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In most models of the spread of disease over contact networks it is assumed that the probabilities per unit
time of disease transmission and recovery from disease are constant, implying exponential distributions of the
time intervals for transmission and recovery. Time intervals for real diseases, however, have distributions that
in most cases are far from exponential, which leads to disagreements, both qualitative and quantitative, with the
models. In this paper, we study a generalized version of the susceptible-infected-recovered model of epidemic
disease that allows for arbitrary distributions of transmission and recovery times. Standard differential equation
approaches cannot be used for this generalized model, but we show that the problem can be reformulated as a
time-dependent message passing calculation on the appropriate contact network. The calculation is exact on
trees �i.e., loopless networks� or locally treelike networks �such as random graphs� in the large system size
limit. On non-tree-like networks we show that the calculation gives a rigorous bound on the size of disease
outbreaks. We demonstrate the method with applications to two specific models and the results compare
favorably with numerical simulations.
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I. INTRODUCTION

The mathematical modeling of infectious disease out-
breaks in human populations has a long history, stretching
back to the pioneering work of Lowell Reed, Anderson
McKendrick, and others in the early twentieth century �1�.
The standard analytic approach involves dividing the mod-
eled population into classes or compartments according to
their status with respect to the disease of interest—
uninfected but susceptible, infected, recovered, and so
forth—and then writing differential equations to describe the
mass flow of individuals between compartments according to
the dynamics of the infection process �1,2�.

Such compartmental models have proven flexible, trac-
table, and highly informative as a general guide to the
population-level behavior of diseases, but they also suffer
from a number of serious deficiencies, of which two are par-
ticularly significant. The first, which has attracted a lot of
recent attention in the literature, is the assumption of random
mixing. In order to write differential equations for flows be-
tween compartments, we must make a fully mixed or mass-
action approximation whereby we assume that the probabil-
ity of disease-causing contact with any member of a
particular compartment is the same. In real life this is far
from true—most people have high probability of contact
with only that small fraction of the population they rub
shoulders with regularly, and a very small chance of contact
with everyone else. The incorporation of more realistic mix-
ing patterns into epidemiological modeling has given rise to
the field of network epidemiology, in which contacts are
modeled as a network, either static �3–9� or dynamic
�10–12�, and the structure of the network can have a pro-
found impact on the spread of the disease �13–16�.

In this paper, however, we focus on a different shortcom-
ing of compartmental models, one that has by comparison
received little attention, but which is at least as important as
the mass-action approximation. In order to write down the

differential equations of a compartmental disease model, one
must make the assumption that movement between compart-
ments takes place at a stochastically constant rate. In model-
ing a disease from which most victims recover, for instance,
one typically assumes that an infected individual has a con-
stant probability per unit time of recovery. While being a
useful assumption from a mathematical point of view, how-
ever, this behavior is very far from that of most real diseases.
The assumption of constant probability of recovery implies
an exponential distribution of times for which individuals
remain infected, so that the most probable duration of infec-
tion is zero, and probability decreases uniformly with time.
In reality, most diseases show a roughly constant duration of
infection—a week, say, or a month—with relatively small
fluctuations from person to person, so that the distribution of
durations has a sharp peak about the average value and is
highly nonexponential. Such nonexponential distributions
are known to have a substantial effect, both qualitative and
quantitative, on the shape of epidemics �17–21�.

If one is willing to make the mass-action approximation,
then nonexponential behavior can be incorporated into epi-
demic models by reformulating the theory in terms of inte-
grodifferential equations �22,23�. If, however, one wishes
also to retain the advances of network epidemiology in rep-
resenting nonrandom contact patterns, then even this ap-
proach does not work and a new method of solution is nec-
essary. In this paper, we demonstrate that in the latter case
the calculations can be reformulated in the language of mes-
sage passing algorithms of the kind known as belief propa-
gation or sum-product methods. In addition to providing ex-
act solutions for the dynamics of quite general epidemic
models on large classes of networks, the message passing
formulation also leads to a number of other results concern-
ing network epidemiology, including a rigorous upper bound
on the size of disease outbreaks, results for late-time behav-
ior, and results for the average behavior of epidemics in ran-
dom network ensembles.
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II. MESSAGE PASSING FORMULATION OF EPIDEMICS

We begin by defining the problem. We consider the sim-
plest nontrivial model of epidemic disease, the susceptible-
infected-recovered �SIR� model, in which an individual can
be in one of three disease states, susceptible, infected, or
recovered. We will assume an initial condition for the epi-
demic in which each vertex is susceptible with independent
probability z and infected otherwise.

