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In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer,
under the presence of observation errors, respective models of a complex system. We focus the specific case in
which, at each time step, each agent takes into account its current observation as well as the average of the
models of its neighbors. The agents are connected by a network of interaction of Erdős-Rényi or Barabási-
Albert type. First, we investigate situations in which one of the agents has a different probability of observation
error �higher or lower�. It is shown that the influence of this special agent over the quality of the models
inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent
with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the
effect of the different estimation error is even more pronounced, becoming superlinear. To complement our
analysis, we provide the analytical solution of the overall performance of the system. We also investigate the
knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of
edges between agents �within a community� having higher probability of observation error promotes the loss of
quality in the estimation of the agents in the other communities.
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I. INTRODUCTION

Several important systems in nature, from the brain to
society, are characterized by intricate organization. Being
naturally related to such systems, humans have been trying
to understand them through the construction of models
which can reasonably reproduce and predict the respectively
observed properties. Model building is the key component in
the scientific method. The development of a model involves
the observation and measurement of the phenomenon of in-
terest, its representation in mathematical terms, followed by
simulations and respective confrontation with further experi-
mental evidences. Because of the challenging complexity of
the remaining problems in science, model building has be-
come intrinsically dependent on collaboration between scien-
tists or agents. The problem of multiple-agent knowledge
acquisition and processing has been treated in the literature
�e.g., �1,2�� but often under assumption of simple schemes of
interactions between the agents �e.g., lattice or pool�. Intro-
duced recently, complex networks �3–7� have quickly be-
come a key research area mainly because of the generality of
this approach to represent virtually any discrete system, al-
lied to the possibilities of relating network topology and dy-
namics. As such, complex networks stand out as being a
fundamental resource for complementing and enhancing the
scientific method.

The present study addresses the issue of modeling how
one or more agents �e.g., scientists� progress while modeling
a complex system. We start by considering a single agent and
then proceed to more general situations involving several
agents interacting through networks of relationships �see Fig.
1�. The agents investigating the system �one or more� are
allowed to make observations and take measurements of the
system as they develop and complement their respective in-
dividual models. Errors, incompleteness, noise, and forget-
ting are typically involved during a such model estimation.
The main features of interest include the quality of the ob-

tained models and the respective amount of time required for
their estimation. The plural in “models” stands for the fact
that the models obtained respectively by each agent are not
necessarily identical and will often imply in substantial di-
versity. Though corresponding to a largely simplified version
of real scientific investigation, our approach captures some
of the main elements characterizing the involvement of a
large number of interacting scientists who continuously ex-
change information and modify their respective models and
modeling approaches. As a matter of fact, in some cases the
development of models may even affect the system being
modeled �e.g., the perturbation implied by the measurements
on the analyzed systems�.

Because interactions between scientists can be effectively
represented in terms of complex networks �e.g., �8–14��, it is
natural to resource to such an approach in our investigation.
It is interesting to observe that the agents may not be limited

FIG. 1. Agents �scientists� develop their models of complex
systems through observation and interactions.
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to scientists but can also include intelligent machines and
even reference databases and libraries. Though most of the
previous approaches to modeling scientific interaction in
terms of complex networks have focused on the topology of
the collaborations, fewer strategies �e.g., �15�� have ad-
dressed the important issue of how the dynamics of learning
or knowledge acquisition evolves in such systems, especially
with respect to distinct patterns of connectivity between the
agents. This is the main motivation of the current work.

In the last years, great interest has been devoted to the
study of cooperative behavior, resulting in several models of
opinion dynamics. In these models a population of interact-
ing agents holds a set of numerical variables whose states
represent opinions about different topics. Inspired by statis-
tical mechanics and social mechanisms, these states evolve
governed by mathematical rules that control the dynamics of
interaction between agents and the influence of external fac-
tors �16�. An overall behavior typically investigated is the
condition to the emergence of consensus or polarization
among the agents �17�. Models of opinions are commonly
divided into two groups. In the first, the variables held by
each agent assume a finite set of discrete value. Examples
include the Sznajd �18� and Voter �19,20� models, majority
rule �21�, and social impact theory �22�. On the other side, in
the second group, the opinions can vary continuously, and
the values can be expressed by real numbers. The most
widely known examples are the models of Deffuant �23� and
Hegselmann-Krause �24�. Both models assume the bounded
confidence hypothesis, according to which a pair of agents
can influence each other only if their opinions are sufficiently
close, specified by a threshold. Useful reviews can be found
in �17,25�.

