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A recent paper by Zinin et al. �Phys. Rev. E 79, 021910 �2009�� regarding the dynamics of biological cells
in an acoustic field draws conclusions that we find open to debate. The present paper examines these conclu-
sions and addresses some findings.
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I. INTRODUCTION

From promoting the differentiation of mesenchymal stem
cells �1� to aiding intracellular drug delivery �2�, ultrasound
is shown to be an effective tool for manipulating and healing
cells. The exact mechanism by which ultrasound affects
metabolic activities of cells is yet to be found. The consensus
is summed up as “sonoporation” in which ultrasound induces
mechanical deformation of the plasma membrane, leading to
the change in membrane permeability to ions, proteins, and
drugs. Deeper understanding of the cellular-level bioeffects
of ultrasound thus requires a model describing the dynamics
of cells under sonication.

A theoretical framework given by Zinin et al. �3,4� is a
welcome development in this regard. In their “shell model,”
the cell wall is modeled as a thin elastic spherical shell,
which contains the cytoplasm �or the inner fluid� and is sus-
pended in the surrounding �or outer� fluid. The deformation
of the shell is assumed to result primarily from the quadruple
mode of vibration. Among the conclusions in their latest pa-
per �4� �hereafter referred to as the 2009 paper� are: �a� the
quadruple mode has only one natural frequency; �b� cells can
be classified according to the quality factor Q of free qua-
druple oscillation; and �c� the quadruple mode has resonance
at characteristic frequency �K /2� based on the area com-
pression modulus KA of the shell. Although the shell model
seems to provide a sound theoretical framework, we find the
aforementioned conclusions in the 2009 paper debatable. The
purpose of our paper is to revisit them within the context of
the shell model. Specifically, three major points of contention
exist in the following areas: �a� the possibility of the second
natural frequency; �b� the validity of the cell classification
scheme based on the quality factor; and �c� the accuracy of
�K /2� as an estimate of the resonance frequency.

II. NATURAL FREQUENCIES

A complete description of the shell model is given in two
papers by Zinin et al. �3,4�. Natural frequencies of a cell are
given by the roots of the dispersion relation

dn��� = 0, �1�

where � is the angular frequency, n is the mode number, and
dn��� is the determinant of the system matrix for Eqs. �38�–
�41� in the 2009 paper �5,6�. Note that the roots �n of the
dispersion relation �Eq. �1�� are in general complex

�n = �n − i�n, �2�

where �n denotes the natural frequency of free oscillation
and �n the rate of its decay. The quality factor of free oscil-
lation is then given by

Qn =
�n

2�n
. �3�

From a numerical standpoint, finding roots of the disper-
sion relation �Eq. �1�� requires minimizing the determinant
dn��� in the �−� space. An alternative approach is to cal-
culate the condition number of the system matrix for a range
of �� ,�� and perform a two-dimensional search to locate
��n ,�n�, where the condition number attains its local
maxima. �Note that the larger the condition number is, the
more singular the system matrix is �7�.� We find this alterna-
tive method more convenient than solving Eq. �1� directly,
because peaks of the condition number are much more pro-
nounced than the troughs of the determinant dn��� when
plotted in the �−� space.

For computation of natural frequencies and quality fac-
tors, material properties of cells must be determined.
Throughout our calculations the following material proper-
ties of fresh water at 20 °C are used for the inner �cyto-
plasm� and outer �surrounding� fluids regardless of the cell
type: �i,o=1000 kg /m3; ci,o=1481 m /s; and �i,o
=10−3 Pa s. The variables �i,o, ci,o, and �i,o are densities,
sound speeds, and dynamic viscosities of the inner and outer
fluids, respectively. Cell-specific properties are the cell ra-
dius a, the area compression modulus KA, the shear modulus
	, and the constant surface tension T0 of the shell. Properties
of five different types of cells are listed in Table I. To facili-
tate comparison with the analysis in the 2009 paper, we
adopt the same procedure and parameters used in Ref. �3� to
estimate the cell properties. For example, the moduli KA and
	 for E. coli, B. yeast, and N. tabacum are calculated using
Eqs. �45� and �46� of Ref. �3� with the known values of
Young’s modulus E, Poisson’s ratio 
, and the thickness h of*Corresponding author; ohm@yonsei.ac.kr

