obtained from
data of simulations in the NVT ensemble with open boundary
conditions as they were presented in [13]. These show in
contrast no systematic dependence on Vp/V. The maximum
analyzed volume, which will for this case be denoted by V
=L? is approximately one fourth of the complete system
volume. In this case the averaging over the positions of ori-
gin results in an averaging over subsystems with partial to
complete embedding. For this type of averaging the k=0
values of all considered strain-strain correlation functions
give access to the elastic moduli of the system [13]. The
effect of this type of averaging shows up most prominently
in the fact that S, 4,4 does not tend to zero for Ly/L— 1, but
approaches the value of S,,. Extracting the elastic moduli
from the compliances for Lg/L=1 in Fig. 9(c) yields S(ﬁ)
=0.009 40 —a;=106.9,  $%5=0.021 00— a,=47.6, sﬁg
=0.005 25— a3=190.4 and S%ZL(QZQ=O.021 60— a,=46.4. The
accuracy of these values is the same as in [13]. The deviation
from the theoretical values is larger in this case, as the finite
system with open boundary conditions is influenced in its
elastic properties by the missing stabilizing bonds for par-
ticles at the surfaces.

IV. STATISTICS OF NONAFFINE FLUCTUATIONS

The comparison between the analytic predictions for the
strain-strain correlation functions (Figs. 1 and 2) and those
obtained from the coarse-graining procedure on the simula-
tion data (e.g., Figures 3 and 4) shows that the analytically
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FIG. 10. (Color online) Plots of the probability distribution of
the nonaffinity parameter y from simulations in the NpT ensemble
with periodic boundary conditions and N=3120 particles. (a) Plot of
the probability distribution of P(yx) vs y for various coarse-graining
length A. (b) The probability distribution of x/A? shows a data
collapse for A =2.2. (c) Data for various spring constants f collapse
onto each other. The prediction from a simple cell model (black
line) is shown for comparison. (d) Data from simulations at various
hydrostatic pressure p scale with the resulting average density ().

predicted discontinuities are reduced. Here we demonstrate
that the source of these deviations from the analytic predic-
tions is a nonaffine noise field present in the simulations as
well as in experimental data. Nonaffine fluctuations are not
included in our Landau ansatz for the Free Energy func-
tional. The ansatz was based on the assumption of purely
affine strains e;. There are two sources of nonaffine contri-
butions. In the crystal short-wavelength excitations might oc-
cur, which could lead to the formation of defects. Far away
from the melting point these contributions are not dominant.
In addition to these fluctuations, the coarse-graining proce-
dure described in Sec. III, which is employed in the data
analysis, also contributes.

It projects the configurations generated by our micro-
scopic Hamiltonian onto strain fields, which are smooth over
distances larger than the coarse-graining length A. It also
generates a conjugate noise [14]. This noise represents those
fluctuations, which cannot be captured during coarse-
graining. In order to understand this one has to realize the
following. Coarse-graining retains only that part of the par-
ticle displacements = F-Rina configuration, which can be
obtained from the reference lattice R by an affine transfor-
mation: 7=(1+€)R. An affine transformation constrains all
parallel lines in the reference lattice to remain parallel. This
is clearly impossible to satisfy for an arbitrary configuration
coarse-grained over volumes larger than an unit cell. Indeed,
the quantity y as defined in Eq. (7) has the dimension of
Length? and scales as A% This may be seen by comparing
Figs. 10(a) and 10(b). Figure 10 shows the probability dis-
tribution P(x) and its scaling behavior for various choices of
parameters. While Fig. 10(a) shows a clear dependence of
the amount of nonaffinity on the coarse-graining length A,
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FIG. 11. (Color online) Example configuration (a) consisting of
a central particle 0 and neighboring particles i=1,6 which can be
decomposed into a purely affine deviatoric distortion (b) together
with a nonaffine displacement § of the central particle 0 (c).

