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In real communication and transportation networks, the geographical positions of nodes are very important
for the efficiency and the tolerance of connectivity. Considering spatially inhomogeneous positions of nodes
according to a population, we introduce a multiscale quartered �MSQ� network that is stochastically con-
structed by recursive subdivision of polygonal faces as a self-similar tiling. It has several advantages: the
robustness of connectivity, the bounded short path lengths, and the shortest distance routing algorithm in a
distributive manner. Furthermore, we show that the MSQ network is more efficient with shorter link lengths
and more suitable with lower load for avoiding traffic congestion than other geographical networks which have
various topologies ranging from river to scale-free networks. These results will be useful for providing an
insight into the future design of ad hoc network infrastructures.
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I. INTRODUCTION

Since the common topological characteristics called
small-world �SW� and scale-free �SF� have been revealed in
social, technological, and biological networks, researches on
complex networks have attracted much attention in this de-
cade through the historical progress �1�. The topological
structure is quite different from the conventionally assumed
regular and random graphs, and has both desirable and un-
desirable properties: short paths counted by hops between
any two nodes and the fault-tolerance for random node re-
movals �2,3� on the one hand but the vulnerability against
intentional attacks on hubs �3,4� on the other hand. In the
definition of a network, spatial positions of nodes and dis-
tances of links are usually ignored, these simplifications are
reasonable in some networks such as the World Wide Web,
citation networks, and biological metabolic networks. How-
ever, as real-life infrastructures, in communication networks,
transportation systems, and the power grid, they are crucial
factors; a node is embedded in a mixing of sparse and dense
areas according to the population densities, and a connection
between nodes depends on communication efficiency or eco-
nomical cost. Thus, a modeling of geographical networks is
important to understand the fundamental mechanism for gen-
erating both topological and spatial properties in realistic
communication and transportation systems.

Many methods for geographically constructing complex
networks have been proposed from the viewpoints of the
generation mechanism and the optimization. As a typical
generation mechanism, a spatially preferential attachment is
applied in some extensions �5–9� of the Barabási-Albert
�BA� model �10�. As typical optimizations in the determinis-
tic models �11–14�, there are several criteria for maximizing
the traffic under a constraint �11�, minimizing a fraction of
the distance and node degree with an expectation of short
hops �12�, and minimizing a sum of weighted link lengths
with respect to the edge betweenness as the throughput �13�
or the forwarding load at nodes �14�. In these methods, vari-

ous topologies ranging from a river network to a SF network
emerge according to the parameter values. The river network
resembles a proximity graph known in computer science,
which has connections in a particular neighbor relationship
between nodes embedded in a plane. In constructing these
networks, it is usually assumed that the positions of nodes
are distributed uniformly at random, and that a population
density or the number of passengers is ignored in communi-
cation or transportation networks except in some works
�13–15�. However, in real data �16�, a population density is
mapped to the number of router nodes on Earth, the spatial
distribution of nodes does not follow uniformly distributed
random positions represented by a Poisson point process.
Such a spatially inhomogeneous distribution of nodes is
found in air transportation networks �17� and in mobile com-
munication networks �18�.

On the other hand, geometric methods have also been
proposed as another generation mechanism, in which both
SW and SW structures are generated by a recursive growing
rule for the division of a chosen triangle �19–22� or for the
attachment aiming at a chosen edge �23–25� in random or
hierarchical selection. The position of a newly added node is
basically free as far as the geometric operations are possible,
and has no relation to a population. Thus, the spatial struc-
ture with geographical constraints on nodes and links has not
been investigating enough. In particular, considering the ef-
fects of a population on a geographical network is necessary
to self-organize a spatial distribution of nodes that is suitable
for socioeconomic communication and transportation re-
quests.