We assume that disease transmission is taking place on a
given contact network, meaning that disease can only be
transmitted between individuals who are directly connected
by an edge in that network. We also generalize the model to
allow for nonexponential distributions of the times at which
transitions between these states occur, i.e., the times at which
infection and recovery occur. To be completely general, let
us define s���d� to be the probability that an individual in-
fected with the disease of interest first makes contact suffi-
cient to transmit the disease to a particular network neighbor
at a time between � and �+d� after their infection. Similarly
let us define r���d� to be the probability that an individual
infected with the disease recovers from it at a time between �
and �+d� after infection.

An infected individual can only transmit the disease to a
susceptible neighbor if they are still infected at the time of
contact, and hence the probability that transmission actually
occurs between � and �+d� after infection is equal to the
probability s���d� times the probability ��

�r����d�� that the
individual has not yet recovered. Let us denote this overall
probability of transmission by f���d�:

f���d� = s���d��
�

�

r����d��. �1�

Note that this function, unlike s��� and r��� does not inte-
grate to unity. Rather, it integrates to the total probability that
a vertex transmits the disease to its neighbor before it recov-
ers, a probability referred to elsewhere variously as the trans-
missibility or infectivity of the disease.

The fundamental quantity appearing in our message pass-
ing formulation of disease transmission—the “message” that
is passed among network vertices in the calculation—is the
probability, which we denote Hi←j�t�, that a vertex j has not
passed the disease to neighboring vertex i by absolute time t.
�Without loss of generality, we will assume the epidemic to
begin at absolute time t=0.� An especially simple case of our
approach arises when the network of interest takes the form
of a tree, i.e., a network having no loops. In this case, the
failure of vertex j to pass the disease to vertex i before time
t can occur in either of two ways, as illustrated in Fig. 1.
First, it may be that, if and when vertex j contracts the dis-
ease, it fails to transmit it to i within an interval t from
infection, in which case clearly i does not contract the dis-
ease before absolute time t. The probability of this occur-
rence is 1−�0

t f���d�.
The second possibility is that j is scheduled to transmit

the disease within time t of contracting it, but that j itself got
the disease �from one of its other neighbors� too late for that
transmission to occur before absolute time t, or indeed never
got the disease at all. If j transmits the disease at time � after

contracting it, but fails to contract the disease before time
t�= t−� then i does not receive the disease before time t. The
probability that j does not contract the disease before t� is
z�l�N�j�\iH

j←l�t��, where the leading factor of z represents
the probability that j was not one of those vertices initially
infected with the disease at t=0. The notation N�j� \ i denotes
the set of neighbors of vertex j, excluding vertex i. Now
integrating over t�, we find the total probability that j fails to
transmit the disease before t to be z�0

t f�t
− t���l�N�j�\iH

j←l�t��dt�.
Putting the two contributions to Hi←j�t� together and writ-

ing t− t�=� we arrive at the message passing equation

Hi←j�t� = 1 − �
0

t

f����1 − z �
l�N�j�\i

Hj←l�t − ��	d� . �2�

For the special case of a network taking the form of a tree,
this equation gives us, at least in principle, a complete solu-
tion for the probabilities Hi←j�t� for all t and arbitrary f���.

Normally, however, Hi←j is not the quantity of epidemio-
logical interest. More commonly one wants to know things
such as the fraction of the population that will be in the
various disease states at different times, or more generally
the probability that a particular individual will be in each
disease state. Let us define Si�t� to be 1 if individual i is
susceptible at time t and 0 otherwise, and similarly define
Ii�t� and Ri�t� for the infected and recovered states. Then
P�Si�t�=1� denotes the probability that vertex i is susceptible
at time t. For the sake of economy we will also write this
probability more briefly simply as P�Si�. For i to be suscep-
tible at time t we require �a� that i is not one of the vertices
initially infected at t=0, which happens with probability z,
and �b� that i not receive the infection from any of its neigh-
bors before time t. Thus, P�Si� can be expressed quite simply
as

P�Si� = z �
j�N�i�

Hi←j�t� . �3�

Once we have P�Si�, however, one can also immediately
calculate P�Ii� and P�Ri�. Note that the rate dP�Ii� /dt at
which P�Ii� increases is equal to the rate at which P�Si�
decreases—since all individuals moving out of the suscep-
tible state must move into the infected state—minus the rate
at which i recovers. The recovery rate has two contributions:
the probability 1−z that i was infected at time t=0 times the

� zHi� j�t� �

H j�k�t � Τ�

Τ � tj ji iΤ � t H j�q�t � Τ�

H j�r�t � Τ�

k

q

r

FIG. 1. The probability that vertex i does not contract the dis-
ease from its neighbor j before time t is equal to the probability that
j fails to transmit the disease within an interval t of catching it, plus
the probability that it does transmit the disease within an interval t
but that j received the disease from its neighbors �here denoted k, q,
and r� too late to pass it on to i in time.
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rate r�t� of recovery a time t later, and the probability that i
was infected at some later time t�� t �which is simply
−dP�Si� /dt�� times the rate r�t− t�� of recovery a time t− t�
later. This allows us to write a rate equation for P�Ii� thus:

dP�Ii�
dt

= −
dP�Si�

dt
− �1 − z�r�t� + �

0

t

r�t − t��
dP�Si�

dt�
dt�.

