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Complex intermittency blurred by noise: Theory and application to neural dynamics
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‘We propose a model for the passage between metastable states of mind dynamics. As changing points we use
the rapid transition processes simultaneously detectable in EEG signals related to different cortical areas. Our
model consists of a non-Poissonian intermittent process, which signals that the brain is in a condition of
complexity, upon which a Poisson process is superimposed. We provide an analytical solution for the waiting-
time distribution for the model, which is well obeyed by physiological data. Although the role of the Poisson
process remains unexplained, the model is able to reproduce many behaviors reported in literature, although

they seem contradictory.
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A low-frequency power spectrum S(f) o 1/f7 (0<5<2)
of a fluctuating signal is a hallmark of complexity as it de-
notes scale invariance, instead of a characteristic time scale.
Its inverse Fourier transform, the autocorrelation function
C(1), asymptotically decays as an inverse-power law and its
time integral, namely the correlation time, is either null
(for > 1) or infinite (for 7<<1). These fluctuations are typi-
cal of systems at a critical point, where the macroscopic
spontaneous dynamics (fluctuations) are long-range corre-
lated and characterized by intermittent behavior [1,2], i.e.,
driven by renewal events [3], namely, fast memory-resetting
processes, where entropy production is concentrated. All
transport properties, including S(f), can then be written in
terms of the waiting-time distribution density A7), where 7
is the interval between two consecutive renewal events. In
particular, for ¢(7) with diverging second moment,

lim (1) < 74 (1)

T—®

with 1<u<<3, it is possible to write simple relations be-
tween 7 and u [4], thus S(f) is an indirect measure of u. 7
can be measured through the use of diffusion: A widely
known method, the detrended fluctuation analysis (DFA), is
often used to unravel long-range correlations in time series
[5]. The search for renewal events is often elusive: most
strategies correspond to locate dynamical events within the
data (e.g., recurrences or threshold passages) and analyze a
symbolic signal stemming from the detected events, eventu-
ally comparing, as in [6], the u index stemming from the
analyses with a direct evaluation of the ¢4(7) of the symbolic
sequence. Sometimes the presence of noise forbids a direct
comparison with ¢(7), and different analyses are used to
evaluate u, as for instance in [7]. Conversely, understanding
whether long-range correlations are driven by renewal events
is a difficult task, as recently discussed in [8], a paper de-
voted to distinguish between correlations due to ¢(7) (called
of Lévy type) and correlations among waiting times.

The brain is a paradigm of complex systems driven by
renewal events. The authors of [9] identified rapid transition
processes (RTPs) occurring in human electroencephalograms
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(EEG), namely, almost instantaneous processes gluing other-
wise stationary EEG epochs, many of which synchronize dif-
ferent brain areas. Recently Allegrini et al. [10] applied both
DFA and diffusion entropy (DE) to RTPs of 30 subjects’
EEG recording. Subjects were in a relaxed state with closed
eyes, instructed to avoid structured thinking. Multichannel
(MC) RTPs, i.e., co-occurring in more than one channel,
were selected, since they are assumed [9] to mark the begin-
ning or the end of global neural metastable states sustaining
neural integration (thus related to consciousness), during
which entropy production is minimal. However, the results
of [10], i.e., that MC-RTPs are driven by a heavy tailed re-
newal process with w=2.1 are, as earlier said, indirect. A
knee dividing short- and long-time regimes in the diffusion
indicates the presence of uncorrelated noise, thus a direct
evaluation of ¢(r) would fail to reveal the u index.

There have been attempts aimed at measuring the u of
MC RTPs through #(7). In [11] a direct measure is per-
formed via statistical filtering, and a w~ 1.6 is reported. Bi-
anco et al. [12] identified metastable-state transitions with
topological changes in the minimal-spanning-tree representa-
tion of EEG-channels cross-correlations, and found a sur-
vival probability

V() = r W 7)dr, 2)

following a stretched exponential, W ~ exp[—(¢/B)%], with
a~0.6. This result, through the theory of subordination, was
shown to correspond to an inverse-power-law renewal pro-
cess with w=a+1, in agreement with [11], but in disagree-
ment with [10]. Both in [11,12], in agreement with [10],
evidence is presented for an underlying intermittent, and thus
renewal, process.