In this paper, as a possibility, we pay attention to a com-
bination of complex network science and computer science
�in particular, computational geometry and routing algo-
rithm� approaches. This provides a new direction of research
on self-organized networks by taking into account geo-
graphical densities of nodes and population. We consider an
evolutionary network with a spatially inhomogeneous distri-
bution of nodes based on a stochastic point process. Our
point process differs from the tessellations for a Voronoi par-
titioning with different intensities of points �26� and for a
modeling of crack patterns �27�. We aim to develop a future
design method of ad hoc networks, e.g., on a dynamic envi-*yhayashi@jaist.ac.jp
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ronment which consists of mobile users, for increasing com-
munication requests, and wide-area wireless and wired con-
nections. More precisely, the territory of a node defined as
the nearest access point is iteratively divided for load balanc-
ing of communication requests which are proportional to a
population density in the area. A geographical network con-
sisting of a self-similar tiling is constructed by recursive sub-
division of faces according to a population. It is worth noting
that positions of nodes and a network topology are simulta-
neously decided by the point process in a self-organized
manner. Furthermore, the geographical network has several
advantages �28�: the robustness of connectivity, the short
path lengths, and the decentralized routing algorithm �29�.
Taking these advantages into consideration, we generalize
the point process biased by a population for constructing a
geographical network, and investigate the traffic load on the
shortest distance routing.

The organization of this paper is as follows. In Sec. II, we
introduce a more general network model for self-similar til-
ings than the previous model �28� based on triangulations.
By applying the geometric divisions, we construct a geo-
graphical network according to a given population. In Sec.
III, we show the properties of the shortest path and the de-
centralized routing without a global table for packet transfers
as applied in the Internet. We numerically investigate the
traffic load in the proposed network, comparing it with the
load in other geographical networks. In particular, we show
that our geographical network is better than the state-of-the-
art geographical networks in terms of shorter paths and link
lengths, and of lower load for avoiding traffic congestion. In
Sec. IV, we summarize the results and briefly discuss further
studies.

II. MSQ NETWORK MODEL

We introduce a multiscale quartered �MSQ� network,
which is stochastically constructed by a self-similar tiling
according to a given population. Let us consider the basic
process of network construction �28�. Each node corresponds
to a base station for transferring packets, and a link between
two nodes corresponds to a wireless or wired communication
line. Until a network size N is reached, the following process
is repeated from an initial configuration which consists of
equilateral triangles or squares. At each time step, a triangle
�or square� face is chosen with a probability proportional to
the population in the space of the triangle �or square�. Then,
as shown in Figs. 1�a� and 1�b�, four smaller triangle �or
square� faces are created by adding facility nodes at the in-
termediate points on the communication links of the chosen
triangle �or square�. This process can be implemented au-
tonomously for a division of the area with the increase of
communication requests. Thus, a planar network is self-
organized on a geographical space. Figure 2 shows an ex-
ample of the geographical MSQ network according to real
population data. If we ignore the reality for a distribution of
population, the MSQ network includes a Sierpinski gasket
obtained by a special selection when each triangle, except
the central one, is hierarchically divided.

The state-of-the-art geometric growing network models
�19–25� are summarized in Table I. The basic process for

network generation is based on the division of a triangle or
on the extension of an edge with a bypass route as shown in
Fig. 3. For these models, we can also consider a mixing of
dense and sparse areas of nodes by selecting a triangle or an
edge according to a population in the territory. Although the
geographical position of a new node has not been so far
exactly defined in the geometric processes, it is obviously
different from that in the MSQ network. Moreover, in the
pseudofractal SF network �23�, the link length tends to be
longer than that in the MSQ network, because a node is set
freely at an exterior point. Whereas the newly added three
nodes approach each other in the Sierpinski network �19� as
the iteration progresses, they are degenerated �shrunken� to
one node as in the random Apollonian network �20,21�.
Thus, we focus on the Apollonian network constructed by a
biased selection of a triangle according to a population. In
Sec. III, we compare the topological and the routing proper-
ties in the BA-like and the Apollonian networks with those in
the MSQ network.

The above geometric models generate SF networks whose
degree distribution follows a power law. It is known that a
SF network is extremely vulnerable against intentional at-
tacks on hubs �3,4�, in particular the tolerance of connectiv-

(a) triangle (b) square

(c) triomino chair tiling

FIG. 1. Basic process of the division.