�4�

By integrating this equation we can calculate P�Ii� for any t,
and then we can calculate P�Ri� from the knowledge that the
probabilities of the three states must sum to one:

P�Ri� = 1 − P�Si� − P�Ii� . �5�

Between them, Eqs. �2�–�5� now give us a complete solution
for the three probabilities, for arbitrary �including nonexpo-
nential� distributions of infection and recovery times.

III. MESSAGE PASSING ON NONTREE NETWORKS

The developments of the previous section give us a solu-
tion for the SIR model in the case where the network of
interest has no loops, but almost all real-world networks
have loops, and usually many of them. It is known that mes-
sage passing methods, while not exact on nontree networks
can still give good approximate answers in some cases. In
the present case, however, we can go further than such quali-
tative statements and show that our message passing calcu-
lation provides a rigorous upper bound to the number of
infected individuals on networks that contain loops. To prove
this result, consider the following alternative formulation of
the epidemic process.

In the generalized SIR model discussed here, evolution of
the disease involves infected individuals spreading infection
to their susceptible neighbors at times after infection drawn
from the distribution s��� and recovering at times after infec-
tion drawn from r���. There is, however, no requirement that
we draw these times at the moment of infection. We can if
we wish draw them ahead of time, before executing the steps
of the model. That is, we can for each vertex i in the network
draw a time �i from the distribution r��� and associate it with
that vertex. When vertex i becomes infected, we look up the
value of �i which tells us the interval of time before i recov-
ers. For the edges the situation is only a little more compli-
cated. We replace each undirected edge in the network with
two directed edges pointing in opposite directions, to repre-
sent the act of disease transmission in either direction be-
tween the two relevant vertices. Then for each directed edge
j→ i we draw a time wij from the distribution s�w� to repre-
sent the time after infection of j at which contact is made
with i. If this time falls before the recovery of j, i.e., if wij
�� j, then transmission will take place if j is ever infected,
and will occur an interval wij after infection. If, however, j
recovers first, i.e., if wij �� j, then no transmission takes
place, which we can, if we wish, represent mathematically by
setting wij =�.

The end result is a directed “transmission network” in
which the edges represent possible transmission events and
the values wij on the edges represent the time delay between

arrival of the infection at j �if that ever happens� and arrival
of the infection at i.

In terms of this network it is now quite simple to write
down the probability P�Si� that vertex i is susceptible at time
t. In order to be susceptible we require �a� that i was not
infected at time 0, which happens with probability z, and �b�
that there exists no path from any vertex j to vertex i such
that vertex j was infected at time 0 and the sum of the time
delays wij along the path is less than t.

An alternative way of thinking about this second condi-
tion is to consider the neighborhood of radius t about vertex
i, meaning the set of vertices j a distance t or less from i,
where distance is measured in terms of the sum of the values
wij along the path—the shortest weighted distance in the lan-
guage of graph theory. If any of the vertices in this neigh-
borhood is infected at time zero then vertex i will not be
susceptible at time t. Let us suppose that there are ni vertices
in the neighborhood, excluding vertex i itself. Then the prob-
ability that i is susceptible—for this particular choice of the
wij and �i—is zni+1. We are interested, however, in the prob-
ability averaged over all values of the wij and �i, which is

P�Si� = z
zni� , �6�

where the angle brackets 
 . . . � denote the average over the
ensemble of values of wij and �i.

This equation is correct and exact in all cases. To relate it
to our previous message passing approach and understand
how the calculation proceeds on networks with loops, con-
sider the alternative set of vertex counts nij, which are the
numbers of vertices whose distance to i is t or less, but now
with the restriction that the penultimate vertex along the path
to i must be vertex j. For reasons that will shortly become
clear, we also forbid paths that pass through vertex i more
than once. That is, there may be a path of length t or less that
first passes through i to reach j and then returns to i, but such
paths are disallowed. In practice, a simple way to enforce
this constraint is to remove from the network all directed
edges outgoing from vertex i. In this case, vertex i is said to
be a cavity vertex or in the cavity state.