It is therefore important to establish how the apparent
contradiction between [11,12] and [10] can be settled, as far
as the values of the index w is concerned. This will be one of
the purposes of the present work, an important task because
establishing whether w is larger than two, as in [10] or
smaller, as in [11,12] is crucial, as the value w=2 signals,
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among renewal models, a transition between two kinds of
ergodicity breakdown, stationary and nonstationary, respec-
tively, discussed in [13,14], recently reviewed in [2]. More-
over, complex networks at w=?2 realize the optimized con-
dition for information transfer, due to generalized Linear
Response [15]. This condition is obeyed by human language,
due to the Zipf’s law [6], and by music [12]. A dynamical
model of this transition was proposed in [16], proving that
pu=2 optimally allows transmitting and receiving informa-
tion.

Herein we propose to model MC-RTPs with a superposi-
tion of two independent renewal processes: a non-Poisson
and a Poisson one. The rationale is that the former describes
a global serial process (mentation), that, as in language, pro-
duces =2 [17], which is in turn blurred by a Poissonian
cloud. This cloud, while masking the statistical properties of
the sequence, can explain both the Poisson regression at
large time-scales, typical of complex systems, and the action
of the aged waiting-time distribution. This model, the Copy-
ing Mistake Map was originally proposed for modeling DNA
sequences [ 18]. We show that Copying Mistake Map (CMM)
is able to reproduce all the aforementioned behaviors con-
cerning ¢(7), W(¢), and the DFA analysis. We analytically
detail the expected results for the various analyses. Then we
compare our theoretical CMM predictions with data stem-
ming from Ref. [10].

The CMM model {&(r)} is the superposition of two se-
quences, the non-Poisson sequence n, or {£,(7)}, and the
Poisson sequence p, or {fp(t)}. Both n and p are renewal,
namely, we first extract the laminar-region sequences
{#(1)}, and {7P(r)} as iid. samples from distributions
o, (7"), and 1//,,(1'(1’)), respectively. We choose #,(7) such as
(7)< 7# for 7— o0, and ,(7)=r exp(~r7). We define the
sequences of events

i

i
=3 A0 and (=S A, 3)
k+1 k+1

This means that for each process p or n we have “laminar
regions” of mutually independent time duration, with time-
instant separations [Eq. (3)]. We construct a signal which is
unity in these points, and zero otherwise, namely,

&) =6,,m, &)= 5,,,5,», (4)

i

)=¢,vE, (5)

where &; ; is a Kroeneker delta, and v is the Boolean OR. As
time ¢ is continuous, the probability of having §,=§,=1 is
null, and §(t):§,,+§n. However, in our simulations we use
Eq. (5).

We now evaluate () for the combined sequence [Eq.
(5)]. The occurrence of an event can be divided into four
complementary situations, depending on the fact that the ini-
tial and the final instants of the laminar region can be either
a Poisson or a non-Poisson event. We denote with n(r) [p(z)]
the presence of a non-Poissonian (Poissonian) event at time
t. Denoting with P[a,b] the joint probability density for both
event a and event b, we write
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(1) = P(n(t),n(t+ 7]+ Pln(t),p(t+ 7)]
+ P[p(t),n(t + 7]+ P[p(t),p(t + 7]. (6)

We now define the probability for an event to belong to the
Poissonian, P(p), or to the non-Poissonian series, P(n). We
carry out the calculation in the stationary regime, u>2. The
probabilities P(p) and P(n) are inversely proportional to the
respective average times,

1 1
P(n) = @; P(p) = @ (7)
where (7, )= [ 7, ,(7)d . After normalization,
() (7
o=@y T @y ®

The first term in the r.h.s of Eq. (6), P[n(r),n(r+17)], is the
joint probability of first having a non-Poisson event [P(n)],
then a non-Poisson event after a time 7 and no Poisson
events in between, which becomes

P[n(1),n(t + 7)]= P(n)e™"",(7), )

where the definition W,(7)=[7d7'r exp(-r7’)=exp(-r7)
was used. We have used the fact that the Poisson process has
a constant rate and, consequently, no aging. Using the same
property we can analogously compute P[n(r),p(t+7)]. We
write

Pln(t),p(t+7)]=P(n)V, (1)re”"". (10)

Next, we could use the equality P[p(r),n(t+7)]
=P[n(t),p(t+7)], a consequence of the time-reversal sym-
metry of both processes and, consequently, also of the global
process. We prove this fact by deriving P[p(z),n(t+7)] in a
direct way, namely by writing

