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‘We have derived an exact analytical expression for the average forward rate of a reversible electron transfer
reaction, modeled through a reaction coordinate undergoing diffusive motion in arbitrary potential wells of the
reactant and the product in presence of a localized sink of arbitrary location and strength. The dynamics of
diffusive motion is described by employing two coupled generalized diffusion reaction (Smoluchowski) equa-
tions with coordinate dependent diffusivity and delta sink. The average forward electron transfer rate constant
obtained here for the system, with equilibrium or nonequilibrium distributions as initial condition, is deter-
mined by the forward and backward rate constants calculated based on the transition state theory and the
weighted average rate for the well dynamics. We also discuss various limiting cases for the rate of electron
transfer reactions corresponding to the different experimental situations. As an illustrative example, we have
considered back electron transfer (ET) reaction and shown that the present theory can explain the non-Marcus
free energy gap dependence of the rate of ET reactions. More importantly, the approach presented here can
easily be extended to systems describing the dynamics of diffusive motion in coupled multipotential surfaces

associated with electron transfer reactions.
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I. INTRODUCTION

The study of electron transfer (ET) processes in con-
densed phase has attracted considerable attention [1-22] of
the experimentalists as well as theoreticians over the last
decades. In recent years, there has been a growing interest in
this field because of phenomenal upsurge of experimental
investigations on ET processes due to wide availability of
spectroscopic techniques for dynamical measurements and
the synthesis of tailor made artificial electron donor-acceptor
systems which have led to a wealth of new experimental
results. A great deal of effort has been directed to investigate
the diverse behavior of the ET reactions exhibited by donor-
acceptor pairs in solution and in organized media, much of
which can be rationalized within the traditional well-known
ET theory of Marcus [1], which includes only the energetic
(viz., solvent reorganization energy and free energy of the
reaction) aspect but is independent of the solvent dynamics.
However, when the reaction coordinate is strongly coupled
with the solvent coordinate, the ET reactions are found to be
sensitive to the solvent dynamics. Since the pioneering work
of Zusman [2], there have been a large number of theoretical
studies devoted to the solvent effects on outer sphere ET
reactions. For simplicity, in most of the cases, the backward
processes have been neglected. A complete picture for the
ET reaction between two states, however, should include the
effect of diffusion and reaction in both directions as pointed
out by Nadler and Marcus [23]. If equilibrium is to prevail
between the initial and the final states, the consideration of
the presence of a reverse reaction is essential and the survival
probabilities obtained by taking into account for the revers-
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ible ET differs from those for a reaction in a single direction.

The rate of ET reaction and how fast the system reaches
the state of dynamical equilibrium depends on the initial
state of the system. The initial conditions for the system can
be quite different depending on different experimental situa-
tions, i.e., the system can undergo reversible ET reaction
starting with either equilibrium or nonequilibrium initial con-
figuration. In Fig. 1, the potentials of the reactant and the
product are drawn in one-dimensional space spanned by the
reaction coordinates x. In the case of reversible ET processes
with equilibrium initial configuration, the system moving ini-
tially on reactant potential well, crosses to the product well at
the intersection point x™ which is described in Fig. 1. Once
the product is formed, it then starts recrossing to the reactant
well through the same intersection point. This process con-

Effective Potential

FIG. 1. Potential energy curves for the reactant and product in
an ET reaction. The abscissa stands for the reaction coordinates x
and the ordinate stands for the effective potential. The system mov-
ing initially on reactant potential well, crosses to the product well at
the intersection point and then the product starts crossing to the
reactant well through the same intersection point.
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tinues and the system finally reaches dynamical equilibrium.
On the other hand, in the case of reversible ET processes
with nonequilibrium initial configuration (say with delta
function distribution), the system is assumed to be in the
ground state and is brought to the nonequilibrium excited
state by laser excitation. Subsequently, the system at the
higher level of excitation relaxes downward to the potential
minimum of the excited-state surface due to relaxation of the
polar solvent until its energy coincides with that of the
ground state. Depending on the magnitude of the intrinsic ET
rate k, there is an interplay between the relaxation and ET at
the crossing point. If ky is small, the system relaxes to the
potential minimum of the excited-state surface and ET hardly
occurs during relaxation to the equilibrium state, although
the system passes through the intersection point in the course
of relaxation as shown in Fig. 2(a). Only after reaching the
minimum of the excited-state surface, thermal fluctuation
starts operating to bring the system back to the crossing point
again and ET reaction then takes place with intrinsic rate k.
Once the product is formed, it starts crossing to the reactant
surface through the same intersection point till the dynamical
equilibrium is reached. This process is then similar to the
case of reversible ET reaction with initial equilibrium con-
figuration as described in Fig. 1. However, when k is large,
the back ET reaction occurs almost exclusively at the inter-
section point in contrast to the relaxation of the system to the
minimum of the excited-state surface as shown in Fig. 2(b).
The nonequilibrium solvent configuration of charge transfer
state created at the intersection point then starts relaxing
slowly to attain the configuration of the minimum of the
initial ground state. Finally, the system reaches the dynami-
cal equilibrium. In the case of intermediate k,, however, both
the above processes start operating at the crossing point, viz.,
relaxation of the excited state to the potential minimum of
the same state surface and back electron transfer as shown in
Fig. 2(c). Finally, the system also reaches the dynamical
equilibrium. It is important to note here that the analytical
expressions for the rate of ET reactions corresponding to the
various cases discussed above can be obtained if one can
solve the relevant kinetic equation exactly for arbitrary sink
strength k, and potential. In most of the conventional ap-
proaches, ET system of interest has been modeled through
harmonic potentials with same curvature for the reactant and
product surfaces and a diffusivity independent of reaction
coordinate. However, there are many situations where ET in
a system cannot be modeled through harmonic potentials and
the curvature of the potential surfaces for the reactant and
product may not be the same and also the diffusivity may be
dependent on the reaction coordinate. Therefore, it will be
useful to illustrate how the analytical expression for the rate
constant of the reversible ET reactions can be evaluated in
terms of arbitrary potential and position dependent diffusiv-
ity corresponding to the different initial states of preparation.