We now observe that, as illustrated in Fig. 2, the sum of
nij over all neighbors j is always at least as great as ni:

ni � �
j�N�i�

nij , �7�

where the inequality becomes an exact equality if the net-
work is a tree. �It is in order to ensure this equality that we
exclude paths that pass through i twice.� Then zni

�z�j�N�i�nij and

P�Si� = z
zni� � z
z�j�N�i�nij� = z
 �
j�N�i�

znij� . �8�

We now apply a version of the Chebyshev integral in-
equality, proved in the appendix, that for any set of non-
negative functions f1�x1 , . . . ,xk� , . . . , fn�x1 , . . . ,xk� that are
monotone increasing or decreasing in every argument, says
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�
i=1

n

f i�x1, . . . ,xk�� � �
i=1

n


f i�x1, . . . ,xk�� , �9�

where the average is over any distribution of independent
variables x1 , . . . ,xk. Applied to Eq. �8�, this inequality tells us
that

P�Si� � z �
j�N�i�


znij� = z �
j�N�i�

Hi←j�t� , �10�

where we have defined

Hi←j�t� = 
znij� . �11�

This quantity is the average probability that at time t the
infection has not been passed to vertex i via neighbor j
�again excluding cases where the infection passes through i
twice�. It plays the same role as the corresponding quantity
in Eq. �3� for the case of a tree, and we can evaluate it in an
analogous way. As before we split Hi←j�t� into two parts.
The first is the probability that, even if j is infected, it does
not transmit the disease to i within time t of infection. This
probability, as before, is 1−�0

t f���d�, where f��� is defined
by Eq. �1�.

The second part is the probability that j is scheduled to
transmit the disease within time �� t of contracting it, but
that j itself gets the disease too late for the transmission to
occur before absolute time t �or j never gets the disease at
all�. For transmission before time t vertex j needs to contract
the disease before t�= t−� and the probability that this does
not happen is P�Sj�t�� � i in cavity�, where it is now impor-
tant that i is in the cavity state, so as to disallow paths for
infection that pass through i itself. Then the probability that j
fails to transmit the disease before time t is �0

t f�t
− t��P�Sj�t�� � i in cavity�dt�.

The probability P�Sj�t�� � i in cavity� we can calculate
from the appropriate analog of Eq. �10� but with both i and j
in the cavity state, i.e., with their outgoing edges deleted. But
consider now adding back in all the edges leading from i
except the one to j. In doing so, we only add paths to the
network and hence potentially increase the size of the neigh-

borhood of vertex j but never decrease it. This implies that
we only decrease P�Sj�t���, so that

P�Sj�t���i in cavity� � P�Sj�t���i → j deleted�

� z �
l�N�j�\i


znjl� = z �
l�N�j�\i

Hj←l�t�� ,

�12�

where we have used Eq. �10�. Combining our two contribu-
tions to Hi←j�t� and writing t− t�=�, we now find that

Hi←j�t� � 1 − �
0

t

f����1 − z �
l�N�j�\i

Hj←l�t − ��	d� . �13�

This result is very similar to the message passing equality
of Eq. �2�, but it is an inequality, and hence cannot be di-
rectly employed to calculate properties of the epidemic. Let
us, however, define a different function Fi←j�t� by the equa-
tion

Fi←j�t� = 1 − �
0

t

f����1 − z �
l�N�j�\i

Fj←l�t − ��	d� , �14�

which is an equality and so can be used to calculate Fi←j, for
instance by iteration starting from a suitable initial value
F0

i←j�t�. Suppose we choose as our initial value F0
i←j�t�

=Hi←j�t� for all i , j and t, so that, from Eq. �13�, we have

F0
i←j�t� � 1 − �

0

t

f����1 − z �
l�N�j�\i

F0
j←l�t − ��	d� . �15�

�Of course we don’t know the value of Hi←j�t�, but suppose
for the moment that we do.� Then, performing one step of the
iteration, we arrive at a new value F1

i←j�t� thus:

F1
i←j�t� = 1 − �

0

t

f����1 − z �
l�N�j�\i

F0
j←l�t − ��	d� � F0

i←j�t� ,

�16�

where we have used Eq. �15�. But note that, since f����0
for all �, Eq. �16� also implies that

�
0

t

f��� �
l�N�j�\i

F1
j←l�t − ��d� � �

0

t

f��� �
l�N�j�\i

F0
j←l�t − ��d� ,

�17�

and hence from Eq. �16�

F1
i←j�t� � 1 − �

0

t

f����1 − z �
l�N�j�\i

F1
j←l�t − ��	d� , �18�

which is the equivalent of Eq. �15� for F1
i←j�t�. Now we can

repeat the same argument to show that for a general step of
the iteration we must have