In the knowledge acquisition problem studied here, the
agents hold not only a single variable, but they also consider
a set of continuous states representing their knowledge about
the components of the system being modeled. Although
agents continuously share their opinions, it is assumed that
the estimation of different components of the system pro-
ceeds in a completely independent fashion. Furthermore, we
consider that a specific agent interacts with all of its neigh-
bors at each time step without regard to the bounded confi-
dence property. In order to enrich our modeling approach, we
incorporate the ability of making observations. This impor-
tant ingredient continuously reinforces the position of the
estimations of each agent, while counter-balancing their ten-
dency to become similar after each interaction.

The use of an array of opinions was seminally studied in
the model proposed by Axelrod �26� in the context of social
dynamics. In this model, single opinions represent possible
cultural features and evolve in a coupled way. Also, the Def-
fuant model introduces the use of a set of opinions limited to
binary variables. Extensions were recently proposed in order
to address more complex topologies �27� and considering
continuous states �28�. In �16�, the conditions governing dis-
agreement are investigated by using a model of interacting
agents, modeled as Boolean perceptrons and holding mul-
tiple issues. Seaver et al. �29� studied the influence of con-
servatism and partisanship in the performance of agents solv-
ing coordination tasks.

This paper starts by presenting the general assumptions
and specifying and discussing successively more sophisticate

levels of modeling. We then focus on the development of a
model of a complex system by a team of agents interacting
through networks of Erdős-Rényi �ER� and Barabási-Albert
�BA� types. During estimation, each agent takes into account
not only its observation �subject to a probability of error� but
also the average of the models of its neighbors. In order to
quantify the performance of an agent, we suggest an indi-
vidual error based on the difference between the model de-
veloped and the system under analysis. Because the influence
of an agent is directly related to its degree, the overall error
of the system is expressed in terms of the mean of the indi-
vidual errors weighted by the degree of each respective
agent. The obtained results imply a series of interesting and
important insights, such as the identification of the substan-
tial role of hubs in affecting the estimation of models by all
agents: while a linear relationship is identified between the
overall estimation errors and the degree of single agents with
different error rates, this relationship becomes superlinear
when the degree of each node is considered as the respective
fitness. In addition, in networks characterized by presence of
communities, intensifying the interactions between agents
having higher estimation errors in one of the communities
undermines the performance of the agents in the other com-
munities.

II. GENERAL ASSUMPTIONS

The first important assumption is that the complex sys-
tems under study be representable as a discrete structure
�e.g., a graph or complex network� and that information
about the several parts of this system can be observed, often
with a given probability of error. By agent, it is meant any
entity capable of making observations or measurements of
the system under analysis and storing this information for
some period of time. Therefore, any scientist can be naturally
represented as an agent. However, automated systems, from
measurement stations to more sophisticated reasoning sys-
tems, can also be represented as agents. Actually, even less
dynamic systems such as books or libraries can be thought of
as a sort of passive agents, in the sense that they evolve �new
editions and versions� as a consequence of incorporation of
the evolution of knowledge.

Each agent is capable of making observations or measure-
ments of the system under investigation. The process of mea-
surement typically involves errors, which can be of several
types such as observing a connection where there is none.
Such errors can be a direct consequence of the limited accu-
racy of measurements devices as well as of the priorities and
eventual biases �not to mention wishful thinking� of each
agent. Several other possibilities, such as the existence of
nonobservable portions of the system, can also be considered
and incorporated into the model. In addition, the model kept
by each agent may undergo degradation as a consequence of
noise and/or vanishing memory.