FIG. 2. �Color online� Example of the proposed geographical
network. The mesh data of population statistics �consisting of 82

�102�4=25 600 blocks for 80 km2� provided by the Japan Sta-
tistical Association are mapped onto each triangle by counting the
number of people in the space. From light �orange� to dark �red�,
the gradation on a mesh block is proportionally assigned to the
population. In the middle of the main island of Japan, almost all of
the blocks consist of flat lands and mountains, and do not come in
contact with the sea except in the left bottom curved white area.
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ity is more weakened by geographical constraints on linking
�30�. However, the MSQ network without high degree nodes
has a quite different property. The MSQ network consists of
trimodal low degrees: k1=2, k2=4, and k3=6 for an initial
triangle �k2=3, and k3=4 for an initial square� configuration.
Because of the trimodal low degrees without hubs, the ro-
bustness against both random failures and intentional attacks
is maintained �28� at a similar level as the optimal bimodal
networks �31� with a larger maximum degree k2=O��N� in a
class of multimodal networks, which include a SF network at
the maximum modality→� as the worst case for the robust-
ness.

In the MSQ network, the construction method defined by
recursive subdivision of equilateral triangles or squares can
be extensively applied to self-similar tilings based on polyo-
mino �32�, polyiamond �33�, and polyform �34�, as shown in

Fig. 1�c�. In the general construction on a polygon, some
links are removed from the primitive tiling which consists of
equilateral triangles or squares in order to be a specially
shaped face such as a “sphinx” or “chair” at each time step of
the subdivision. It remains to be determined whether or not
the robustness of connectivity is weaker than that in our geo-
graphical networks based on equilateral triangles or squares.
However, the path length becomes larger at least, as men-
tioned in Sec. III A.

III. ROUTING PROPERTIES

A. Bounded shortest path

The proposed MSQ network becomes the t spanner �35�,
as a good graph property known in computer science: the
length of the shortest distance path between any nodes u and
v is bounded by t times the direct Euclidean distance duv. A
sketch of the proof is shown in the Appendix. Here, t is
called stretch factor which is defined by a ratio of the path
length �a sum of the link lengths on the path� to duv. Figure
4 shows typical cases of the maximum stretch factor t=2 in
the MSQ network �28�. When the unit length is defined by an
edge of the biggest equilateral triangle �or square�, the path
length denoted by a dashed line in Fig. 4 is 1 �or 2� while the
direct Euclidean distance between the two nodes is 1/2 �or
1�.

More generally, if we construct a network by recursive
subdivision to a self-similar tiling of a polyform �34�, e.g.,
polydrafter: consisting of right triangles, polyabolo: consist-
ing of isosceles right triangles, or domino: consisting of rect-
angles, then the stretch factor can be greater than 2 �see the
U-shaped path in the right of Fig. 1�c��. Thus, our network
model based on equilateral triangles or squares is better for
realizing a short routing path because of its isotropic prop-
erty. In other geometric graphs, the maximum stretch factor

TABLE I. Geometically constructed network models.

Model Structure Add new node�s� Selection

MSQ Trimodal low degrees On the edges of a chosen
triangle �or square�

According to a population

Random Sierpinski SF, SW, modular Mapped to the edges of a removed
triangle in a Sierpinski gasket

Random �19�

Apollonian SF, SW Interior of a chosen triangle Random �20,21� or hierarchical
deterministic �20,22�

Pseudofractal SF SF, SW Exterior attached to both ends of
an edge or replacing each edge

Random �23� or hierarchical deterministic �24,25�
by two parallel paths

(b) Random Pseurdofractal SF Net(a) Random Apollonian Net

A
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(c) From a random Sierpinski gasket to the correspondig Sierpinski Net

Mapping from links a-i

to nodes A-I
GI

h
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b c
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FIG. 3. Other geometric networks. From an initial triangle ABC,
the following processes are repeated. �a� At each time step, a tri-
angle is randomly chosen. Then, a new node is added �e.g., at the
barycenter as a well-balanced position� and connected to the three
nodes of the chosen triangle for the division. �b� Instead of a tri-
angle, an edge is randomly chosen. Then, a new node is added at an
exterior point, and connected to the two ends of the chosen edge. �c�
After a random selection of a triangle, it is divided into small ones,
and the center �shaded part� is removed to construct a random Si-
erpinski gasket. Then, the corresponding random Sierpinski net-
work is obtained from the mapping of nodes and contacts to links
between them. Note that the Sierpinski network has a similar struc-
ture to the Apollonian network rather than the Sierpinski gasket.