The organization of the rest of the paper is as follows. In
the following Sec. II, we identify the reaction coordinate and
transition point for ET reaction. In Sec. III we provide gen-
eral kinetic equations for reversible ET reactions, consisting
of two one-dimensional coupled Smoluchowski equations
governing the probability distributions corresponding to the
diffusive motions of the reaction coordinate in arbitrary po-
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FIG. 2. (a) Potential energy curves for the reactant and product
in an ET reaction. The abscissa and the ordinate are the same as in
Fig. 1. It represents the relaxation of the system to the potential
minimum of the excited-state surface when k is small. (b) Potential
energy curves for the reactant and product in an ET reaction. The
abscissa and the ordinate are the same as in Fig. 1. It represents the
back ET reaction almost exclusively at the intersection point when
ko is large. (c) Potential energy curves for the reactant and product
in an ET reaction. The abscissa and the ordinate are the same as in
Fig. 1. It represents both the processes i.e., relaxation of the excited
state to its potential minimum and the back ET in the case of inter-
mediate k.

tential wells of the reactant and the product in presence of
localized sink of arbitrary strength at the transition point.
This is followed by Sec. IV presenting details of the theoret-
ical formulation for exact analytical expressions for the av-
erage forward rate constant of reversible ET reactions in
terms of general effective potential and reaction coordinate
dependent diffusivity considering different initial conditions.
In Sec. V, we do discuss various limiting cases for the rate of
electron transfer reactions corresponding to the different ex-
perimental situations in order to understand the relative con-
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tribution of the rate calculated based on transition state
theory and also by solvent dynamics to the overall rate of ET.

In order to understand the free energy gap dependence of
the rate of ET reactions, in Sec. VI, we have considered
results for back ET reactions for charge recombination reac-
tions. Section VII concludes with a brief summary.

II. ELECTRON TRANSFER REACTION COORDINATE

There have been considerable efforts to construct a cor-
rect reaction coordinate for the ET reaction. As originally
pointed out by Marcus [1], the following two conditions
must be satisfied at the time of the electron transfer (in the
transition state); (1) the positions and orientations of all the
solvent molecules should be the same and (2) the total en-
ergy must be the same between the initial and final states.
The first requirement is due to the character of heavy solvent
motions as compared with a light electron motion. The sec-
ond condition is just the energy conservation. A reaction co-
ordinate with the dimension of energy proposed by Calef and
Wolynes [3] and redefined by Yoshimori et al.[24], has often
been used. While defining the reaction coordinate in the
present formalism, we first write down the Hamiltonian for
the reactant/product state of an ET reaction in a polar solvent
in the general form

HT)=H D)+ H, (i=rp), (1)

where I" denotes all the accessible coordinates of the solvent
molecules and the superscripts r and p correspond to the
reactant and the product, respectively. Here H, is the elec-
tronic term, independent of solvent motions, corresponding
to the energy of the isolated reactant or product pair, and
consists of two parts, viz., the Coulomb interaction bgtween
the net charges of the donor (z}) and the acceptor (z,) sites
separated by a distance R, and their electronic energies under
vacuum. The other term, viz., solvent-dependent contribution
H, (I') can be expressed in the general form

; o o - P (i - Fona)
H;01<r>=2{z;e R
m

ma T'ma

+ 2 2 iy Ty i+ Hopg+ Heey  (2)

m>n

where the first two terms represent the charge-dipole interac-
tion with e as the electronic charge, and z'(z") and 7,,,(,ny)
denoting, respectively, the valence of the acceptor (donor)
and its distance from the m-th solvent molecule with a per-

>

manent dipole moment f,,. T, represents the dipole-dipole
interaction tensor. H' , accounts for the residual charge-
dipole as well as the dipole-dipole interactions due to the
electronic polarization of the solute and solvent molecules,
and H,._. is the core-core interaction between solute and sol-
vent molecules and between solvent molecules.

The electron, which is originally localized at the donor
site in the reactant, will be delocalized when the following
condition is satisfied, i.e.:
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H, () = H, (™) = H, - Hy = - AG, 3)
where I'™* corresponds to the transition point in multidimen-
sional space. Due to thermal fluctuation, the only quantity
that changes with the solvent configuration I' and determines
the ET is [H.,,(I") - H? (I')] suggesting an obvious choice of
the microscopic reaction coordinate to be given by

A(T) = [H;, (') = Hf,(1)]. 4)
Now we consider the probability distribution for the reaction
coordinate. The probability of the microscopic reaction coor-
dinate A(I") to have the value x, when the system is in the
reactant/product state, is defined as

exp[- BV (x)]= B J dT' 8(A(T) - x)exp[- BH',,(T)],
(5)

where exp[-BV¥/(x)] (i=1,2 for r,p corresponds to the pro-
jection of the respective distribution function for the
reactant/product in full phase space on subspace described by
the function JA(I")—x] directed along the one-dimensional
coordinate x. An important advantage of defining such effec-
tive potential energy curves V¥/(x) is that the solvent con-
figurations [corresponding to those phase space points that
lie on the surface A(I')=x] along the reaction coordinate x
are the same between the initial (electron is on the donor
site) and final state (electron is on the acceptor site) owing to
the delta function. This property is very important because
the condition (1) is always satisfied for all of the values of x,
although the condition (2) is not satisfied always. However,
at the transition point x*, the condition (1) and the energy
conservation [condition (2)] are guaranteed when the follow-
ing relation holds, viz.,

exp[- Vi’ (x")] =" f dl' JA(T) - x"Jexp{- BH,(I')

+ BLHG,(T)

ol

—H,(D)]}
= exp[ﬂAG]B‘IJ dIl' A(T) —x™]

Xexp[- BHE ()]
= exp[- BV57(x") + BAG].

The above derivation provides a relation between the effec-
tive potentials of the reactant and the product at the transition
point x*, viz.,

Vel (x*) = V(") - BAG. (6)

where AG denotes the free energy of ET reaction. The above
Eq. (6) actually provides a root for obtaining the transition
point x* for occurrence of the ET reaction provided the ex-
plicit expression for V¥/(x*) is known. An alternative ap-
proach can also be used to derive a relation similar to the
above, valid for all values of x, viz.,
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VTff(x) =— B‘l ln[ﬁ_lf dFé[A(F) —X]eXP{— BHful(F)
+ ﬁ[Hfol(F) - H:al(r)]}:|
=-pg"! ln{exp[— ,Bx]ﬁ_lf dU' JA(I) —x]

X CXP[— BHfol(F)] }
=— B In{exp[- BV’ (x) - Bx},

which can be rewritten as

Vi) = V() + . )
Combining Eq. (7) with Eq. (6), we obtain
xX==AG. (8)

The above relation is very important in the sense that the
transition point is independent of the form of the effective
potential V¥/(x) but depends only on the free energy of re-
action. Now in order to evaluate the rate of ET reactions,
what is needed, is the kinetic equation for the reaction coor-
dinate x which describes the diffusive motion of the reaction
coordinate along with ET reaction. In the following section
we discuss it in details.