A particularly important element in our approach is the
incorporation of different types of interactions between the
agents, which can be represented in terms of a graph or net-
work �see Fig. 1�. In this case, each agent gives rise to a
node, while interactions �e.g., collaborations� among them
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are represented by links. The single-agent configuration can
be immediately thought of as a special case where the graph
involves only one node �agent�. Several types of interactions
are possible including, but being not limited to conversa-
tions, attendance to talks or courses �the speaker becomes a
temporary hub�, article or book, reading, and Internet ex-
changes �e.g., e-mailing and surfing�. Such interactions may
also involve errors �e.g., misunderstanding words during a
talk�, which can be eventually incorporated into our model. It
is interesting to observe that the network of interaction be-
tween the agents may present dynamic topology, varying
with time as a consequence of new scientific partnerships,
addition or removal of agents, and so on.

Therefore, the framework considered in our investigation
includes the following four basic components: �i� the com-
plex system under analysis S; �ii� one or more agents capable
of taking observations or measurements of the system S �sub-
ject to error� and of interacting one another; �iii� a network
describing the complex system S; and �iv� a network of in-
teraction between the agents. In the following we address, in
progressive levels of sophistication, the modeling of knowl-
edge acquisition or model building in terms of complex net-
works concepts and tools.

III. SINGLE-AGENT MODELING

A very simple situation would be the case where a single
agent is allowed to observe, in uniformly random fashion,
the elements of the complex system being modeled. Since
this system is described by a complex network, an observa-
tion lies in detecting the presence or not of links between all
pairs of nodes of such a system. The prediction of each edge
involves a probability � of error, i.e., observing a connection
where there is none and vice versa. A possible procedure of
model building adopted by the agent involves taking the av-
erage of all individual observations up to the current time
step T, i.e.,

�x�T =
1

T
�
t=1

T

xt, �1�

where x is the value of a specific edge �0 if nonexistent and
1 otherwise� and xt is the observation of x at time step t.
Observe that we are considering the observation error to be
independent along the whole system under analysis. Let us
quantify the error for estimation of any edge, after T time
steps as follows:

��x�T = �xS − �x�T� , �2�

where xS is the original value of that edge. It can be easily
shown that

lim
T→�

��x�T = � . �3�

Because the observation error is independent among the
pairs of nodes, the average of the errors along the whole
network is identical to the limit above.

Thus, in this configuration the best situation which can be
aimed at by the agent is to reach a representation of the

connectivity of the original complex system up to an overall
limiting error �, reached after a considerable period of time.
Though the speed of convergence is an interesting additional
aspect to be investigated while modeling multiagent knowl-
edge acquisition, we leave this development for a forthcom-
ing investigation.

IV. MULTIPLE-AGENT MODELING

We now turn our attention to a more interesting configu-
ration in which a total of Na agents interact while making
observations of the complex system under analysis, along a
sequence of time steps. As before, each agent observes the
whole system at each time step, with error probability �. In
case no communication is available between the agents, each
one will evolve exactly as discussed in the previous section.
However, our main interest in this work is to investigate how
interactions and influences between the multiple agents can
affect the quality and speed at which the system of interest is
learned. The original system under study is henceforth mod-
eled as a complex network and represented in terms of its
respective adjacency matrix AS. We also assume that the
agents exchange information through a complex network of
contacts.

One of the simplest and still interesting modeling strate-
gies to be adopted by the agents of such a system involves
the following dynamics: at each time step t, each agent ob-
serves the connectivity of the complex system with error �i,
yielding the adjacency matrix Oi

t, and also receives the cur-
rent matrices Kj

t from each of its immediate neighbors j �i.e.,
the agents to which it is directly connected�. The agent i then
calculates the mean matrix �K�i

t of the matrices Kj
t, i.e.,

�K�i
t =

1

ki
�
j��i

Kj
t , �4�

where �i is the set of the neighbors of the agent i and ki is its
degree. The agent i then makes a weighted average between
its current matrix Ki

t and the immediate neighbors mean ma-
trix, i.e.,

Vi
t = �a�K�i

t + �1 − a�Ki
t� , �5�

where 0�a�1 is a relative weight. We henceforth assume
a=0.5 so that Vi

t becomes equal to the average between its
current matrix and of the neighbors at that time step. Each
agent i subsequently adds this value to its current observa-
tion, i.e.,

Ki
t+1 = Vi

t + Oi
t, �6�

so after T time steps the estimation of the adjacency matrix
by the agent i can be given as

Ai
T = Ki

T/T . �7�

With this formulation, the current matrix Ki
t is a continu-

ous unbounded variable driven by an average process with
the neighbors and by accumulating the binary observations.
However, the adjacency matrix Ai

t learned by any of the
agents has entries with values in the continuous interval
�0,1�. Different averaging schemes have been studied in �30�
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applied to continuous opinion dynamics with bounded con-
fidence.

