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A method of synchronization is presented which, unlike existing methods, can, for generic dynamical
systems, force all conditional Lyapunov exponents to go to −�. It also has improved noise immunity compared
to existing methods, and unlike most of them it can synchronize hyperchaotic systems with almost any single
coupling variable from the drive system. Results are presented for the Rossler hyperchaos system and the
Lorenz system.
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This Rapid Communication presents a method for the
synchronization �1,2� of chaotic and hyperchaotic systems.
This is a distinctly different approach from previous meth-
ods, including those intended for hyperchaos �see, e.g., Ref.
�3��. It is capable of synchronizing almost all systems with
almost any single coupling variable. The Rossler hyperchaos
equations, for example, can be synchronized using any one
of the four variables for coupling. In the presence of noise, it
dramatically reduces the synchronization error compared to
the standard continuous-feedback �or diffusive� method �2�,
in effect performing two functions at once: synchronization
and noise reduction. In the absence of noise, it can force all
of the conditional Lyapunov exponents �CLEs� �2� to go to
−�. In practice this means that a �small� error in the state of
the response system can be completely corrected in a single
step, something that has previously been demonstrated only
in special cases �though proven in theory for generic systems
�4��. The properties of the method can be related to time-
delay embedding �5� and also to shadowing �6�.

We consider two identical systems with unidirectional
coupling between the drive �or master� system and the re-
sponse �or slave� system. The method introduces corrections
to all of the response variables at specific correction times.
The corrections may be of finite amplitude, in which case the
response variables will be discontinuous at the correction
times. Between correction times, the response system
evolves on its own, completely unaffected by the drive sys-
tem. These corrections are designed to minimize the mean-
square error in matching the coupling signal over a finite
time interval, Topt. This interval typically starts at the correc-
tion time and extends a specified amount into the future,
making this a type of “initial value” or “shooting” method.
Such methods have been used for parameter estimation �PE�
using a finite data set �7� but have not previously been used
for synchronization. Some other PE methods �8,9� use stan-
dard synchronization terms in conjunction with optimization,
but the optimization process itself is not used as a mecha-
nism for synchronization as it is here. The need for future
time data means that the drive system must be running
slightly ahead of the response system. �If need be this latency
of the response system can be eliminated by a modification
of the method �10� but at a cost of degraded noise immunity.�

This process is repeated over successive intervals, and the
calculated corrections go to zero on approach to exact syn-
chronization.

The finite time interval of data can be considered to be the
continuous-time limit of a time-delay embedding and thus
contains information about the full state of the system. For a
generic system, a perfect fit over the entire interval is only
possible when the full states of the drive and response sys-
tems are exactly identical. A previous paper that used embed-
ding �4� looked at directly inverting a time-delay embedding
of the coupling data. This is a very difficult task in general,
which is avoided here by the error minimization approach.
Another paper �11� develops a time-delay method called “ex-
tended observers,” which is applicable to some iterated maps
but not continuous time systems. Two other papers �12,13�,
use “derivative” embedding �5� to generate a coupling
strength vector for continuous feedback that is not constant
but depends on the current state of the response system and
obtain some interesting results.

In the presence of noise, the synchronization error is sig-
nificantly smaller than can be achieved by standard methods.
The error can, in some cases, be further improved by increas-
ing Topt. The method is, in effect, being used as a means of
noise reduction by “shadowing,” i.e., as a process for seeking
a deterministic orbit within noisy data. Such methods have
been known for some time �6�, but they do not appear to
have been used for synchronization before. The noise reduc-
tion properties of the method could be of interest in the fields
of chaotic communication �14� and parameter estimation.

The variables of the drive and response systems are rep-
resented as x= �x1 ,x2 , . . . ,xd�, and y= �y1 ,y2 , . . . ,yd�, where
d is the dimension of the system. These are assumed to be
governed by identical sets of first-order ordinary differential
equations �ODEs� dx /dt=F�x� and dy /dt=F�y� �modified as
required by the coupling scheme�. We will assume that x� is
the variable that will be used for coupling, where � is a
particular index in the range 1 to d. For the current method,
corrections to the response system variables are made peri-
odically at discrete times tn= t0+nTcor, where Tcor is the cor-
rection time period and t0 is the starting time. The correc-
tions can be made “between” integration steps, making the
systems identical to the numerical integration. In contrast,
the standard continuous-feedback method requires the addi-
tion of the term u�x�−y�� to the equation for dy� /dt, where
u is the coupling strength. Note that Tcor is typically much
larger than numerical integration time step, Tstep, and is often*pbryant@ucsd.edu
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a multiple thereof. The corrections at tn optimize the fit to the
coupling signal over a finite time interval which typically
starts at time tn and ends at time tn+Topt. In general, Topt
must be long enough to unfold the full �time-delay� state of
the system, yet short enough that errors are not magnified
excessively across it. It should not be much larger than the
inverse of the primary Lyapunov exponent. The ratio
Topt /Tcor is roughly proportional to the computation rate re-
quired to maintain synchronization. If greater than one, the
successive optimization intervals will overlap one another.
Setting the ratio equal to one is a good starting point. The
best value will generally have to be found empirically. Un-
corrected response variables are identified with a superscript
0, i.e., yi