Plp(®).,n(t+ D] =P(p)e™ ", (1), (11)

where ¢/ (7) is the infinitely aged waiting-time distribution.
In the right-hand side of this expression the first factor de-
notes the probability of starting from a Poisson event, the
second one denotes the fact that no Poisson events occur,
while the third term, in line with the other cases, is the prob-
ability density of a non-Poisson event occurring after a wait-
ing time 7. Notice that we have lost track of the previous
non-Poisson event, and this forces us to use an aged . Due
to stationarity assumption, this term is given by the infinitely
aged one. In detail [19],

0
R(t" +t,),(r—1")dt’,

—t,

where

V(o) =

R=2 ¢, %(t)=j di' 7 = 1) (1), (12)
i=0 0

¢2(t)=5(t), a Dirac 6. For t,= R=1/(7,) [19], so
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wn(T)_<Tn>J_m lpn(T_t )dt - <Tn> . (13)

Substituting this relation and the expression for P(p) given in
Eq. (8) into Eq. (11), we get

<Tn> qfn(T) —rt

Apante+ ml= o o () ©

= —L ) Y (nre™" = P(n)V,(7)re™",

(7p) + ()
(14)

identical to P[n(t),p(t+7)], where we used Eq. (8) for P(n)
and r=1/(7,). Finally, the probability of having a Poisson
event [ P(p)], and then a Poisson event after a time 7 with no
non-Poisson events in between is

Plp(®).p(t+ D] =P(p)re” ™V (7), (15)

where, again, the aged W has to be used. Inserting Egs.
(9)—(11), (14), and (15) into Eq. (6) yields

(1) ={P()[ (D) + 2V, (D] + P(p)r¥; (D} (16)

and the survival probability W(r)= [7y(7)d7 can be calcu-
lated by direct integration. The result is

V(1) =P(n)e”" ™, (7) + P(p)e”" ™ (7), (17)

where V(1) = [T, (7)d.

Notice that before the exponential cutoff in Eq. (16) we
have the joint action of two inverse-power laws, with in-
dexes u and u—1. If r were vanishingly small, the
asymptotic behavior would be dictated by the index u. We
recall that the theory rests on the case u>2. However, when
r>0 the presence of an inverse power law with an index
smaller than two is numerically evident. Moreover, the pres-
ence of two inverse-power decays and the exponential cutoff
can mimic a stretched exponential.

Figure 1(a) shows the decay of ¢(7) for a typical EEG
signal, denoted with a solid-line histogram with logarithmic
binning, a choice due to low statistics in the long-time limit.
The thick solid line represents Eq. (16) with w=2.05, in
agreement with [10]. Notably, data are way off the eye guide
relative to ¢(7) « 729 (dot-dashed line), while a power-law
best fit (dotted line) yields an erroneous u=1.6 in agreement
with [11]. We used

YD) =(u- DT YT+, (18)

a form adopted for human cognition in [20], where it was
proved to be equivalent to the Fechner’s law of logarithmic
time perception [21]. Notice that while the asymptotic long-
time form of Eq. (16) is well reproduced by data, this is not
true in the short-time limit, for 7<<30 ms, due to limitations
in the method of extracting events [10].

A discrepancy is even more evident in Fig. 1(b), showing
W(z). The solid line, corresponding to Eq. (17) is far from
data, due to short-time integration and to low statistics. How-
ever we show two sets of data points, one stemming from
EEG data (open squares), and another with a simulation of
the CMM model (open circles) with the same parameters
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FIG. 1. (a) Waiting-time distribution density. EEG RTPs data are
shown with a solid-line histogram. Solid line is theoretical predic-
tion Eq. (16) using Eq. (18) with u=2.05, r=3.0 Hz, T=6.0 s.
Dot-dashed line is an eye-guide inverse-power law with index 2.05.
The dotted line is an inverse-power-law best fit to the data within
time interval [0.02,2]s (index 1.6). (b) Survival probability. Solid
line is Eq. (17) (same parameters as Fig. 1(a)). Open squares stem
from data. Open circles stem from a numerical simulation of the
CMM (same parameters as before, same statistics as the data).
Dotted line is a stretched exponential A exp[—(z/B)“], with A=0.5,
B=45 s, a=0.6.