Fm
i←j�t� � Fm−1

i←j �t� . �19�

In the limit m→�, the iteration must converge, since Fm
j←l�t�

is bounded below by 1−�0
t f���d�, and hence in this limit we

get a solution to Eq. �14� that satisfies

1

�

�

�

3

�
2

3
�

2
�

5

FIG. 2. �Color online� A small directed transmission network in
which each edge is labeled with its associated transmission delay
wij, except for edges with wij �� j, which are labeled �. The three
shaded vertices denote those within distance 6 of the black vertex
and the dashed edges correspond to the weighted shortest paths
from the shaded vertices to the black one. If we approximate the
number of shaded vertices as in Eq. �7� by the sum of the numbers
of vertices within distance 6 that are reachable via each of the black
vertex’s immediate neighbors, then we will count four vertices in-
stead of three: the top vertex will be counted twice because the
dash-dotted edge provides a second path from this vertex to the
black one.
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Fi←j�t� � F0
i←j�t� = Hi←j�t� , �20�

for all i , j and t.
Now, making use of Eq. �10�, we have

P�Si� � z �
j�N�i�

Hi←j�t� � z �
j�N�i�

Fi←j�t� . �21�

Thus Eq. �14� allows us to calculate a rigorous lower bound
on the probability that any vertex is in the susceptible state.
Notice that Eq. �14� is the same as the equation for Hi←j in
the tree case, Eq. �2�, but is perfectly well defined for any
network, tree or otherwise.

Our lower bound on P�Si� also gives us upper bounds on
P�Ii� and P�Ri�, both of which are trivially less than 1
− P�Si�, as well as an upper bound on the sum P�Ii�+ P�Ri�
=1− P�Si�, which is the total probability that i has ever
caught the disease. Hence our message passing calculation
can in this case give us an upper bound on the number of
individuals infected by an epidemic, a result of possible
value—a guarantee that infection will not rise above a cer-
tain level could be used as a quality function to quantify the
efficacy of proposed vaccination campaigns or other public
health interventions.

Employing Eqs. �14� and �21� in a message passing algo-
rithm would involve propagating messages that take the form
of functions Fi←j�t� of time. On a tree, one would start with
the leaves of the tree, for which Eq. �14� is trivial, and work
inwards through the network until the functions on all edges
have been evaluated. On a nontree network, the calculation is
more complicated because one does not in general know any
of the Fi←j�t� to begin with, so one would have to make an
initial guess and then iterate Eq. �14� repeatedly to reach
convergence. Fi←j�t�=1 for all i , j and t is a suitable starting
condition, but the iteration itself can in practice be time con-
suming and the calculation may not be tractable. Even if it is
tractable, it almost certainly demands more effort than sim-
ply simulating the spread of an epidemic on the network of
interest. There are some choices of the distributions r��� ,s���
for which the equations simplify and are more tractable—we
examine two in Sec. V. Alternatively, one may be able to
make useful approximations in some cases. For instance, if
f��� is sharply peaked close to �=0, as it is for many real
diseases, then it may be reasonable to approximate Fi←j�t
−�� in Eq. �14� by its value Fi←j�t� at �=0. Then �14� be-
comes

Fi←j�t� = 1 − p�t� + zp�t� �
l�N�j�\i

Fj←l�t� , �22�

where p�t�=�0
t f���d�. Hence the values of Fi←j at different

times decouple and the equations can be solved by a simple
scalar iteration—no integrals need be performed. Although
efficient, however, this approximation is usually only a good
one in regions where Fi←j�t� is relatively constant over the
time scales typical of the disease progression represented by
f���, which means early and late times, but not in the crucial
intermediate interval where most of the interesting behavior
falls.

Even in cases where the message passing equations are
not a practical calculational tool, however, they can still be

useful. In particular, they can tell us about the late-time limit
of epidemics, including important quantities such as the total
number of people infected by the disease, and they allow us
to calculate epidemic outcomes averaged over ensembles of
networks such as the widely studied configuration model. We
look at these two applications now in turn.