FIG. 4. Cases of the maximum stretch factor t=2 for the shortest
distance path denoted by a dashed line and the straight line directly
passing the gap between two nodes marked by circles.
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becomes larger: t=2� / �3 cos�� /6���2.42 for Delaunay tri-
angulations �36�, and t=2��4�3 /3�2.3094 for two-
dimensional triangulations with an aspect ratio of
hypotenuse/height less than � �37�, whose lower bound is
given for the fattest equilateral triangles. Although �-graphs
�38� with K nonoverlapping cones have t=1 / �cos�2� /K�
−sin�2� /K��→1 asymptotically as K→�, a large amount of
O�KN� links is necessary, and some links may be crossed. In
general graphs, even the existence of a bounded stretch fac-
tor is uncertain. On the other hand, in a SF network, the
efficient routing �39� based on the passing through hubs has
a stretch less than 2, which is defined by the ratio of the
number of hops on the routing path to that on the shortest
path. It can be implemented by a decentralized algorithm
within small memory requirements.

Since the geographical MSQ network is planar, which is
also suitable for avoiding the interference among wireless
beams, we can apply an efficient routing algorithm �29� us-
ing only local information of the positions of nodes: neigh-
bors of a current node, the source, and the terminal on a path.
The online version has been developed in a distributive man-
ner, in which necessary information for the routing is gath-
ered through an exploration within a constant memory. As
shown in Fig. 5, by using the face routing, the shortest dis-
tance path can be found on the edges of the faces that inter-
sect the straight line between the source and the terminal
nodes. Note that, in other decentralized routings without glo-
bal information such as a routing table, some of them in
early work lead to the failure of guaranteed delivery �40�;
e.g., in the flooding algorithm, multiple redundant copies of a
message are sent and cause network congestion, while
greedy and compass routings may occasionally fall into infi-
nite loops. On a planar graph, the face routing has advan-
tages for the guarantee of a delivery and for the efficient
search on a short path without the flooding.

B. Comparison of P(k) and P(Lij) with other networks

We investigate the distributions of degree and of link
length related to communication costs. In the following BA-

like networks, the positions of nodes are fixed as same as in
the original MSQ network, and only the connections are dif-
ferent. From the set of nodes in the MSQ network, a node is
randomly selected as the new node at each time step in the
growing process. On the other hand, the positions of nodes in
the Apollonian network are different from the original ones
because of the intrinsic geometric construction.

Let us consider an extension of the BA model with both
effects of distance �5–9� and population on linking. Until a
size N is reached, at each time step, m links are created from
a new node i to already existing nodes j. The attachment
probability is given by

� j 	 dij
−�popj


kj
�, �1�

where � ,
 ,��0 are parameters to control the topology
�5,12�, kj denotes the degree of node j, and dij denotes the
Euclidean distance between nodes i and j. The newly intro-
duced term popj is not constant but may vary through time.
If the nearest node from a point on the geographical space is
changed by adding a new node, then the assigned population
popj in the territory of the affected node j is updated. We set
the average degree �k�=2m=4 that is the closest integer to
�k� in the MSQ network.