This simple discrete-type dynamics has some immediate
important consequences. By averaging between its current
observation and the mean estimation from the neighbors,
even the limit error may be actually modified with respect to
the single agent situation. It is important to note, also, that
the variables were naturally defined as matrices since the
agents learn about networked systems, which are commonly
represented by the adjacency matrix. Equivalently, this defi-
nition can be changed and the mathematical description can
be done by using vectors of observations, instead of matri-
ces. The entries of the vectors would represent the estimation
of an edge in a network, or in a more general context, any
binary information to be observed.

Several variations and elaborations of this model are pos-
sible, including the consideration of noise while transmitting
the observations, forgetting dynamics, the adoption of other
values of a, as well as the evolution in time of the network of
agents including different levels of affinity between them.
Furthermore, the parameter � could depend not only on the
agent performing an observation but also on the component
of the system being modeled, in our case, each element of
the adjacency matrix AS. As a consequence, the probability
of error during an estimation, �, would also be represented as
a matrix. Another alternative to increase the level of sophis-
tication of the knowledge acquisition dynamics is the possi-
bility of predicting possible missing links in the studied sys-
tem. This problem was recently investigated by Clauset et al.
�31� taking into account the hierarchical structure presented
in real networks.

In this paper, however, we focus attention on the multi-
agent model described in this section with error being
present only during the observation by each agent. In the
remainder of our work, we report results of numerical simu-
lation considering three particularly important situations: �i�
multiple agents with equal observation errors; �ii� as in �i�
but with one of the agents having different observation error;
and �iii� multiple-agent scheme applied in networks with
community structure and one of the communities having
higher error rate. Interesting results are obtained for all these
three configurations including the analytical solution of the
overall behavior of the system.

V. CASE EXAMPLES: RANDOM AND SCALE-FREE
NETWORKS OF AGENTS

In this section we investigate further the dynamics of mul-
tiagent learning by considering theoretical simulations per-
formed in a fixed collaboration network. We assume that the
agents collaborate through a uniformly random model �ER�
as well as a scale-free model �BA�. For simplicity’s sake, we
consider only a single realization of such each of these mod-
els in our subsequent investigation. Each matrix Ki is initi-
ated with random values uniformly distributed between 0
and 1. The original network to be learnt by the agents is a
Barabási-Albert network containing N=50 nodes and aver-
age degree equal to 6, represented by the respective adja-
cency matrix AS. The performance of each agent is quantified

in terms of the error between the original network and the
models obtained for that agent after a sufficiently large num-
ber of time steps �henceforth assumed to be equal to T
=300 time steps�. This error is calculated as

�i
T =

1

N2 �
m=1

N

�
n=1

N

�Ai
T,m,n − AS

m,n� , �8�

where Ai is the adjacency matrix representation of the model
of agent i at time step T. The overall performance of the set
of agents is henceforth expressed in terms of the average of
the above error weighted by the degree considering all
agents, which is here called the overall error of the system:

ET =
1

�
i=1

Na

ki

�
i=1

Na

ki�i
T. �9�

Because the influence of an agent in the network is cor-
related with the number of its neighbors, such a definition of
the overall error takes into account the respective importance
of the models �and their intrinsic errors� of each agent.

The Appendix provides the analytical description of the
behavior of the overall error at large times, E:

E = lim
T→�

ET =
1

�k�Na
�
i=1

Na

ki�i, �10�

where �k�Na=�i=1
Na ki. Thus, it is straightforward to realize that

in case of all agents with the same probabilities of observa-
tion error, equal to �, also the overall error tends to �. In
addition, we can apply the result of the overall error to the
two following situations, assuming a network of agents with
average degree �k� and maximum and minimum degree
equal to kmax and kmin, respectively:

�a� One agent j with degree kj having a probability of
observation error � j = p��0� p�1 /�� and all other agents
with an error rate �:

E =

	�
i=1

Na

ki�
 − �kj + p�kj

�k�Na
,

E =
kj��p − 1�

�k�Na
+ � , �11�

which is a linear relation with respect to the degree of the
agent with different error rate. Note that there is no differ-
ence between any two networks of agents with the same
average degree and number of vertices.