0�t�. We use �i to represent the corrections to be
made at time tn so that yi�tn�=yi

0�tn�+�i. Corrections are ap-
plied to all of the response variables, not just y�, and they
will typically all be different. The analysis is easily general-
ized, e.g., to the case where more that one coupling variable
is used, etc. For each correction time tn, the goal is to find a
correction that minimizes C, the square of the distance be-
tween x� and y� integrated over the optimization time inter-
val, i.e.,

C = �
tn

tn+Topt

�y��t� − x��t��2dt . �1�

One approach is to use a standard minimization algorithm
�15� to find the optimal �. However, if one is already close to
synchronization, there is a preferable linear method which
leads to an exact solution. This method can be used to main-
tain synchronization and, for the cases tried, usually achieves
synchronization even when started far from it. We look for a
minimum by taking the derivative of C with respect to each
correction component �i and setting the results to zero:

�
tn

tn+Topt �y��t�
��i

�y��t� − x��t��dt = 0. �2�

Assuming � is small we expand y��t� as

y��t� = y�
0�t� + �

j=1

d
�y��t�

�� j
� j . �3�

Substituting this back into Eq. �2� we obtain

�
j=1

d

Aij� j = bi, �4�

where

Aij = �
tn

tn+Topt �y��t�
��i

�y��t�
�� j

dt �5�

and

bi = �
tn

tn+Topt �y��t�
��i

�x��t� − y�
0�t��dt . �6�

The partial derivatives above can be evaluated by central
finite differencing �16� or by integration of the differential
Jacobian �17� and the results then used to evaluate A and b.
We can then solve for the correction vector � by inverting the
matrix A:

� j = �
j=1

d

�A−1�ijbj . �7�

In the absence of noise and the limit of small synchroniza-
tion error the solution is exact, i.e., the error will be com-
pletely eliminated in a single correction step. Note that rather
than an integral over the optimization interval, the method
can also be formulated as a sum over at least d time points
within that interval for which coupling data is available, i.e.,
all of the integrals above would be replaced by the corre-
sponding summations.

To demonstrate the effect of the method on the CLEs, a
detuning parameter � is introduced and the calculated correc-
tions � are multiplied by �1−�� so that �=0 is normal opera-
tion, and �=1 is complete decoupling. Results �18� are
shown in Fig. 1 for the Rossler hyperchaos equations:

d

dt�
x1

x2

x3

x4

� =�
− �x2 + x3�

x1 + p1x2 + x4

p2 + x1x3

p3x4 − p4x3

� , �8�

where the “standard” values are used for the parameters, i.e.,
p1=0.25, p2=3, p3=0.05, and p4=0.5, and the equations are

FIG. 1. Numerically calculated CLEs as a function of detuning
�, which shows them going to −� as � goes to zero �the normal
mode of operation�. Results shown are for the Rossler hyperchaos
system, coupled through x1, and using Tcor=0.2 and Topt=0.4. Tstep

is small �0.002�. At the left end of the graph, the detuning is 1.0 so
that there is no coupling, and thus the CLEs are the same as the
ordinary Lyapunov exponents �approximately 0.111, 0.021, 0, and
−25.0�. Synchronization is successful as soon as all CLEs are nega-
tive, i.e., for 0���0.978.
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coupled to the response equations through the first variable.
The figure shows all of the CLE’s going to −� as � goes to
zero. Surprisingly, the method achieves all negative CLEs
and synchronization until the corrections are reduced to only
a few percent of their normal values. For comparison, Fig. 2
shows results using standard continuous-feedback coupling.
Synchronization cannot occur since there is always at least
one positive CLE.