Each term in the right-hand side of Eq. �1� contributes to
making a different topology, as the value of �, 
, or � is
larger in the competitive attachments. As shown in Fig. 6, a
proximity graph is obtained in the BA-like:300,330 networks
by the effect of distance for �=3, and hubs emerge near
large cities in the BA-like:030,033,333 networks by the ef-
fect of population for 
=3, while in the BA-like:303,003
networks, a few hubs emerge at the positions of randomly
selected nodes in the early stage of network generation with-
out any relation to the population. In the following discus-
sion, we focus on BA-like:300,033 networks, since they are
typical with the minimum and the maximum degrees or link
lengths, respectively, in the combination of �
� except
000,003 without both effects of distance and population. Fig-
ure 7�a� shows that the degree distributions P�k� follow an
exponential decay in the BA-like:300 network, and a power-
law-like behavior in the BA-like:033 and the Apollonian net-
works, which are denoted by a �red� solid line, �green� light
dashed line, and �blue� dark dotted line, respectively. Figure
7�b� shows the distributions P�Lij� of link length counted as
histograms in the interval 0.05. The Lij is normalized by the
maximum length on the outer square or triangle. Some long-
range links are remarkable in the BA-like networks, while
they are rare in the quickly decaying distribution in the MSQ
network. The average lengths shown in Table II are around
0.2–0.3 in many cases of the BA-like networks, and
0.02–0.14 in the Apollonian network. The original MSQ net-
work has the smallest link length in less than one digit. As
the size N increases, the link lengths tend to be shorter due to
a finer subdivision in all of the networks. In any case, the
BA-like networks have longer links even with neighboring
connections than the corresponding MSQ network, while the
Apollonian network shows the intermediate result. Thus, the
MSQ network is better than the Apollonian and the BA-like
networks in term of the link length related to a communica-
tion cost.

v1

v2

v3
v4

v5

v0: source

v6: terminal

v1’

v3’

v5’

v5’’

FIG. 5. The shortest path obtained by the face routing on the
edges of the shaded triangles that intersect the straight line between
the source and the terminal nodes. Two paths of dashed segments in
the opposite directions �for v1-v1� and v3-v3�� are canceled, there-
fore the route does not pass the points v1 and v3, and through only
the other nodes �marked by open circles� on the triangles. Excep-
tionally, it takes the shortcut v5�-v6 to avoid the detour passing
through v5 and v5�.
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C. Heavy-loaded nodes and links

In a realistic situation, packets are usually more often gen-
erated and received at a node, as the corresponding popula-
tion is larger in the territory of the node. Consequently, the
spatial distribution of the source or the terminal node is not
uniformly random. Thus, we demonstrate how the traffic
load is localized in the case when the number of generated
and received packets at a node varies depending on a popu-
lation assigned to the node.

The traffic loads at a node i and through a link l are

measured by the effective betweenness centralities Bi and B̄l,
which are defined as follows �41�:

Bi =
def 2

�N − 1��N − 2� 	k�j

bk
j�i�
bk

j , �2�

B̄l =
def 2

�N − 1��N − 2� 	k�j

b̄k
j�l�
bk

j , �3�

where bk
j is the number of shortest distance paths between

the source k and the terminal j, bk
j�i� is the number of the

paths passing through node i, and b̄k
j�l� is the number of the

paths passing through link l. The first terms on the right-hand
side of both Eqs. �2� and �3� are normalization factors. Al-
though the measured node i and link l are usually excluded
from the sum in the definition of betweenness centralities
�42�, we include them tanking into account the processes for
the generation and the removal of a packet in these measures

Bi and B̄l in order to investigate all of the traffic loads.

(a) Original MSQ

(c) BA-like:300

(b) Apollonian

(d) BA-like:033

FIG. 6. �Color online� Visualizations of the original MSQ, the
Apollonian, and the typical BA-like networks for N=100. As a
common feature, many nodes concentrate on dark cloudy �red� ar-
eas with large populations. The positions of nodes are same in the
MSQ and the BA-like networks, while they are slightly different in
the Apollonian network. �b� Remarkable hubs exist at the center and
four points on the outer lines. �c� Almost nearest connections are
constructed by the attachment of distance. �d� Hubs emerge near
large cities in the dark cloudy �red� areas: Kobe, Osaka, and Kyoto
by the attachments of population and degree. These results with the
nearest connections and hubs are similarly obtained in other com-
binations of �
� for BA-like networks. Here, 0 or 3 in the triplet
denotes the parameter values for �, 
, and � in Eq. �1�.