III. THEORETICAL FORMALISM

In the reversible ET process, the system moving initially
on a multidimensional reactant potential well, is brought by
thermal fluctuation to the intersection point I'* (transition
point in multidimensional space) and ET does take place at
this point. At the transition point, product is in nonequilib-
rium state, and solvent relaxation brings it down to the stable
product state. Once the product is formed, it starts recrossing
to the reactant well through the same intersection point until
the dynamical equilibrium is reached. The ET reaction does
occur with an intrinsic rate [12] k,, (corresponding to I'*) i.e.,
when the reactant and product potential energies are equal. It
is, therefore, possible to formulate the kinetic equation for
ET reactions in terms of a nonlinear Smoluchowski-Vlasov
equation, which would explicitly include the multidimen-
sional nature of the diffusive motion but only at the cost of
additional complexity. The theoretical description, that we
propose here is based on a kinetic equation for the probabil-
ity distribution P;(x,7|xy,0) of a microscopic reaction coor-
dinate A constrained to have a value x at time ¢ with its initial
value x, at t=0, which was originally obtained by Zwanzig
[25] and subsequently modified by others, and can be written
[3] in the Markovian limit as

IP(x,1|xy,0) @ AP;(x,1]x,0)
S L
Jdt ox ox

+ Pi(x,t xO,O)%{ﬁfof(x)}} } . 9)

Here, x-dependent diffusivity D,(x) is defined as
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f dTA(T,)A(T) SA(T) - x)exp[— BH.,(T)]

Di(x) = f‘” dt
0 f dT'S(A(T) - x)exp[— BH ()]

(10)

where the dot corresponds to time derivative. Derivation of
Eq. (9) is based on the assumption that the reaction coordi-
nate varying slowly is not coupled to any other slowly relax-
ing quantity in the fluid and that the momentum and angular
momentum correlations decay much more rapidly than the
positions or orientations. We now consider here the descrip-
tions of the kinetic equations for the forward as well as back-
ward processes based on Smoluchowski equations governing
the probability distributions P;(x,t|xy,0) and P,(x,t|x,,0)
corresponding to the diffusive motions of one-dimensional
reaction coordinate x in the respective potential wells of the
reactant and product state in presence of a delta sink of
strength k located at the transition point x*, and can be given
by,

(?P](.X,[|X0,0) J
at " ox

{Dl(x){ AP (x,]x,0)

ox
e xo,O)&%{BViff(X)}} } ~ kol —3")
X[P(x,t|x0,0) = P(x,1]x0,0)], (11)
+ Py (x,1 xo,O)(%{,BVZ” (X)}} } = kod(x = x¥)
X[ Py(x,t|x0,0) = P, (x,1]x0,0)]. (12)

This one-dimensional motion actually involves the collective
reorientation of a large number of solvent molecules. Here
D,(x) and D,(x) denotes, respectively, the reaction coordi-
nate x-dependent diffusivity in the reactant and product
states and V¥ (x) and V§”(x) are the corresponding effective
potentials. In order to derive the average forward rate con-
stant k,, we start with the macroscopic kinetic equations for
a reversible reaction defined as

P - M0+ kN0, (13a)
de—zt(t)=—k21Nz(f)+k12N1(f), (13b)

where k;, and k,; denote, respectively, the rate constants for
forward and  backward  reactions and N (1)
=[7 dxP(x,t|x,0) and N,(¢)= ", dxP,(x,t|xy,0). Now us-
ing Egs. (13a) and (13b), one can easily obtain an expression
for N,(¢) in Laplace plane as
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S+k21

Ny(s) = (14)

S2+S(k12+k21) ’

where N,(s) denotes the Laplace transform [N,(s)
=[dt exp(—st)N,(1)]. Equation (14), on inverse Laplace
transformation, leads to the expression

M =exp[— (k12+k21)t]’ (15)

(¢4

where the parameter « can be expressed in terms of respec-
tive forward and backward rate constants k|, and k,; as

k12

a=—""". 16
(k13 + k1) (16)

The average forward rate constant k;, can now be obtained
by using the equilibrium constant relation k,,=k;,/k,; and
Eq. (16), and after some algebra takes the form

;) = lim L+ XPLAAGD {ﬁl(s) _4-a) : @) } a7

s—0 o

where B(=1/kzT) denotes the inverse temperature and AG
represents the free energy of ET reaction. In order to obtain
an analytical expression for k;,, what we need, is an exact
expression for the function P,(x,z|xy,0), which can be ob-
tained from the Green’s function solutions [26] of Egs. (11)
and (12). The space and time evolution of the quantity
P,(x,t|xy,0) and hence the rate constant k;, depend on the
initial conditions for the probability distributions of the reac-
tion coordinate in the reactant and product wells. This can be
quite different depending on different experimental situa-
tions, which are described in details in the following sec-
tions.