Fig. 10(b) shows a collapse of the distributions for the scaled
quantity y/A? for A>2.2. This corresponds to a minimum
of 18 neighbors to the central particle, that are taken into
account in the calculation of the strain field via the minimi-
zation of x. These distributions show a constant offset from
x/A*=0. By contrast A=1.3 shows no such offset. This
means that for the calculation of the affine strain field only
the minimal neighborhood, i.e., the 6 nearest neighbors, al-
lows for a global minimization of y. In addition the probabil-
ity distributions of the nonaffine parameter y also scale with
the spring constant f [Fig. 10(c)] and in simulations run at
various hydrostatic, external pressure p with the resulting
average density (0) [Fig. 10(d)]. One can therefore obtain
the probability distribution for y for any inverse temperature
B, spring constant f, density p and coarse-graining length A
from a generalized extreme value probability distribution
function. This  master  curve s P(X)=((1
+0.27-2) V0210140279702 15 12 with  z=(X
—3.127)/2.012, which we obtain from a fit to the simulation
data with the scaling variable X'= xBf/pAZ. The scaling was
found to be independent of system size N and the choice of
ensemble.

We show below that features of P(y), like the dependence
on the spring constant f, may be rationalized within a simple
“cell model” calculation. In this model each particle is as-
sumed to fluctuate within the cage of its 6 nearest neighbors
which suffers, at most, an affine distortion (see Fig. 11). The
only source of nonaffinity comes from the displacement of
the central particle from its equilibrium position.

For such a subset of configurations, one may simply de-
compose each configuration {7} into one obtained by an af-
fine transformation plus a nonaffine displacement s of the
central particle within an undistorted hexagonal cell. The
nonaffinity parameter y may then be calculated to be

2 2

6 2
X= E E ”in—”é)—E (5ij+€ij)(R{n_R{))

m=1 i=1 Jj=1

6 2
=2 X[, -ry- (R, ~Ry)F =657,
m=1 i=1

Within this approximation the ensemble average () contrib-
utes to the Lindemann parameter /. This is due to the fact,
that the fluctuations of the displacement field can be related
to the Lindemann parameter as follows: {|u|*)={(if,ine
+5)%) =(u§fﬂne>+<)(>/6 +2{|Uytpine| * ||y =Pa®. The Lindemann
ratio depends on the stiffness of the solid and grows as the
melting point is approached. In order to calculate P(y)
within this simple “cell model,” we first calculate the energy
of such a “cell” configuration:
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6
=13 (af,- - 18k
i=1

- gz AR +# 25 AR,

“2ARN1 +FARE - 2AR, - SIARY} =~ 3fs2.

Here we used an approximation of the square root up to O(4)
and the abbreviation Aﬁizﬁi—ﬁo. Thus the energy related to
the nonaffinity y of the central particle is E,;=E/3=fx/6.
With this energy contribution it is straight forward to calcu-
late the probability distribution of y;,

P(x)=C f dse " 8(x' (s) - x) = /i_(i_f> $'%e?, (8)

N

where qS:%[X and C, the normalization constant. In Fig.
10(c), we have plotted P(x)/(Bf/6) from this cell model
together with the scaled distributions obtained from our
simulations. The data collapse of the distributions from
simulations with various spring constants is in accord with
the scaling in Bf/6 as expected from the simple cell model.
The details of the shape of the distribution function cannot
be captured completely. As is to be expected in this simple
model, the contributions of large y are slightly overesti-
mated.

How does the presence of y influence strain correlations?
To see this we assume that, at least for small y the total strain
obtained by fitting an arbitrary configuration to an affine
transformation can be decomposed into two parts. An affine
part, which would have been the only result, if y were zero,
and a y dependent, nonaffine part. This nonaffine part may
be expanded as a series in powers of y. Thus we assume

&/(x:7) = e + 2 1, x(7).
P

This decomposition is more general than the assumption of
purely affine strains. To lowest order in y the strain correla-
tions can, therefore, be written as

(€(x:0)€,(x: 7)) = (€1(0) (7)) + 17{x(0) x()).