10-4

10-3

10-2

10-1

100

100 101 102 103

P
(k

)

k

αβγ: 300
αβγ: 033
Apollonian

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8

P
(L

ij)

Lij

Original MSQ
αβγ: 300
αβγ: 033
Apollonian

(b)(a)

FIG. 7. �Color online� Distributions of �a� degree and �b� link
length in the averaged 50 realizations of the Apollonian and the
typical BA-like networks for N=1000. �a� With power-law like be-
havior, there exists a few huge hubs around k=102–103 at the ver-
tical �green� light dashed bars for the BA-like:033 network, and
ordinary hubs on the horizontal �blue� dark dotted line for the Apol-
lonian network. In spite of the stochastic process, the locations of
hubs are fixed e.g., at the center and four points on the outer lines in
Fig. 6�b�. Thus, the frequencies are high at some special degrees.
�b� The histograms are shown with shifts for better discrimination.
The gray dashed lines with filled triangles show P�Lij� in the origi-
nal MSQ network.

TABLE II. Average link length �Lij� in the original MSQ, the
Apollonian, and the BA-like networks. The �Lij� becomes longer in
the order: the MSQ, the BA-like:300 or the Apollonian, and the
BA-like:033 networks. This order is consistent with the positions of
peaks and the widths of P�Lij� in Fig. 7�b�. Note that BA-
like:000,003 networks are not geographical, but exceptional, be-
cause they have no effects of distance and population on linking.
Here, the triplet of 0 or 3 in the first column denotes the values of
�, 
, and �.

BA-like: �
�

�Lij�

Dominant factorN=102 103 104

000 0.3018 0.2380 0.1909 Rand. attach.

003 0.2757 0.2736 0.1700 Degree

030 0.2759 0.2651 0.2318 Population

033 0.2685 0.2650 0.2622 Pop. and deg.

300 0.1268 0.0436 0.0213 Distance

303 0.2089 0.1409 0.1127 Dist. and deg.

330 0.1789 0.0652 0.0338 Dist. and pop.

333 0.2318 0.2064 0.1613 All of them

Apollonian 0.1401 0.0627 0.0184

MSQ 0.0628 0.0066 0.0033
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Figures 8 and 9 show the link load measured by B̄l for the
following two selection patterns of packet generations or re-
movals. In the first pattern denoted by Pop, as the source or

the terminal, a node is chosen with a probability proportional
to the assigned population to the node �left figures�, while in
the second pattern denoted by Rand, it is chosen uniformly at
random �right figures�. Therefore, the sum in Eqs. �2� or �3�
has a biased frequency for each pair of nodes by their popu-
lations in Pop, while the sum corresponds to the simple com-
bination of nodes in Rand. In Pop, heavy-loaded links de-
noted by thick �blue� lines between the cloudy �red� areas
with large populations are observed: the routes between well-
known cities Osaka and Kyoto �in the enclosed bold lines�
are remarkable with thicker �blue� links than in Rand. Note
that the number N=100 of nodes is due to a comparatively
clear appearance of the difference in two patterns. At a larger
N, the packet transfer is already biased by the spatial con-
centration of nodes, and the assigned population in each ter-
ritory of node is well balanced by the division process. Then,
the difference of heavy-loaded links in Rand and Pop tends
to disappear. However, it is worth considering such biased
selections of packets in a realistic problem setting, since the
spatially localized positions of the heavy-loaded links are not
trivially predictable from the results for the usually assumed
Rand.

We further investigate the maximum betweenness in the
scaling relation N which affects traffic congestion �43�.
Here, the betweenness is defined by the number of passings
through a link or a node on the shortest distance paths. In
general, a smaller  yields a better performance for avoiding
traffic congestion. The exponent value  depends on both a
network topology and a routing scheme. In this paper, as-
suming the shortest distance paths obtained by the face rout-
ing in Sec. III A, we focus on an effect of the topologies on
the scaling relations in the MSQ, the Apollonian, and BA-
like networks.