IV. RATE OF REACTION FOR REVERSIBLE ELECTRON
TRANSFER

A. Rate constant for equilibrium initial distribution

One choice that we have considered here is the thermal
equilibrium distribution as the initial condition for the reac-
tant, i.e.,

exp[- BV (x)]
f dx" exp[- BV{7(x')]

P, (x,t=0]xy,0) = P{¥(x) =

(18)

and

(1 +exp[BAG)) | a+ ako{PA(x",s

x*,0) + PO(x*,s|x*,0)} — kol P$9(x")/s}
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Pz(.x,[=0|.X0,0)=0 (19)

for the product. It is obvious from Fig. 1 that the barrier
height for ET along the reaction coordinate x attains the low-
est value only at the transition point x*, therefore, the most
probable path for ET is through the transition point. In this
case, thermal fluctuation brings the system at the transition
point x* and then the transfer of electron does take place
from donor to acceptor. As the system is in thermal equilib-
rium at initial time (¢=0), in order to obtain the rate of ET
reaction we first write the Green function solutions [26] of
Eqgs. (11) and (12) given by

t

P, (x,1]x0,0) = P§(x) - koj dr' P(x,t —1'|x*,0)
0

X[P(x",1']x0,0) = Po(x","]x,0)], (20)

Pz(x,t

t
X0,0) = — kof dt’Pg(x,t —t'[x*,0)[Py(x*,1'|x(,0)
0

—PI(X*,ZJ|X0,O)], (21)

where the functions P?(x,t Xg,0) and Pg(x,t Xp,0) are the
respective solutions of Eqs. (11) and (12) in absence of sink
terms. Equations (20) and (21) are the respective exact solu-
tions of two one-dimensional coupled Smoluchowski equa-
tions corresponding to the diffusive motion of the reaction
coordinate in the potential wells of the reactant and the prod-
uct with a localized sink of arbitrary location and strength.
Taking the Laplace transforms of Egs. (20) and (21) and after
some rearrangement, we obtain

= P(x") )1 + koPS(x",s]x",0
P, (x%,s]x0,0) = (Py (~ sl 0 2(~ )] ’
1+ ko[ P(x",s]x*,0) + P(x*,s]x*,0)]
(22)
= koP5(x*,s]x*,0) Py (x*,5]x,,0
PZ(x*,S.x0,0): 0 2( ) 1( 0 ) (23)

1+ koﬁg(x*,s

x*,0)

Now integrating Eqs. (20) and (21) over x, taking the
Laplace transforms of the resulting equations and finally
combining with Egs. (22) and (23), we obtain

7.(s) 1 . ko{P§4(x")/s}
1\$)=- - — — .
s 1 + ko{P)(x*,s]x*,0) + PY(x*,s|x*,0)}
(24)

Now combining Egs. (17) and (24), one can express the rate
x*,0) (i=1,2) as

constant kj, in terms of ﬁ?(x*,s

-1 _ 1
ki, =lim
s—0 o

s[1 + ko{PO(x*,s

Z (25)
x*,0) + P(z)(x*,s

x*,0)}]
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In the limit s — 0, the Laplace transformed distribution func-
tions ﬁ?(x*,s x*,0) and P{¥(x*)/s diverge as the distribution
functions P?(x*,t x*,0) attain nonzero stationary values at
t— o, Therefore, it is difficult to evaluate the numerator in
the limit s— 0. However, this divergence problem can be

avoided if we split ﬁ?(x*,s x*,0) into two parts, viz.,

Po(x*,s]x",0) = [PO(x",s

x*,0) = {P{(x")/s}] + {P{*(x")/s},
(26)

where the first and second part of the right hand side of Eq.
(26) represent the nondiverging and diverging terms, respec-
tively, in the limit s—0. Now substituting Eq. (26) in the
numerator of the Eq. (25) and after performing some algebra,
one obtains an expression which is completely free from di-
verging terms. Therefore, in this limit, the numerator can be
expressed as

PHYSICAL REVIEW E 82, 016110 (2010)

lim{a + ako[ P2(x*,s|x*,0) + PY(x",s|x*,0)] — ko[ P¢/(x")/s]}
s—0

=1im a(1 + ko[{PO(x",s|x*,0) = [P$9(x")/s]}
s—0

+ {ﬁg(x*,s

x",0) = [PY(x)/sT}]) (27)

However, the denominator of Eq. (25) does not contain any
diverging term and it can be expressed in terms of stationary
distribution as

x*,0) + ﬁg(x*,s

lirr(l)[s{l +ko[PO(x*,s x",0)]}]
= ko[ P1(x") + PY(x")]. (28)

Now substituting Egs. (27) and (28) into Eq. (25), one ob-
tains a simple expression for the rate constant given by

f”’ di[ PO(x*,1|x*,0) — P¢9(x*)] + jw di{ P(x*,1|x*,0) — P51(x*)]
k1= (1 +exp[ BAG]) ! + 2 0 (29)
. ko[P19(x") + P51(x")] [PI(x™) + P3(x")] ’

which can also be written as

_1_
m4anMﬂmmwnwwn

mmwwnﬂmwwq
[P{(x") + P(x")] ’

(30)

where 7,(x*) represents the average time [26] for absorption
for the reactant/product starting from the equilibrium distri-
bution at time >0, defined as

[’

f Al P’(x*,1]*,0) — P9(x")]
0

r(x") = e BENEIY

Equation (30) can also be expressed as

ki =
{1+

k{ST(x*)
k{ST(x*) kgST(x*) ’

Ke) )

(32)

where kiTST(x*)[=k0Pf"(x*)] represents the ET rate corre-
sponding to passage from ith well to jth well calculated
based on transition state theory (TST) and kf(x*)[:l [7(x")]
is the rate for well dynamics in ith well. This is an important
result for the average forward rate constant for the system
undergoing reversible ET reaction starting with equilibrium
initial configuration.

B. Rate constant for initial nonequilibrium distribution

The other initial condition, that we have considered here,
is the nonequilibrium configuration i.e., P;(x,t=0|xy,0)
=8(x—x,) as the initial condition for the reactant and
P(x,t=0]x,0)=0 for the product. Such a nonequilibrium
situation is associated with a large energy gap for ET reac-
tion, and solvent configurations are the same between the
initial and final state corresponding to before and after pho-
toexcitation but electronic configurations are different. Such
state cannot be brought by thermal fluctuation but can be
achieved by photoexcitation. In the case of back ET reaction,
the initial nonequilibrium configuration x, is produced dur-
ing photoexcitation as shown in Figs. 2(a)-2(c). Here x cor-
responds to the value of x at which ngf (x) is minimum. In
such situations, solvent configuration in both the ground and
excited states is the same but x,, is different from x*. There-
fore, the system at the higher level of excitation relaxes
downward to the potential minimum of the excited-state sur-
face due to relaxation of the polar solvent until its energy
coincides with that of the ground state, i.e., ET takes place at
the point x=x". For this situation, in order to obtain an ex-
pression for the rate of ET reaction, we first write exact
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Green’s function solutions [25] of Egs. (11) and (12) as (
Pz X, 1

t
x0,0) =— kOJ dt' PS(x,t —t'|x*,0)[ Py(x*,1'|x,,0)
0

Pi(x,t

X0,0) = P?(x,l

1
x0,0) — ko f dt' P)(x,t —t'|x*,0) - Py(x",1'[x0,0)]. (34)