IV. LATE-TIME BEHAVIOR

Taking the limit t→� in Eq. �14�, we get

Fi←j��� = 1 − �
0

�

f����1 − z �
l�N�j�\i

Fj←l���	d� , �23�

where we have assumed that f��� is suitably small for large
values of its argument. Writing Fi←j =Fi←j��� for short and
defining p=�0

�f���d�, which is the total probability of trans-
mission occurring between two vertices connected by an
edge, we then find that

Fi←j = 1 − p + pz �
l�N�j�\i

Fj←l. �24�

This again takes the form of a message passing calculation,
but now the messages passed are simple numbers, and hence
the calculation can be performed quickly, even on networks
that are not trees. Then the probability that a vertex is sus-
ceptible in the limit of late times satisfies

P�Si� � z �
j�N�i�

Fi←j . �25�

In the limit of late times there are no infected individuals—
all have either recovered or never got sick in the first
place—so P�Ri�=1− P�Si�. Thus this calculation gives us an
upper bound on the probability that any given individual ever
contracts the disease or, if we sum over all vertices, an upper
bound on the size of the disease outbreak.

As has been discussed previously �24–27�, the late-time
limit of the SIR model is related to a correlated bond perco-
lation process on the corresponding directed transmission
network, the correlations arising because of variation in the
time an individual takes to recover: if an individual recovers
quickly then the probability of transmission of the disease to
any of its neighbors is small; if it takes a long time to recover
the probability is correspondingly larger. Equations �24� and
�25� can be considered to define a message passing algorithm
for solving precisely this bond percolation problem on a gen-
eral network. In this context, Fi←j is a generating function in
z for the number of vertices in the percolation cluster of
vertex i that are reachable via vertex j, and P�Si� is a gener-
ating function for the overall sizes of the clusters. In recent
unpublished work, Shiraki and Kabashima �28� have given a
message passing method for calculating percolation cluster
sizes on trees and locally treelike networks, which is equiva-
lent to the method reported here for the special case of a tree.

V. EPIDEMICS ON CONFIGURATION MODEL
NETWORKS

Our method can also be used to calculate average prob-
abilities of infection for ensemble models of networks. It is
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common in the study of processes on networks to look at not
the behavior on a single network, but the average behavior in
an ensemble model defined as a probability distribution over
possible networks. The message passing formalism devel-
oped here allows one to calculate such average behaviors
easily. We demonstrate this type of calculation using the con-
figuration model, which is probably the most widely studied
ensemble model of a network �29,30�.

In the configuration model one fixes the degree distribu-
tion of the network—meaning the fractions pk of vertices
with each possible degree k—but in other respects connects
vertices at random. Thus in calculating the behavior of an
epidemic on the configuration model there are two sources of
randomness to average over. The first is the randomness in
the dynamics of the disease, which is already built into our
message passing formalism. The second is the randomness of
the graph ensemble.

Consider the average over the graph ensemble and con-
sider an edge attached to vertex i. In different networks of
the ensemble this edge will be attached to different vertices j
at its other end and hence a different message Hi←j will be
transmitted down the edge. The ensemble average probabil-
ity that vertex i has not yet been infected along the edge by
time t is equal to the average of these messages over the set
of networks. But, since every edge plays an identical role in
the configuration model ensemble, the average message is
the same for all edges i , j and hence we need calculate only
one message to solve for the average behavior of the model.
Let us denote this average message by H1�t�.

To calculate the average message, we need to average Eq.
�2� �or its equivalent, Eq. �14� for nontree networks�, which
requires us to average the product on the right-hand side of
the equation. The average of such a product is not in general
equal to the product of the average message, which poten-
tially makes the calculation more complicated. However, in
the limit of large network size, configuration model networks
have the crucial property of being locally treelike, with the
shortest cycles in the network being of length O�log n� and
hence diverging as n→�. This means that the messages a
vertex receives along each of its incident edges are indepen-
dent in the large-n limit—in essence, we assume that corre-
lations along a cycle of diverging length are irrelevant in the
large size limit. In this case, the average of the product of
messages received by a vertex is equal to the product of the
average.

Averaging Eq. �2� over the ensemble and allowing for the
fact that all messages are the same, the product �l�N�j�\iH

j←l

in the equation now becomes simply a power �H1�t��k, where
k is the so-called excess degree of j, i.e., its degree minus the
edge between i and j, which has been removed because i is
in the cavity state. The excess degree is distributed according
to the excess degree distribution qk= �k+1�pk+1 / 
k� �30� and,
averaging over this distribution, we find

H1�t� = �
k=0

�

qk�1 − �
0

t

f����1 − z�H1�t − ���k�d�	
= 1 − �

0

t

f����1 − zG1�H1�t − ����d� , �26�

where G1�x�=�kqkx
k is the probability generating function

for the excess degree distribution.