Figure 10 shows the scaling relations of the maximum
node betweenness. They are separated into two groups of 
=1.67–1.77 and =1.87–1.97. The MSQ network with only
trimodal low degrees is located on the baseline. The order of
thick lines from the bottom to the top fairly corresponds to
the increasing order of largest degrees in these networks, as
shown in Fig. 7�a�, because more packets tend to concentrate

RandPop

FIG. 8. �Color online� Visualizations of the link betweenness

centrality B̄l in a MSQ network for N=100. Pop �left� and Rand
�right� denote the selection patterns of a source or a terminal node,
which are chosen proportionally to the population in the territory of
a node, and uniformly at random, respectively. From the thin
�green� to the thick �blue� vertical or horizontal line, the gradation is

proportionally assigned to the value of B̄l. The enclosed bold line in

Pop emphasizes the parts of large B̄l with heavy load, which are
remarkably shown as thick �blue� links on the paths connected to
dark cloudy �red� areas with large populations in a diagonal direc-
tion. The enclosed bold lines in Rand emphasize the thick �blue�
lines on light gray �orange and white� background for underpopu-
lated areas, as the other differences between the left and the right

figures. Thus, in Rand, some thick �blue� lines for large B̄l have no
relation to the population.

Pop Rand

BA-like:300

Apollonian

FIG. 9. �Color online� Visualized examples of the link between-

ness centrality B̄l in the BA-like:300 �top� and the Apollonian �bot-
tom� networks for N=100. The enclosed bold line in Pop empha-

sizes that the thick �blue� links for large B̄l are on the paths
connected to dark cloudy �red� areas with large populations. Pop
�left� and Rand �right� denote the two selection patterns of a source
or a terminal node which is chosen proportionally to the population
assigned to a node, and uniformly at random, respectively.
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FIG. 10. Scaling relations N of the maximum node between-
ness in the MSQ �solid line�, BA-like:300 �dotted line�, the Apol-
lonian �dashed-dotted line�, and the BA-like:033 �dashed line� net-
works. The triangle and inverted triangle marks correspond to Pop
and Rand, respectively. The thin lines without any marks guide the
slopes =1.67,1.77,1.87,1.97 from the bottom to the top.
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on large degree nodes as the degrees are larger. Figure 11
shows the scaling relations of the maximum link between-
ness. The thick lines from the top to the bottom in the inverse
order to that in Fig. 10 show that packets are distributed on
many links connected to large degree nodes as the degrees
are larger. However, all lines lie almost around the interme-
diate slopes of =1.6, especially for a large size N, the maxi-
mum link load is at a similar level in the lowest case of the
Apollonian network and the hightest case of the BA-like:300
or the MSQ network. These results in Figs. 10 and 11 are
also consistent with the increasing orders of the maximum Bi

and B̄l in Table III. Note that there exists no remarkable
difference between the two patterns of Rand �marked by tri-
angles� and Pop �marked by inverted triangles� for both scal-
ing relations of node and link loads except in the Apollonian
network �dashed-dotted line�. In summary, the MSQ network
yields a better performance with a lower maximum load than
the other geographical networks, therefore it is more suitable
for avoiding traffic congestion.

IV. CONCLUSION

Both mobile communication and wide-area wireless tech-
nologies �or high-speed mass mobilities� are important more
and more to sustain our socioeconomic activities, however it
is an issue to construct an efficient and robust network on the
dynamic environment which depends on realistic communi-
cation �or transportation� requests. In order to design the fu-
ture ad hoc networks, we have considered geographical net-
work constructions, in which the spatial distribution of nodes
is naturally determined according to a population in a self-
organized manner. In particular, the proposed MSQ network
model is constructed by a self-similar tiling for load balanc-
ing of communication requests in the territories of nodes. On
a combination of complex network science and computer
science approaches, this model has several advantages �28�:
the robustness of connectivity, the bounded short paths, and
the efficient decentralized routing on a planar network.
Moreover, we have numerically shown that the MSQ net-
work is better in term of shorter link lengths than the geo-
graphical Apollonian and the BA-like networks which have
various topologies ranging from river to SF networks. As
regards the traffic properties in the MSQ network, the node
load �defined by the maximum node betweenness� is lower
with a smaller  in the scaling relation N, although the link
load is at a similar level as that of the other geographical
networks. Therefore, the MSQ network is more tolerant to
traffic congestion than the state-of-the-art geographical net-
work models.