0 . .
Now applying the same procedure discussed above, one can

X[P(x",t' |x0,0) = Po(x",t'|x0,0)],  (33) obtain the ET rate constant kj, defined as

1 . (1 +exp[BAG]) 71 (x",x0) P{4(x™) + 7(x™) PSY(x™) — exp[ BAG] 7 (x*) P§4(x™)
kol PS9(x*) + PS9(x*)} {P(x") + PY(x")}

bl

kiy'=(1+ exp[,BAG])[

(35)

where 7,(x*,x,) represents the first passage time for absorption of the particle starting from the position x=x, [the nonequi-
librium distribution P;(x,7|xy,0)=8(x—x,)] at time =0, defined as

f dt[Pl-O(x*,t x*,0) — P?(x*,t x0,0)]
(X xg) = — : (36)
P{(x")

Equation (35) can be expressed in terms of the nonequilibrium relaxation dynamics rate %(x*, xo)[=1/7,(x*,x,)] in the reactant

well, well dynamics rate k%(x*) and intrinsic transition rate k°' (x*) as
KIST (i
kip = TST( ) d; dy . (37)
ki (x7) ki(x",xg)  K§(x",x0)
1+ —— L+exp(BAGN 1+ ——— -7
ki (x*,x0) K5(x") k{(x")
|
This is also another important result for the rate of reversible o * .
ET reaction for the system starting with nonequilibrium ini- T (X x) = | dipi(t.x7,xg), (38)
0

tial configuration. Here, the relation for the rate constant
given by Eq. (37), which corresponds to nonequilibrium ini-
tial configuration of the system, shows that the ratio of TST
rate and well dynamics rate in their respective wells does not
appear in the expression symmetrically in contrast to the
symmetric appearance of the same for the system initially in
equilibrium configuration as is evident from Eq. (32).

Now, in order to have explicit analytical expression for
the rate of ET reactions what is needed is analytical expres-
sions for the quantities 7;(x*,x,) and 7;(x"), which can be
evaluated from the distribution function P?(x,t Xp,0). For
the special case when fof (x) is harmonic and D;(x) is inde-
pendent of the reaction coordinate, the exact expression for
P?(x,t xp,0) can be obtained easily. However, there are
many situations, where fof (x) cannot be considered as har-
monic potential and D,(x) is a function of the reaction coor-
dinate, and it is difficult to obtain the exact distribution
P?(x,t Xp,0). In the following section, we derive analytical
expression for the quantity 7,(x",x) for an arbitrary potential
V¢/(x) and position dependent diffusivity D;(x) without the
knowledge of the distribution function P?(x,t X0,0).

C. Evaluation of first passage time 7;(x",x)

We first define the mean passage time [27] 7/ (x",xo) (i
=1,2) in terms of p;(r,x*,x,) as

where p,(t,x",x) represents the probability of finding the
system at ith state (reactant or product) with its initial value
X at t=0, and is defined in terms of the conditional probabil-

ity P;(x,t|xy,0) as
pilt.x",xg) = | dxP;(x,t|x0,0), (39)
where P;(x,t]x,,0) is the solution of the relevant kinetic

equation for ET reaction from the reactant/product surface
defined as

P} (x,t|x,,0) 9 AP (x,t|x,,0
i (1 )=—{D,-(x){ ! (x,1x0,0)

ot ox ox

+P| (x,tle,O)%{Bfof(X)}}

= koS(x — x) P} (x,1

X0,0). (40)

It can be shown that in the limit of kg— o, 7/(x",x) be-
comes T;(x",xq). In order to prove that this relation holds
good, we first write an exact Green’s function solution of Eq.
(40) as
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t
Xo,o) - koJ dt,

0

P} (x,1]x0,0) = P?(x,t

X P?(x,t —t'|x",0)P!(x",t'|xy,0), (41)

where the function P?(x,t|x0,0) is the solution of Eq. (40) in
absence of the sink term. Both P/(x,7|x,,0) and
P?(x,t X(,0) correspond to the same initial condition, which
we consider here to be P](x,t x0,0)=P?(x,t X,0)=38(x
—xo) at t=0. Taking the Laplace-transform of Eq. (41) and
after rearrangement we obtain,

P:')(x*’s X0, 0)

1+ koﬁ?(x*,s x*,0) .

ﬁ;(x*,s

%0) = 42)

Now integrating Eq. (41) over x, taking the Laplace trans-

form of the resulting equation and finally combining with

Eq. (42), we obtain

1+ ko[ PO(x",s
s[1+ kolj?(x*,s

x*,0) - ﬁ?(x*,s
x*,0)]

,0
ﬁi(S7X*»x0) = al )]

(43)

Since 7 (x*,x) =limp;(s,x", x,), we obtain from Eq. (43) the
s—0
expression

J dt[P?(x*,t x*,0) — P?(x*,t X0,0)]
0

Tl/ (X*7x0) =

s

+
koP{(x") P

(44)

where Pfq(x*)=P?(x*,°0|x*,0). Now employing the absorb-
ing boundary condition i.e., k,— %, the above equation re-
duces to

[

f dt[P?(x*,tx*,O) - P?(x*,txo,O)]
0

(6" xg) = P . (45)

It is clear from Eq. (44) that once the analytical expression
for 7/(x",x,) is known, one can obtain the analytical expres-
sion for 7;(x",x;) by employing the limiting condition k,
— 0. Although the expression for 7/(x",x,) can be obtained
from the knowledge of p;(r,x",xp), but it is not possible to
obtain an equation for p;(r,x",x,) by merely integrating both
sides of Eq. (41) over x. Therefore, it will be advantageous if
one can write a differential equation equivalent of Eq. (40) in
the variable x(. This is indeed possible by using the substi-
tution

P} (x,t

x0.0) = exp[— BV (x) U (x.t

X0,0) (46)
in Eq. (40) along with the reciprocity relation [28-30]