Similarly, from Eq. �3�, the probability that a vertex of
�ordinary� degree k is susceptible at time t is z�H1�t��k and
the average probability of being susceptible is

P�S� = z�
k=0

�

pk�H1�t��k = zG0�H1�t�� , �27�

where G0�x�=�kpkx
k is the generating function for the ordi-

nary degree distribution pk.
Again we can study the late-time behavior by letting t

→� and writing H1=H1��� to give

H1 = 1 − p + pzG1�H1� , �28�

and

P�S� = zG0�H1� , �29�

where p=�0
�f���d�. These two equations are precisely the

standard equations for bond percolation on the configuration
model �31� and highlight again the connection between the
SIR model and percolation theory. The message H1 can be
regarded as a generating function in z for the distribution of
numbers of vertices reachable along an edge in bond perco-
lation and P�S� is a generating function for the sizes of clus-
ters.

VI. EXAMPLES

As a first example of the application of our formalism,
consider what happens when the distributions r��� and s���
take the standard exponential form, corresponding to sto-
chastically constant probabilities of infection with and recov-
ery from disease. Specifically, we assume that s���=�e−��

and r���=�e−��, where � and � are the rates of infection and
recovery. Then f���=�e−��+��� and, making the substitution
t�= t−�, Eq. �26� becomes

H1�t� = 1 − �e−��+��t�
0

t

e��+��t��1 − zG1�H1�t����dt�.

�30�

Differentiating with respect to t, we then find that H1 satisfies

dH1

dt
= ��� + ��e−��+��t�

0

t

e��+��t��1 − zG1�H1�t����dt�

− ��1 − zG1�H1�t���

= � − �� + ��H1�t� + �zG1�H1�t�� , �31�

with the initial condition H1�0�=1. This differential equation
has the solution

t = �
1

H1 du

� − �� + ��u + �zG1�u�
. �32�

And once we have H1�t� we can use Eq. �27� to calculate
P�S� and subsequently P�I� and P�R�. In Fig. 3 �top two
frames�, we show the form of the resulting solution for the
particular choice of a Poisson degree distribution, along with
the results of numerical simulations of epidemics spreading
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on the same networks. As the figure shows, the analytic and
numerical approaches agree well, and take the familiar form
of an SIR outbreak with a brief peak in the number of in-
fected individuals followed by a sharp decline and corre-
sponding rise in the number of recovered individuals.

But now consider a second choice that is quite different
but perhaps more realistic. In this case we assume that indi-
viduals once infected do not become infectious immediately,
passing through a latent period before developing a transmis-
sible infection, and also that infected individuals do not start
recovering from disease immediately upon infection as in the
exponential model, but remain infected for a certain length
of time then recover. A simple choice displaying these two
behaviors is the “top hat” function

f��� =
p

�r − �s
�	�� − �s� − 	�� − �r�� , �33�

with �r��s, where 	��� is the Heaviside step function. In this
expression �s is the time at which the infected individual
becomes infectious, �r is the time at which they recover, and
p, as before, is the total probability of transmission.

Inserting this form into Eq. �26� and again differentiating
gives

dH1

dt
=

p

�r − �s
�	�t − �r��1 − zG1�H1�t − �r���

− 	�t − �s��1 − zG1�H1�t − �s���� . �34�

where again H1�0�=1. The lower two panels of Fig. 3 show

the solution of this equation for the same Poisson degree
distribution as previously, and p, �r, and �s chosen so as to
give the same mean time of transmission and total transmis-
sion probability as in the exponential case. Fixing the total
transmission probability to be the same also fixes the long-
time behavior to be the same, as can be seen in the figure.

The two calculations—exponential and “top hat” versions
of f���—nonetheless give quite different results. The epi-
demic peaks around the same time in each �about t=6 in the
plots�, but more individuals are infected at any time in the
exponential case and the epidemic lasts longer. Furthermore,
the top hat case shows distinctive waves of infection, of pe-
riod roughly equal to �s, separated by intervals of compara-
tively lower disease activity. These waves are caused by the
appearance of distinct “generations” in the spread of the dis-
ease as the first round of disease carriers passes infection to
the second, who some time later pass it to the third, and so
on. Such waves of infection are observed in many real-world
diseases but are absent from models using a conventional
exponential distribution of infection times �although they can
be represented in a crude fashion by introducing additional
disease states, as in the so-called SEIR model�.

For other choices of degree distribution, including power
law, uniform, and exponential distributions, the predictions
are qualitatively similar by and large, and agree similarly
well with simulation results. The shapes of the curves are,
however, significantly altered by different choices of the pa-
rameters �r and �s in the top hat case: as the values of �r and
�s become better separated the waves of infection become
blurred and ultimately impossible to distinguish. Conversely,

FIG. 3. �Color online� Fraction of the population infected �left� and recovered �right� as a function of time for two different choices of
the parameters of the model. Calculations were performed on configuration model networks of n=105 vertices and Poisson degree distri-
bution with mean 3. In the top two panels infection and recovery times are exponentially distributed as described in the text, with �= 8

9 and
�= 2

9 . In the bottom two panels f��� takes the “top hat” form of Eq. �33�, with �s=0.8, �r=1, and p=0.8. The initial condition was z
=0.999 in each case. Solid lines in each panel are the predictions of the theory; circles are simulation results, averaged over 100 runs.
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the waves become more pronounced if �r and �s are chosen
closer to one another.