�b� One agent j with degree kj having an observation error
proportional to its degree � j���� j �1� and all other agents
with an error rate �:

E =
kj�1 − ���kj − kmin�
�k�Na�kmax − kmin�

+ � , �12�

which becomes a quadratic relation with respect to the de-
gree of the agent with different error rate.
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A. Fixed observation errors

In this first configuration, all agents have the same esti-
mation error �=0.2, and therefore the same influence, over
the averages obtained by each agent. However, agents with
higher degree, especially hubs, are still expected to influence
more strongly the overall dynamics as a consequence of the
fact that their estimated models are taken into account by a
larger number of neighbors. We assume a single realization
of the ER and BA models, both containing 50 agents and
average degree equal to 9.4. Figure 2 shows the distribution
of the individual errors �i

T of each agent obtained for this
case in terms of the respective degrees. As could be ex-
pected, the errors obtained among the agents are very similar
one another. Thus, there is no major difference in the learn-
ing quality among the agents. A rather different situation
arises in the next sections, where we consider different error
rates.

B. Varying observation errors

We now repeat the previous configuration in two situa-
tions: �i� one of the agents having half or twice the error rate

of the others and �ii� having an error proportional to its de-
gree. Simulations are performed independently while placing
the higher error rate at all of the possible agents, while the
respective overall errors are calculated. In addition, we com-
pared the behavior for single realizations of ER and BA net-
works of agents.

Figure 3�a� shows the results obtained while considering
error probability equal to 0.2 for one of the agents and �
=0.4 for all other agents. It is possible to identify a substan-
tial difference of the mean quality of the models which de-
pends linearly on the degree of the agent with different error
rate. More specifically, it is clear that the overall errors are
much smaller for agents with higher degrees. In other words,
the best models will be obtained when the hubs have smaller
observation errors, influencing strongly the rest of the agents
through the diffusion, along time, of their respective esti-
mated models.

Figure 3�b� shows the results obtained when the estima-
tion error of one of the agents is 0.4 while the rest of the
agents have error rate �=0.2. The opposite effect is verified,
with the overall error increasing linearly with the degree of
the agent with higher estimation error. Moreover, as ex-
pected, no difference was found between the ER and BA
models in both cases.

Figure 4 shows the results obtained when one of the
agents has a higher error rate than the others and proportional
to its degree. Similar results to the previous case were found,
but with a nonlinear behavior. In addition, accordingly with
the analytical predictions, a separation was verified between
the ER and BA networks �ER presents higher values than
BA�. This means that when we consider two agents with the
same degree, each in one network, the overall error is lower
for the BA model since their hubs influence more strongly to
increase the quality of the estimated models.

A better picture of the influence of the degree over the
model development by other agents is provided in Fig. 5,
respectively, to the situation having twice the error probabil-
ity �� j =0.4� for the agent j with the highest degree. Figures
5�a� and 5�c� consider the �i

T of individual agents in terms of
their respective degrees for the BA and ER models, respec-
tively, both containing 300 agents and average degree equal

FIG. 2. The individual estimation errors in terms of the degree
of the agents obtained for the Erdős-Rényi �ER� and Barabási-
Albert �BA� models with Na=50 and �k�=9.4. Results obtained by
averaging over 100 realizations of the dynamics.