Ui(.x,t

X05 O) = Ui(ant

x,0), (47)

which leads, after some algebra, to the differential equation
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P} (x,1]x,,0) J
R < expl 8 ()] {D,(xo)exp[— BV (xo)]
t 2%
P! (x,1]x0,0
X M] _ k05(x0 _x*)Pi’(x,txO,O).
(9}(0

(48)
Now integrating both sides over x, one obtains

api(t,x*,xg)

P ‘3XP[/3V?H()CO)]i [Di(xo)eXP[— ,vi'ff(xo)]
t &xo

« ap(t,x*,xp)

] — koOlxg — x")pi(t,x",x0),
ﬁxO

(49)

which on further integration over time, and using the bound-
ary condition p;(0,x*,xy)=1, leads to the differential equa-
tion
ff J f, (97'1’ (-X*v-x())
exp[ BV (xo)]=—| Di(xp)exp[- BV (xg) | ———
C?)CO (9X0
= kodlxo—x") T," (x*,x0) == 1. (50)

Integrating both sides over x, for x,>x" as well as x,<x",
one obtains

a7/ (x",x0) _ exp[BV{ (xy)]
g Dilx)

(- f " i expl— BV,
(51)

where C; is an arbitrary constant of integration. Interestingly,
the evaluation of the value of C; depends on, for example,
employment of boundary conditions defined as

|:((?7'['(x*,x0)> ~ (r?qf(x*,xo)) :|
9xg (x*+e) 9xg x*

= 2D,07) 7 (x",x")  for xy>x", (52)
and
{(%}'(x*,xo)) ((97’[(x*,x0)> }
dxg (*e) dxg o
ko

7 (x",x")  for x,<x", (53)

2D
where € is a very small positive number. Now substituting
Xp=x" in Eq. (44), we obtain the simple expression for
7/ (x",x*) appearing in the above equations given by

1

(X x) = ————. 54
= ) 54

By combining Egs. (51)—(54) we obtain the expressions for
C;, given by
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1(~ ” "
C;= 5] dx exp[- BV (x)] for xo>x", (55)
and
1 1
Ci=- EJ dx exp[- BV (x)] for xo<x*, (56)

Integrating both sides of Eq. (51) from x** ¢ to x, and tak-
ing the limit € — 0, one obtains

exp[BVi” (x)]

X0
7 (x%,x0) = 7 (x%,x7) + J dx
' ' x* Di(-x)

X{C,-— J ! exp[- BVf-f"(x’)]}. (57)

Now employing the absorbing boundary condition, i.e., kg
— 0, we obtain

T(x",x0) = f

X{C,-—fxdx’ exp[— ,B’fof(x')]}. (58)

CXP[ﬁVef /()]
D(x)

This is an important new result for the first passage time
7i(x", xp).

Now in order to obtain 7,(x*) from the knowledge of
7(x",x0), what one needs is an averaging of 7,(x*,x,) with
equilibrium distribution function P{/(x), viz.,

+00
T.(x") = J dxoP{9(xg) 7i(x",x0) (59)
where the relation for 7;(x*) expressed by Eq. (31) can be

obtained by multiplying both sides of Eq. (45) by P{%(x),
integrating over x, and using the identity [31]

P{(xo) 0) = P{(x) P} (xo, 1

x,0). (60)

The average time 7,(x*) can then be obtained by combining
Eqgs. (55), (56), (58), and (59) and can be written as

Veff
T(x>——[g<— )J Bl

X Veff
ro) | a0 (x)]c,oo
* ff
a8 dxg,(x)%f)("”m)
” Vel (x
- f * dxgi<x>%®(”q<x>], (61)
where A;, g,(x), F;i(x) and G;(x) are, respectively, given by
A;=[g/() - gi(= )], (62)
gilx) = f ) dx" expl[- BVi7(x)], (63)
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Fl'(x) = Ai + 2gl(x) , (64)

Gi(x) =A; = 2g;(x). (65)

Here Egs. (32), (37), (58), and (61) are the new results and
are valid for any arbitrary potential and position dependent
diffusivity in contrast to the earlier analytical results obtained
for the harmonic potential and position independent diffusiv-
ity. In the following section, we consider the analytical ex-
pressions for the ET rate for various limiting situations.

V. RESULTS FOR LIMITING CASES

A. Equilibrium distribution as initial condition

The relation expressed by Eq. (32) is related to the relax-
ation of the distribution at x*, initially localized at x*, to its
equilibrium value. The more rapid this process is, the larger
is the value of k;i(x*). Here kf(x*) refers solely to the well
relaxation and has nothing to do with the intrinsic transition
process kTST(x*) at x*. In the case of exothermic reaction,
(i.e., BAG<0), on using the relation kTST(x )/ szST(x*)
=exp[ BAG], one can easily show the forward rate constant
ki, to be dependent only on the ET reaction in a single di-
rection corresponding to transition from the well 1 into well
2, i.e.,

I
kITST(x*) k‘f(x*) '

For the self exchange reaction, (i.e., AG=0), the rate of ET
reactions becomes

Ky = (66)

1 1 1
+ + ,
00 ) T R
where k15T(x*)=k"57(x*).
In general, the ET rate depends both on kTST(x*) and
kd(x*) However if the latter process is faster [kTST(x*)

kji(x*)] the nonadiabatic TST rate [leST(x )] is the limiting
one, i.e.,

ki = (67)

1
-1

klZ k{ST(X*) ’ (68)
which indicates the forward rate k;, to be independent on the
dynamics of diffusive motion in the potential wells of the
reactant and the product. However, if the diffusion dynamics
becomes slow [kiTST(x*)>kf(x*)], ki, depends on the free
energy of reaction as well as the diffusion dynamics in the
respective potential wells, as given by

kjy = +exp[ BAG] (69)

k"( ) kd( ")
It is clear from the above relation that for the exothermic ET
reaction, (i.e., BAG <0), the forward ET rate solely depends
on the diffusion dynamics in the potential well of the reac-
tant.