In a realistic situation, packets are usually more often gen-
erated and received at a node whose population is large in
the territory. Thus, we take into account spatially inhomoge-
neous generations and removals of packets according to a
population. Concerning the effect of population on the traffic
load, the heavy-loaded routes with much throughput of pack-
ets are observed between large population areas especially
for a small size N. The heavy-loaded parts are not trivial but
localized depending on the geographical connection struc-
ture, whichever a spatial distribution of nodes or biased se-
lections of the source and the terminal is more dominant. In
further studies, such spatially biased selections of packets
should be investigated more to predict overloaded parts on a
realistic traffic, since the selections may depend on other
economic and social activities in tradings or community re-
lationships beyond the activities related only to population,
and probably affect the optimal topologies for the traffic
�11,13,15�. The optimal routing �43� instead of our shortest
distance routing is also important for reducing the maximum

betweenness �Bi or B̄l� and the exponent  in the scaling
relation. In the optimizations that include other criteria
�9,14�, we will investigate the performance of the MSQ net-
works. Related discussions to urban street networks �44–46�
are attractive for investigating a common property which has
arisen from the geographically pseudofractal structures.
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TABLE III. Maximum betweenness centralities in the BA-like,
the Apollonian, and the MSQ networks for N=100. The triplet of 0
or 3 in the first column denotes the values of �
� in the BA-like
networks. We note that the MSQ, the BA-like:300, the Apollonian,
and the BA-like:033 networks are in increasing order of max Bi and

decreasing order of max B̄l.

Net

Rand Pop Rand Pop

Max Bi Max Bi Max B̄l Max B̄l

000 0.254 0.227 0.085 0.081

003 0.766 0.854 0.048 0.087

030 0.362 0.392 0.134 0.180

033 0.657 0.710 0.056 0.099

300 0.282 0.235 0.121 0.121

303 0.444 0.532 0.073 0.107

330 0.397 0.337 0.121 0.143

333 0.634 0.620 0.106 0.072

Apollonian 0.295 0.278 0.056 0.059

MSQ 0.227 0.259 0.137 0.185
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APPENDIX

We provide a sketch of the proof for the t-spanner prop-
erty in the MSQ networks. The following is similarly dis-
cussed for other polygons by exchanging the term “triangle”
or “triangulation” with other words �e.g., “square” or
“polygonal subdivision”�, except that the maximum stretch
factor t may be greater than two for a general polygon. Re-
member that the self-similar tiling is obtained from the divi-
sion by a contraction map as shown in Fig. 1.

Let T be a given triangulation and Lst be a line segment
interconnecting two vertices so and te in T. It intersects
many triangle faces in T. Let �so=v0 ,v1 , . . . ,vn= te� be those
ordered vertices. Now, we define a path using triangular
edges. For any two consecutive vertices vi and vi+1 there is a

unique triangle which contain both of them. In other words,
vi and vi+1 are the entrance and the exit of the line segment to
the triangle. For the pair �vi ,vi+1� there are two paths, clock-
wise and anticlockwise, on the triangle. We take the shorter
one. In this way, we can define a path on the given triangu-
lation. If the path contains duplicated segments with the op-
posite directions as shown in Fig. 5, we remove them. Then,
we have a path such that each edge of the path is some
triangular side. When the two consecutive edges on the path
belong to the links of a same triangle, we take a shortcut by
directly passing another edge �see two edges v5�-v5� and
v5�-v6 are replaced with v5�-v6 on the path in Fig. 5�. Since
T is planar and there is no node inside each triangle, the
length of this path is the closest to that of the line segment
Lst, therefore the shortest in all other routes. As is easily
seen, in each triangle, the path length between vi and vi+1 is
at most twice longer than the Euclidean distance between
them. The worst case of the maximum stretch factor t=2 is
illustrated in Fig. 4.
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