FIG. 3. The overall estimation errors in terms of the degree of the agents with different error rates for ER and BA models with Na

=50 and �k�=9.4: �a� one agent with an error rate equal to 0.2 and all other agents with �=0.4 and �b� one agent with 0.4 and all other nodes
with �=0.2. The dashed line represents the analytical solution. Results obtained by averaging over 50 realization of the dynamics.
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to 4.7. Dark points represent the neighborhood of the less
accurate agent. It is clear from these results that the degree of
the differentiated agent affects the estimation of the whole
set of agents, especially for its neighborhood, shifting sub-
stantially the average individual errors. Observe also that, in
both cases, the largest individual error results precisely at the
less accurate agent. Furthermore, nodes with high degrees

tend to be less influenced by the agent with different error
rate. Figures 5�b� and 5�d� complement the analysis consid-
ering the mean value of the individual errors of agents with
the same topological distance from the agent with different
error probability. The results show that the closer agents tend
to be more affected than the peripherals.

From the results above, we immediately verify that the
presence of the less accurate agent produces a nonuniform
error distribution. Since the individual error of an agent is
produced by averaging between its model and the mean es-
timation from the neighbors, the direct contact �and proxim-
ity� with agents with higher error rates alters considerably its
final model. Moreover, this effect is more strongly felt by
agents with few connections.

A complementary way to verify the influence of the con-
nectivity on the knowledge acquisition is to consider the
temporal evolution of the individual estimation errors in a
single realization of the dynamics. Figures 6�a� and 6�b�
show this analysis for a BA network when the agent with
smallest and highest degree, respectively, has twice the error
rate of the other agents. Considering all agents, initially there
is a significant difference between the estimated models,
which tends to be minimized as the agents interact and in-
formation diffuses through the network. A more detailed in-
spection of the agents with the same error rate �lower panel�
reveals that their models are more affected when the less
accurate agent has a higher degree.

Figure 7 shows the standard deviation of individual errors
in terms of the degrees of the agents with different error rate
for the three situations above. Differently from the first two
situations �Figs. 7�a� and 7�b��, we detected a positive corre-
lation when one agent has an error rate proportional to its
degree �Fig. 7�c��.

C. Varying observation errors in communities

After studying how a single agent can affect the overall
performance of the entire network, we can extend our analy-
sis to quantify the influence of a set of nodes when the
knowledge acquisition dynamics is applied to networks of
agents with community structure. The presence of modules,
or clusters, with nodes densely connected compared with the
number of the intercommunity edges is an important prop-
erty found in many real networked systems and is acknowl-
edged to be related with the similarity between the nodes and
the hierarchical organization of networks �32�.

In our modeling, the synthetic networks of agents with
community organization were generated by using the algo-
rithm proposed by Lancichinetti et al. �33�. This generator is
capable of producing networks with heterogeneous distribu-
tions both in the degree of the vertices and in the community
size. Furthermore, the fraction of edges that each agent
shares with agents in other communities can be also specified
by an input parameter, �, the mixing parameter.

During the simulations, all agents of one of the commu-
nities had twice the error rate of the others �it was equal to
0.4�. We analyzed how the inclusion of more links between
the agents with higher observation errors influences the indi-
vidual errors of the agents in the other communities. The

FIG. 4. The overall estimation errors in terms of the degree of
the agents with higher error rates: one agent with an error propor-
tional to its degree and all other agents with �=0.2. The dashed and
straight lines represent the analytical solution for the ER and BA
models, respectively. Simulations for a single realization of each
model with Na=50 and �k�=9.4. Results obtained by averaging over
50 realizations of the dynamics.

FIG. 5. The individual estimation errors in terms of the degree
of the agents in the case of the agent with the highest degree having
an error rate equal to 0.4 and all other agents with �=0.2 ��a� and
�c��: �, the agent with the highest error rate; �, the neighborhood
of the agent with different error rate. �, the other agents. Figures
�b� and �d� show the mean value of the individual errors of the set
of nodes with the same topological distance from the agent with the
highest error rate. Simulations for the ER and BA models with Na

=300 and �k�=4.7. Results obtained by averaging over 50 realiza-
tions of the dynamics.

J. B. BATISTA AND L. DA F. COSTA PHYSICAL REVIEW E 82, 016103 �2010�

016103-6



dynamics was performed in networks with Na=256 agents
considering variations of the mixing parameter, the degree
distribution and the size of the community with higher error
rate.