Here, we have used the fact, that the coarse-graining process
projects the displacements into mutually orthogonal subsets
[14,26]. Thus, one can ignore all correlations between e?]- and
Xx- So we see that the correlations of the nonaffinity, i.e.,
G, (7)=(x(0)x(7)), will alter the strain-strain correlations. In
Fig. 12(a), we have plotted cuts showing the decay of G, (7)
along the x and y axis. The function G, is isotropic and
decays rapidly to zero over a length scale comparable to A.
This suggests that y behaves as a “delta” correlated white
noise with a probability distribution given by Eq. (8). This is
consistent with our identification of y with the Lindemann
ratio. The microscopic, random, thermal fluctuations of indi-
vidual particles are, indeed, expected to be uncorrelated with
each other. Given the form of G,, one expects such fluctua-
tions to contribute a background term [compare Fig. 12(b)]
to the strain correlations in Fourier space. This explains the

deviation of the strain-strain correlation functions 5”- ob-
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FIG. 12. (Color online) (a) The autocorrelation function of the
nonaffinity parameter y for the harmonic triangular lattice with
spring constant Ba’f=200/ \3 in the NpT ensemble with periodic
boundary conditions along the x and the y axes. The red line is a fit
to an exponential form. (b) A surface plot of its Fourier transform

Gy (B).

tained from simulation data from the predicted analytic form.

The 6,-,~ obtained from simulation data retain a weak depen-
dence on the coarse-graining length A. As A is set larger the

elastic moduli a,:l/éii k=0) take on higher values, while
the correlation lengths Vc; diminish. This is consistent with
the smoothening out of displacement fluctuations with longer
and longer wavelength with increasing A and corresponds to
a situation, where the crystal is shifted to lower temperatures.
On the other hand a numerical extrapolation to A —0 gives
slightly improved values for the elastic constants a;
=1/G,(k=0).

We have shown in this section that the coarse-graining
process by which affine strains may be extracted from mi-
croscopic particle configurations also generates a random
white noise consisting of nonaffine particle displacements.
For a harmonic solid this is simply related to the Lindemann
parameter. This, in turn, depends ultimately on the strength
of the interactions.

What is the general implication of this to the study of
elasticity and rheology of complex solids? The current pic-
ture of the mechanism of relaxation in amorphous materials
indicates that there are two main competing processes in-
volved [27]. Over small time scales the system fluctuates
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within local minima in the free energy landscape. Transition
between such basins of attraction occur only over longer
time scales. We have shown here that harmonic fluctuations
within local minima generate a well characterized contribu-
tion to the nonaffinity y. This means, that any “extra” con-
tribution to y arises exclusively from these interbasin transi-
tions. Thus our analysis may be used as a tool to distinguish
between these two kinds of relaxations in complex solids.

V. CONCLUSIONS

We have shown in this paper how the analysis of particle
configurations of two-dimensional soft solids gives access to
a wealth of information on the local and nonlocal elastic
properties. Since the harmonic solid analyzed here is the
most generic conceivable, our work has the potential to serve
as a template for further research in this direction. The prop-
erties of the strain-strain correlation functions have been dis-
cussed in great detail and various methods of how to extract
the elastic moduli from their analysis were presented. Fur-
thermore we determined and discussed the effects of external
pressure and an embedding medium. The proper treatment of
the latter is essential for experimentalists seeking to use our
methods for analyzing mechanical behavior of soft matter.
The implications of our work particularly for the understand-
ing of nonaffineness in solids is significant, because our
study allows one to classify nonaffine fluctuations in any
system into “trivial” (in the sense of being present even in an
ideal harmonic solid) and nontrivial components. In the fu-
ture, we shall use these procedures to study metastability in
solids undergoing phase transitions and plastic behavior of
solids under large external stresses.
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