B. Nonequilibrium distribution as initial condition

In the relation expressed by Eq. (37), k(x*,x,) is related
to the difference of the relaxation of distribution functions
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initially at x*(sink position) and x,(other than sink position),
to that, respectively, equilibrium distribution function at x*.
As the initial configuration, x, is more and more away from
the sink position x* and the relative relaxation processes be-
coming slower and slower making the nonequilibrium relax-
ation dynamics rate k%(x*,x,) smaller and smaller. So in the
case of exothermic reaction, i.e., BAG <0, large intrinsic ET
rate ko, and if x, is far away from x* one can expect
k‘l‘](x*,xo)<k;1(x*). In this case, the rate of ET reaction is
controlled by the relaxation dynamics, i.e.,

k1o = K{(x*,x0), (70)

which has been demonstrated in Fig. 2(b). However, when k
is small, the forward rate constant kj, of ET reaction be-
comes equal to leST, the relaxation process for this case is
shown in Fig. 2(a). In the case of intermediate values of k,
all the quantities, viz., nonequilibrium relaxation dynamics
k‘f(x*,xo) in the reactant well, well dynamics k?(x*) and in-
trinsic transition rate k,-TST(x*) contribute to the overall rate
ki, of ET reaction. In this case the interplay between the
relaxation dynamics and ET reaction is shown in Fig. 2(c). If
X is close to the value of x* and BAG <0 then the Eq. (37)
becomes
ST

ki, = i

1+

(71)
KIST

k‘f(x*,xo)

VI. RESULTS AND DISCUSSION

As an illustrative example, we now consider a typical ET
process corresponding to the situation depicted in Figs.
2(a)-2(c), where a molecule DA is excited from the ground
state with an ultrashort laser pulse, leading to the formation
of the ion-pair D*A™. Thus, the ion-pair is initially produced
in a completely nonequilibrium configuration and then re-
laxes downward along its potential energy surface (corre-
sponding to D*A~) through relaxation of the surrounding po-
lar solvent till it meets the potential energy surface of the
molecule DA, where the back ET reaction takes place. We
consider here a simple theoretical model for the ET system
of interest modeled through harmonic potential [24] for
D*A~ and DA defined, respectively, as

1
Vil (x) = sz, (72)

vi(x) = ﬁxz -1, (73)
where N\ represents the solvent reorganization energy. The
expression for V§¥(x) is obtained using the relation defined
in Egs. (6) and (72). In the case of back ET reaction, the
initial nonequilibrium configuration x,=2A\, produced during
photo excitation, corresponds to the value of the reaction
coordinate x at which ngf (x) is minimum. We now calculate
the average forward ET rate constant k|, using Egs. (37),
(72), and (73) as a function of the free energy change AG of
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/
loglﬂ(kll)

0.5 1.0 1.5

-AG (eV)

FIG. 3. Dependence of the average forward rate constant &, of
the reversible ET reaction on the free energy change AG for various
values of the electronic coupling J: (a) 0.003 eV, (b) 0.01 eV, (c) 0.3
eV. The parameters used are A=1.0 eV, 7=0.3 ps, and 7=300 K.

the reaction. We assume here the microscopic reaction coor-
dinate A(f) to decay exponentially with relaxation time 7.
The solvent relaxation time, temperature and solvent reorga-
nization energy are taken, respectively, as 7,=0.3 ps, T
=300 K, and A=1.0 eV. In order to understand the effect of
back ET on the free energy gap (FEG) dependence of the
rate, we have calculated the ET rates for different values of
electronic coupling J [ky=(47?/h)J*] and plotted k|, in Fig.
3. It is clear from the figure that with increase in J, there is a
transition from the symmetric free energy gap (FEG) depen-
dence rate, which was predicted by Marcus, to asymmetric
FEG dependent rate. When the value of J is small, one ob-
tains the Marcus result i.e., k|, = krsr [Eq. (68)]. In this situ-
ation, FEG dependence of the rate of ET becomes symmetric
as predicted by Marcus. However, when the value of J for
ET system of interest is reasonably significant, the average
rate constant k|, ~ k%(x*,x,) is given by Eq. (70). In this case,
the ET rate is controlled by the solvation dynamics leading to
the non-Marcus FEG dependence. In many nonequilibrium
situations, experimentally the asymmetric FEG dependence
[32] of ET rate is observed, and therefore, the present theory
is able to explain the non-Marcus FEG dependence of the
rate of ET reactions.

VII. CONCLUDING REMARKS

We have derived for the first time an analytical expression
for the average forward rate constant k;, of a reversible elec-
tron transfer reaction, modeled through a reaction coordinate
undergoing diffusive motion in arbitrary potential wells of
the reactant and the product in presence of a localized sink of
arbitrary location and strength. The dynamics of diffusive
motion is described by two coupled generalized diffusion-
reaction (Smoluchowski) equations with reaction coordinate
dependent diffusivity and delta sink at the transition point.
The average rate constant k;, obtained here for the system,
with two initial conditions corresponding to the equilibrium
and nonequilibrium (delta function) distributions, consists of
contributions from the forward and backward rate constants
[kI57(x*) and k%7(x*)] calculated based on the transition
state theory and diffusion dynamics with rate constants
[k9(x*) and k4(x*)] in the reactant and product potential wells
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and relaxation dynamics with rate constant k(x*,x,). We
also consider here various limiting cases to understand the
relative contribution of the rate calculated based on TST, the
well dynamics in their respective wells and the relaxation
dynamics in the excited state to the overall rate of ET. As an
illustrative example, we have considered back ET reaction

PHYSICAL REVIEW E 82, 016110 (2010)

and shown that the present theory can explain the non-
Marcus FEG dependence [32] of the rate of ET reactions.
More importantly, the approach presented here can easily be
extended to the system describing the dynamics of diffusive
motion in coupled multipotential surfaces associated with
electron transfer reactions.

[1]R. A. Marcus, J. Chem. Phys. 24, 979 (1956); Annu. Rev.
Phys. Chem. 15, 155 (1964).

[2] L. D. Zusman, Chem. Phys. 49, 295 (1980); 80, 29 (1983);
119, 51 (1988).

[3] D. E Calef and P. G. Wolynes, J. Phys. Chem. 87, 3387
(1983); J. Chem. Phys. 78, 470 (1983).

[4]J. T. Hynes, J. Phys. Chem. 90, 3701 (1986); H. J. Kim and J.
T. Hynes, ibid. 94, 2736 (1990); J. Chem. Phys. 93, 5211
(1990); D. Zichi, G. Ciccotti, J. T. Hynes, and M. Ferrario, J.
Phys. Chem. 93, 6261 (1989); B. B. Smith, A. Staib, and J. T.
Hynes, Chem. Phys. 176, 521 (1993).