used for Fig. 1(a) and the same length of the data analyzed (5
min, sampling ratio 2 ms). The curves stemming from the
two point sets are indistinguishable. Notably, the dotted line,
indicating a best stretched-exponential fit for W(r) seem to
accurately describe both data sets, as earlier stated. It is in
fact indistinguishable from data for 1>30 ms, and corre-
sponds to an artifactual @=0.6, in agreement with [12].
Figure 2 shows the outcome of correlational analysis on
the CMM model. We build a diffusing trajectory from &(z)
using two different rules. We make use of DFA to unravel
long-range correlations. The correlation function of the
signal &(r) is proportional to the second derivative of

t (sec)

FIG. 2. DFA Analysis: Rule no. 1 for EEG data (@) and simu-
lation (H); Rule no. 2 for EEG data ((J) and simulation ((J). Solid
lines: eyes guide for o(#) % *"#2, with u=2.05. Dotted lines: eyes
guide representing o(f) < \z.
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(1) ={(x*(t)), where x=£ or, equivalently x(7) =f§g”dt’§(t’),
and average (-) is an average over all values of ¢,
(moving windows). Thus, if (&(zy)é(zp+1)) is not integrable,
ie., it decays as r# with 0<B<1, then asymptotically
o2()~ 1, with H=1-/2.

In Rule no. 1 &) is simply Eq. (5). As earlier stated,
&1)=¢,()+&,(1) and since the two sequences p and n are
mutually independent, it is possible to separate their second
moment contributions x, and x, and we have that

(1) = (e (D), + (1) (19)

where the suffix p(n) on the angular brackets means the av-
erage on the p(n) sequence alone. The Poisson process yields
standard diffusion (xf) oct, while for renewal non-Poisson
processes (xz(t)) o t*“#10]. The non-Poisson process domi-
nates in the asymptotic limit. However, the presence of the
Poisson process yields a transient H=0.5 in the short-time
limit. This behavior is illustrated in Fig. 2, where we com-
pare the analyses stemming from the model and from the
same EEG data of Fig. 1.

Rule no. 2 consists of making a walker assume a constant
velocity *1 within laminar regions, chosen with a coin-
tossing procedure for every region. In this case Eq (19) does
not hold: While for this rule we again have (x )pot and
(xz(t) «t*~* [10], the asymptotics are dommated by the
Poisson process, and the non-Poisson scaling is confined at
shorter time scales. Figure 2 illustrates this behavior both for
the model and the experimental data.

In conclusion, we studied a noisy intermittent model,
which can be adopted for many complex systems. The re-
newal approach provides a formal connection between the
consciousness-related events found by [9] and the theory of

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 82, 015103(R) (2010)

complex critical phenomena. This approach yields an inter-
mittent entropy production (thus preventing from informa-
tion explosion) that, in line with the pioneering vision of
James [22], allows thoughts to be metastable, or temporally
discontinuous [9] and with a limited capacity, i.e., a signifi-
cant reduction of degrees of freedom. These renewal proper-
ties, hypothesized by [9], are in fact typical of self-organized
assemblies. This was proved theoretically [1] and experimen-
tally [2]. The fact that MC-RTPs are driven by renewal pro-
cesses was provided in [10].

Herein we proved that in fact MC-RTPs are not perfectly
renewal, but are in fact the superposition of a Poisson noise
and a single complex renewal process. The CMM interpreta-
tion allows a nonambiguous measurement of the self-
organization index w, and, in doing so, explains the different
values reported in literature, erroneously suggesting © <2 in
resting wakefulness. Notice that the CMM model is crucial
to explain both the ¢(7) of Fig. 1 and the long-range corre-
lations of Fig. 2. A blind renewal modeling only based on the
power spectral analysis would yield the dot-dashed line of
Fig. 1(a).

The presence of a single non-Poissonian renewal process
in unconstrained EEG activity may provide the serial mental
processing hypothesized in [23] to integrate the unconscious
parallel processing occurring in different brain areas. It is
worth noticing that such process is a product of self-
organization, rather than by the hierarchical process. Since
(results will be reported elsewhere) single-channel transi-
tions, although with similar ¢(7), do not obey the simple
CMM dynamics [Eq. (5)], we claim that a serial binding
activity among neural groups (intermittent integrated phase-
lock dynamics) stands at the basis of the holistic output
called consciousness.
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