Noise in the coupling signal will cause problems when the
matrix A is nearly singular. One method to deal with this
problem is to use singular value decomposition �SVD� �15�
to express A as the product of an orthogonal matrix U, a
diagonal matrix W, and the transpose of another orthogonal
matrix V, i.e., A=U ·W ·VT. Since W is diagonal it can be
expressed as Wij =�ijwj, where �ij is the Kronecker delta and
wj are the singular values of A. The inverse of W is simply
�W−1�ij =�ij /wj. Since the inverse of an orthogonal matrix is
its transpose, we obtain A−1=V ·W−1 ·UT. The reason for us-
ing SVD is to be able to limit the singularity of A which
otherwise in the presence of noise could result in exceed-
ingly large errors in the correction values. The method in-
volves setting a threshold or lower limit s for the acceptable
values of wj. For the results in this Rapid Communication,
we define v j�s� as follows: if wj �s then v j�s�=1 /wj and if
wj �s then v j�s�=1 /s. Other definitions are possible �19�.
We then use v j�s� in Wlsi, a limited singularity inverse of W
defined as �Wlsi�ij�s�=�ijv j�s�. This is used to define a lim-
ited singularity inverse of A to be used in Eq. �7�:

Alsi�s� = V · Wlsi�s� · UT. �9�

The value of s which minimizes the synchronization error is
often found to be relatively large. It appears that the SVD
process is, in effect, identifying directions that are associated
approximately with the Lyapunov direction vectors �20�. As s
is increased from zero, the corrections associated with the
most negative exponents are limited first �and these are the
least important�. This suggests an alternate approach in
which these directions are obtained directly and used as a
basis for the correction vector. Another interesting result is

that the optimal value of s does not tend to zero with noise
amplitude.

To study noise sensitivity, independent and identically
distributed �iid� Gaussian deviates �15� were added to the
coupling signal. This behaves like white noise that cuts off
above the Nyquist frequency, i.e., above 1 / �2Tstep�. For a
desired noise power spectral density PN, the rms amplitude
AN is set to AN=	PN / �2Tstep�. Here we used the Lorenz
equations:

d

dt�x1

x2

x3
� = � 	�x2 − x1�

x1�
 − x3� − x2

x1x2 − �x3
� , �10�

where the standard values are used for the parameters, i.e.,
	=10, 
=28, and �=8 /3. Figure 3 shows results for the
power spectral density �PSD� of the synchronization error,
y1−x1, for the optimized synchronization method of this
Rapid Communication compared to that of the standard
continuous-feedback method. Also shown are the PSD of x1
and of the added noise. The results are given in dB, i.e., as
10 log10�PSD�. Coupling strength for the continuous-
feedback case �c� was adjusted to minimize the mean-square
synchronization error �mse�, which for the first variable oc-
curs for a coupling strength u=27.5. The mse corresponding
to cases �c�, �d�, and �e� of the figure are 0.080, 0.0070, and
0.000 84, respectively. These values can also be obtained by
integrating the PSD over all frequencies. The noncoupling
variables follow a similar pattern of decreasing mse: 0.36,
0.017, and 0.0020 for y2 and 0.34, 0.027, and 0.0029 for y3.

The results presented have shown that the optimized syn-

FIG. 2. Numerically calculated CLEs with standard continuous-
feedback coupling for Rossler hyperchaos. Note that �4 is off scale
near −25. Synchronization fails because �1 remains positive. Com-
pare with Fig. 1 and also note the difference in vertical scale.

FIG. 3. �Color online� Calculated PSD from the Lorenz system.
�a� The first variable x1 of the drive system, which is the coupling
signal. �b� The added noise, showing that it is extremely flat �or
white� and has the intended value of 0.01 or −20 dB. �c� The syn-
chronization error using the standard continuous-feedback method
with the optimal coupling strength �see text�. �d� The synchroniza-
tion error using the method of this Rapid Communication with
Tcor=0.25, Topt=0.5, and s=5.0. �e� The same as �d� except Topt

increased to 4.0. For all results, Tstep is small �0.005�.
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chronization method can easily synchronize systems that
were previously found difficult or impossible and can simul-
taneously reduce synchronization error in the presence of
noise, perhaps 20 dB or more, compared to the standard syn-
chronization methods. Note that the calculation is easily par-
allelized, making it easier to run in real time. One direction

for further research may be an application to parameter esti-
mation which can be achieved by a simple modification of
the method �23�.
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