Figure 8�a� shows the results of the dynamics applied to
realizations of networks of agents with four communities of
same size and all agents with the same degree �equal to 16�
but varying the mixing parameter. For each network we con-
sidered one of the equal-sized communities having a higher
observation error. As shown in this figure, the addition of
edges between the agents of this community increases the
individual errors of the agents in the other communities and
increases with the number of intercommunity edges �the
value of ��. Since the dynamics is based on an averaging
process, in the sense that the individual models are updated
considering the models of the neighborhood, the agents with
higher observation errors tend to estimate less accurate mod-
els when the intracommunity communication is intensified.
Indeed, the addition of new edges implies in more agents
with higher errors to influence the development of their es-
timations. Finally, the intercommunity links is through which
the loss of performance is propagated to the other communi-
ties.

Similar results are shown in Figs. 8�b� and 8�c�. For the
former, we considered a single realization of the network of
agents in which all of them have the same degree, equal to
16, and the mixing parameter was set equal to 0.2, while the
agents were grouped into five communities of different sizes.
Independent simulations were performed considering all the
agents of each community having a higher error rate. Again,
a positive correlation was found between the number of
added links between the agents in the community of higher
observation error and the mean value of the individual errors
of the other agents. As expected, this effect increased with
the size of the community with higher error rate.

Figure 8�c� shows the results for agents grouped into 4
communities of same size with � equal to 0.2. The degrees
of the agents exhibited a power law form �with exponent 	
=−2 and �k�=16� so that each community had a different
mean degree. As before, the influence of each community
was considered independently, while we measured the mean
value of the individual errors of the agents in the accurate
communities. Since the communities had the same size and
the agents shared, very roughly, the same fraction of edges
with agents in other communities, the greater the average
degree of a community, the greater the number of intercom-

(a) (b) (c)

FIG. 7. The standard deviation of individual errors in terms of the degree of the agents with different error rates: �a� one agent with �=0.2
and all other agents with 0.4; �b� one agent with �=0.4 and all other agents with 0.2; and �c� one agent with an error proportional to its
degree and all other agents with 0.2. Results obtained by averaging over 50 realizations of the dynamics.

(a) (b)

FIG. 6. Temporal evolution of the individual errors considering the agent with �a� smallest and �b� highest degree having an observation
error rate equal to 0.4 and all other agents with �=0.2. Upper panel: all agents are considered �dashed line represents the less accurate agent�.
Lower panel: only the agents with the same error rate �dark lines� and the mean value of their individual errors. Simulations for BA model
assume Na=50 and �k�=9.4.
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munity edges linking to this community. This explains the
increase in the individual errors with the average degree of
the less accurate community.

VI. CONCLUDING REMARKS

The important problem of scientific interaction has been
effectively investigated in terms of concepts and tools of
complex networks research �e.g., �8–13��. However, most of
the interest has been so far concentrated on characterizing
the connectivity between scientists and institutions. The
present study reported what is possibly the first approach to
model the dynamics of knowledge acquisition �building a
model of a complex system� by a system of multiple agents
interacting through specific types of complex network. Sev-
eral configurations were considered at increasing levels of
sophistication. Each agent was assumed to make an observa-
tion of the system of interest at each time step with error
probability �.

A series of interesting and important results have been
identified analytically and through simulations. First, we
have that the individual estimation error tends to � when the
agents do not interact one another. However, different indi-
vidual errors were observed when the agents were allowed to
consider the average of models at each of their immediate
neighbors.

Special attention was given to the cases in which one of
the agents has a different observation error, yielding the im-
portant result that the overall error in such a configuration
tends to be correlated with the degree of the agent with dif-
ferent observation error. More specifically, we demonstrated
that this correlation is linear when one agent has an error half
or twice the error rate of the others and nonlinear when it is
proportional to its degree. In other words, the connectivity
will have a substantial influence over the models developed
by the agents, for better or for worse. This behavior still
holds when the overall error assumes a simpler form defined
as the average of the individual errors, without taking into
account the weights of the respective degrees. It is interesting
to observe that agents with many connections will imply
strong influences over the whole network even in case those

agents have no special fitness. Such an effect is a direct
consequence of the fact that those agents are heard by more
people. In case the hubs have higher observation errors,
worse models are obtained throughout the agent’s network.
In particular, the negative influence of the hubs is more
strongly felt by its neighborhood. Finally, we have shown
that when the agents are clustered into communities, the ad-
dition of edges in the communities with different error rate
leads to the change in the individual errors of the agents in
the other groups.