VII. CONCLUSIONS

In this paper, we have studied the SIR model of epidemic
disease on a contact network, in a generalized form that al-
lows for non-constant probabilities of infection and recovery,
by contrast with conventional SIR calculations. Abandoning
constant probabilities obliges us also to abandon the tradi-
tional differential equation approach to solving the model,
but we have shown that the problem can be reformulated
instead in the language of message passing. We have given a
message passing calculation that is exact on networks that
take the form of trees �or are locally treelike, as in random
graphs� and provides a rigorous bound on the probabilities of
disease states on non-tree-like networks.

We have demonstrated the application of our approach to
the calculation of the late-time behavior of the generalized
SIR model and to the calculation of average properties of the
model within the random graph ensemble known as the con-
figuration model. One could in principle extend the calcula-
tions to other random graph ensembles, such as random
graphs with degree correlations �32� or random graphs with
clustering �33�, or to calculations on single networks �i.e.,
not ensembles�.

The approach taken here can be applied to other dynami-
cal models on networks, such as the SI or SEIR models,
again yielding exact results on trees or treelike networks and
rigorous bounds in the nontree case, and it is possible the
approach could also be applied to threshold models �34�. At
the moment, it’s unclear whether models such as the SIS
model in which vertices can return to past states can be tack-
led in the message passing framework. The developments for
the SIR model relied on our having an exact message passing
solution on a tree. We have not yet been able to find a similar
solution for the SIS model and so the development of a mes-
sage passing method for this model remains an open prob-
lem.
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APPENDIX: CHEBYSHEV INTEGRAL INEQUALITY

Let f1�x1 , . . . ,xk� , . . . , fn�x1 , . . . ,xk� be a set of n non-
negative functions that are monotone decreasing or increas-
ing in each of their k real-valued arguments for fixed values
of the other arguments. �They can be increasing in one argu-
ment and decreasing in another.� Then it can be proved that


�
i=1

n

f i�x1, . . . ,xk�� � �
i=1

n


f i�x1, . . . ,xk�� , �A1�

where the average is over any distribution of the independent
variables x1 , . . . ,xk. The proof is as follows.

Let 
f�x1. . .xj
denote the partial average

� f�x1, . . . ,xj,xj+1, . . . ,xk�P�x1� . . . P�xj�dx1 . . . dxj ,

�A2�

which is a function of the remaining arguments xj+1 to xk.
Then consider the following product for arbitrary x and y

�f1�x,x2, . . . ,xn� − f1�y,x2, . . . ,xn��


 ��
i=2

n

f i�x,x2, . . . ,xn� − �
i=2

n

f i�y,x2, . . . ,xn�	 . �A3�

Because the functions f i are non-negative and monotonic in
their first argument, the factors in brackets �…� are either
both positive or both negative and hence the entire expres-
sion is non-negative for any x and y. Now let x and y be
independent random variables, both with the same distribu-
tion as x1 and let us average Eq. �A3� over x and y. After
rearranging we find that


�
i=1

n

f i�
x1

� 
f1�x1
�
i=2

n

f i�
x1

. �A4�

The same argument can now be applied to the remaining
functions f2 , . . . , fn in turn, to demonstrate that


�
i=1

n

f i�
x1

� �
i=1

n


f i�x1
, �A5�

and the equivalent result naturally holds for averages over
any of the variables:


�
i=1

n

f i�
xj

� �
i=1

n


f i�xj
, �A6�

The remainder of the proof proceeds by induction. As-
sume that


�
i=1

n

f i�
x1. . .xj

� �
i=1

n


f i�x1. . .xj
. �A7�

for j�k. Averaging both sides over one additional variable
xj+1 gives


�
i=1

n

f i�
x1. . .xj,xj+1

�
�
i=1

n


f i�x1. . .xj�
xj+1

. �A8�

But 
f1�x1. . .xj
, . . . , 
fn�x1. . .xj

is itself a set of monotone non-
negative functions of the variables xj+1 , . . . ,xk. Applying Eq.
�A6� to this set, we then find that


�
i=1

n

f i�
x1. . .xj+1

� �
i=1

n


f i�x1. . .xj+1
. �A9�

Applying induction and using Eq. �A5� as the base case, the
result is now established.
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