[5] G. C. Walker, P. F. Barbara, S. K. Doorn, Y. Dong, and J. T.
Hupp, J. Phys. Chem. 95, 5712 (1991).

[6] P. F. Barbara, G. C. Walker, and T. P. Smith, Science 256, 975
(1992).

[7] E. Markel, N. S. Ferris, I. R. Gould, and A. B. Myers, J. Am.
Chem. Soc. 114, 6208 (1992).

[8] A. 1. Burshtein, A. A. Neufeld, and K. L. Ivanov, J. Chem.
Phys. 115, 2652 (2001).

[9] L Rips and J. Jortner, J. Chem. Phys. 87, 2090 (1987); 88, 818
(1988).

[10] J. Zhu, O. B. Spirina, and R. I. Cukier, J. Chem. Phys. 100,
8109 (1994).

[11] R. L. Cukier, J. Chem. Phys. 88, 5594 (1988).

[12] H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986).

[13] R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli,
Nature (London) 369, 471 (1994).

[14] C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and P. L.
Dutton, Nature (London) 355, 796 (1992).

[15] A. Osyczka, C. C. Moser, F. Daldal, and P. L. Dutton, Nature

(London) 427, 607 (2004).

[16] B. Tembe, H. L. Friedman, and M. D. Newton, J. Chem. Phys.
76, 1490 (1982); H. L. Friedman and M. D. Newton, J. Elec-
troanal. Chem. 204, 21 (1986).

[17] Y. Wang, M. McAuliffe, F. Novak, and K. B. Eisenthal, J.
Phys. Chem. 85, 3736 (1981).

[18] D. Huppert, S. D. Rand, P. M. Rentzepis, P. F. Barbara, W. S.
Struve, and Z. R. Grabowski, J. Chem. Phys. 75, 5714 (1981).

[19] J. Zhu and J. C. Rasaiah, J. Chem. Phys. 95, 3325 (1991); 96,
1435 (1992).

[20] S. Roy and B. Bagchi, J. Chem. Phys. 100, 8802 (1994).

[21] L. V. Gopich, A. A. Kipriyanov, and A. B. Doktorov, J. Chem.
Phys. 110, 10888 (1999).

[22] A. Chandra, J. Chem. Phys. 110, 1569 (1999); Chem. Phys.
238, 285 (1998); J. Mol. Struct. 361, 123 (1996).

[23] W. Nadler and R. A. Marcus, J. Chem. Phys. 86, 3906 (1987).

[24] A. Yoshimori, T. Kakitani, Y. Enomoto, and N. Mataga, J.
Phys. Chem. 93, 8316 (1989).

[25] R. Zwanzig, Phys. Rev. 124, 983 (1961).

[26] A. Samanta and S. K. Ghosh, Phys. Rev. E 47, 4568 (1993).

[27] A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys. 72,
4350 (1980).

[28] H. Sano and M. Tachiya, J. Chem. Phys. 71, 1276 (1979).

[29] R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience, New York, 1953), Vol. 1, p. 354.

[30] M. Tachiya and S. Murata, J. Am. Chem. Soc. 116, 2434
(1994).

[31] R. D. Astumian, J. Chem. Phys. 126, 111102 (2007).

[32] T. Asahi and N. Mataga, J. Phys. Chem. 95, 1956 (1991).

016110-11


http://dx.doi.org/10.1063/1.1742724
http://dx.doi.org/10.1146/annurev.pc.15.100164.001103
http://dx.doi.org/10.1146/annurev.pc.15.100164.001103
http://dx.doi.org/10.1016/0301-0104(80)85267-0
http://dx.doi.org/10.1021/j100241a008
http://dx.doi.org/10.1021/j100241a008
http://dx.doi.org/10.1063/1.444472
http://dx.doi.org/10.1021/j100407a044
http://dx.doi.org/10.1021/j100370a004
http://dx.doi.org/10.1063/1.459666
http://dx.doi.org/10.1063/1.459666
http://dx.doi.org/10.1021/j100354a001
http://dx.doi.org/10.1021/j100354a001
http://dx.doi.org/10.1016/0301-0104(93)80259-C
http://dx.doi.org/10.1021/j100168a002
http://dx.doi.org/10.1126/science.256.5059.975
http://dx.doi.org/10.1126/science.256.5059.975
http://dx.doi.org/10.1021/ja00041a045
http://dx.doi.org/10.1021/ja00041a045
http://dx.doi.org/10.1063/1.1385161
http://dx.doi.org/10.1063/1.1385161
http://dx.doi.org/10.1063/1.453184
http://dx.doi.org/10.1063/1.466805
http://dx.doi.org/10.1063/1.466805
http://dx.doi.org/10.1063/1.454570
http://dx.doi.org/10.1063/1.449978
http://dx.doi.org/10.1038/369471a0
http://dx.doi.org/10.1038/355796a0
http://dx.doi.org/10.1038/nature02242
http://dx.doi.org/10.1038/nature02242
http://dx.doi.org/10.1063/1.443110
http://dx.doi.org/10.1063/1.443110
http://dx.doi.org/10.1016/0022-0728(86)80504-6
http://dx.doi.org/10.1016/0022-0728(86)80504-6
http://dx.doi.org/10.1021/j150625a002
http://dx.doi.org/10.1021/j150625a002
http://dx.doi.org/10.1063/1.442008
http://dx.doi.org/10.1063/1.460838
http://dx.doi.org/10.1063/1.466735
http://dx.doi.org/10.1063/1.479001
http://dx.doi.org/10.1063/1.479001
http://dx.doi.org/10.1063/1.477815
http://dx.doi.org/10.1016/S0301-0104(98)00315-2
http://dx.doi.org/10.1016/S0301-0104(98)00315-2
http://dx.doi.org/10.1016/0166-1280(95)04311-X
http://dx.doi.org/10.1063/1.451951
http://dx.doi.org/10.1021/j100363a009
http://dx.doi.org/10.1021/j100363a009
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1103/PhysRevE.47.4568
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1063/1.438427
http://dx.doi.org/10.1021/ja00085a025
http://dx.doi.org/10.1021/ja00085a025
http://dx.doi.org/10.1063/1.2711174
http://dx.doi.org/10.1021/j100158a014