This investigation has paved the way to a number of sub-
sequent works, including but not being limited to: consider-
ation of model degradation along time, other learning strate-
gies, other types of networks, observation errors conditional
to specific local features �e.g., degree or clustering coeffi-
cient� of the network being modeled, as well as other distri-
bution of observation errors among the agents.
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APPENDIX: ANALYTICAL DESCRIPTION OF THE
OVERALL ERROR

We now present the mathematical formalization of the
above concepts. We start with the difference equation that
characterizes the dynamics of each agent i:

2Ki
t+1 = � 1

ki
�
j��i

Kj
t� + Ki

t + 2Oi
t, �A1�

where Ki
t is the current matrix and Oi

t is the observation of
the agent i at time step t. The term in brackets is the mean of
the matrices received from the set �i of the neighbors of i.
Now we consider the continuous approximation given by

(a) (b) (c)

FIG. 8. The dependency between the number of added links in the community of higher observation error and the mean value of the
individual errors of the agents in the other communities for networks with Na=256 agents: �a� all agents with the same degree, equal to 16,
grouped into four equal-sized communities and varying the mixing parameter; �b� all agents with the same degree, equal to 16, grouped into
five communities with different sizes and setting �=0.2; �c� agents with degrees distributed as a power-law grouped into four communities
of the same size and �=0.2. Results obtained by averaging over 50 realizations of the dynamics.
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2
d

dt
Ki�t� = � 1

ki
�
j��i

Kj�t�� − Ki�t� + 2Oi�t� . �A2�

Dividing by t and knowing that 1
t

d
dtKi�t�= d

dt �
Ki�t�

t �
+ 1

t2 Ki�t�, we have

2ki
d

dt
�Ki�t�

t
� + 2ki

Ki�t�
t2 = � �

j��i

Kj�t�
t � − ki

Ki�t�
t

+ 2ki
Oi�t�

t
,

�A3�

and adding, for every agent i:

d

dt
�
i=1

Na � kiKi�t�
t

� =
1

t
�
i=1

Na

kiOi�t� −
1

t
�
i=1

Na � kiKi�t�
t

� , �A4�

since �i� j��i

Kj�t�
t =�i

kiKi�t�
t . Finally, we define J�i

kiKi�t�
t :

t
d

dt
J�t� = �

i=1

Na

kiOi�t� − J�t� . �A5�

So, after time T:

J�T� = �
i=1

Na

ki� 1

T
�

0

T

Oi�t�dt� . �A6�

For an agent i the probability of observing an edge where
there is none and vice versa is �i. So, for an entry AS

m,n of the
system under observation and for large values of T, the av-
erage of the observation is

lim
T→�

� 1

T
�

0

T

Oi
m,n�t�dt� = = ��1 − �i� if AS

m,n = 1

��i� if AS
m,n = 0.

�
�A7�

Applying this result in Eq. �A5�, we have

lim
T→�

Jm,n�T� = ��
i

ki�1 − �i� if AS
m,n = 1

�
i

ki��i� if AS
m,n = 0.� �A8�

Subtracting �ikiAS
m,n and adding for all m and n we have

�
m=1

N

�
n=1

N � lim
T→�

	Jm,n�T� − �
i=1

Na

kiAS
m,n
� = �

i=1

Na 	�
m=1

N

�
n=1

N

�iki
 ,

�
i=1

Na

ki� 1

N2 �
m=1

N

�
n=1

N � lim
T→�

	Ki
m,n�T�

T
− AS

m,n
�� = �
i=1

Na

ki�i

�A9�

for both cases. The term in the sum is precisely the indi-
vidual error of an agent i weighted by its degree. Then, di-
viding by the sum of the degrees, we have the analytical
expression for the overall error of the system �E� for large
times;

�
i=1

Na

ki�i

�
i

ki

=

�
i=1

Na

ki�i

�
i

ki

⇒E =
1

�k�Na
�
i=1

Na

ki�i. �A10�
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