PHYSICAL REVIEW E 82, 013901 �2010�

1539-3755/2010/82�1�/013901�4� ©2010 The American Physical Society013901-1

http://dx.doi.org/10.1103/PhysRevE.79.021910
http://dx.doi.org/10.1103/PhysRevE.82.013901


the cell wall. For B. emersonii and D. carota, the modulus
KA is estimated from the surface tension T0 via KA=2T0 and
the modulus 	 is then calculated using Eqs. �45� and �46� of
Ref. �3�. The surface tension T0 for E. coli, B. emersonii, and
D. carota is obtained via Laplace’s law T0= PTa /2, where PT
is the known intracellular �or turgor� pressure. The turgor
pressure for B. yeast and N. tabacum is hard to obtain, and
therefore the values of T0 for these two types of cells in
Table I are our best guesses. Note that Zinin et al. listed an
incorrect value of the constant surface tension �T0=7.5
�10−3 N /m� for E. coli in Refs. �3,4�. �See Table I in the
2009 paper.� The correct value computed using Laplace’s
law with PT=0.3 MPa �8� is T0=7.5�10−2 N /m. The elas-
tic constants KA, 	, and T0 for N. tabacum are based on
values E=2.6 kPa and 
=0.5 for a mesophyll protoplast of
N. tabacum �9�. The radius and the thickness of N. tabacum
are estimated to be a=20 	m and h=6 nm �10�.

Natural frequencies �2 /2� and the associated quality fac-
tors Q2 for the quadruple mode �n=2� of vibration are com-
puted and compiled in Table II. As stated earlier, we look for
points in the �−� space, where the condition number of the
system matrix has its local maxima. Figure 1�a� shows the
condition number vs. �� /2�, � /2�� plot for the case of E.
coli. In Fig. 1�a�, two peaks are clearly identified within the
frequency range of 0�� /2��20 MHz. The lowest of the

two natural frequencies is 7.2 MHz with Q2=1.2. Zinin et al.
obtained �2 /2�=4.58 MHz and Q2=0.8 for E. coli in Refs.
�3,4�. These values seem erroneous, which may be attributed
to the use of the incorrect surface tension T0=7.5
�10−3 N /m as previously pointed out.

What is striking in Fig. 1�a� is the presence of the second
natural frequency at 14.4 MHz. Zinin et al. �3,4� assume that
the dispersion relation �Eq. �1�� has only one root �hence
only one natural frequency�, citing the work of Prosperetti
�11�. However, we do not find any remark to that effect in
Ref. �11�. One may argue that the second natural frequency
occurs only for bacteria with T0�KA; for most cells with
T0KA the dynamics is dictated by KA and the dispersion
relation may have only one root as assumed by Zinin et al.
To see whether the dominance of KA rules out the possibility
of the second root, we investigate two cases for E. coli
where T0=0.1KA and T0=0 with all other parameters the
same as in Fig. 1�a�. As illustrated in Figs. 1�b� and 1�c�,
even KA-dominant cells have the second resonance fre-
quency. Furthermore, it is the first natural frequency that is
more influenced by the reduction in T0, while the second
natural frequency is very robust to a change in T0.

B. emersonii also has two natural frequencies, the lowest
of which, �2 /2�=2.24 MHz with Q2=16.0 �Table II�,
agrees well with the result in the 2009 paper. Note that the
second natural frequency �2 /2�=24.2 MHz has the quality
factor Q2=0.9, which is an order-of-magnitude lower than
that of the first natural frequency. A similar trend exist for D.
carota. This leads us to conclude that a cell can have mul-
tiple natural frequencies �and resonances� with dramatically
different quality factors. The protoplast of N. tabacum is a
cell that has no natural frequency. Because the cell mem-
brane has very low elasticity, it exhibits an aperiodic relax-
ational response.

III. AREA DEFORMATION OF CELLS

Given the right kind of excitation, a cell with a second
natural frequency will show a corresponding resonant peak
in its frequency response. To demonstrate this, we solve the
full equations of motion �Eqs. �38�–�41� in the 2009 paper�
for the quadruple deformation of a cell driven by an adjacent

TABLE I. Cell-specific properties for different types of cells.

Cell type
a

�	m�
KA

�N/m�
	

�N/m�
T0

�N/m�

E. colia 0.5 8.93�10−2 6.47�10−2 7.50�10−2

B. yeastb 4.5 6.02�10−2 2.00�10−2 2.10�10−2

B. emersoniic 10 64.0 21.9 32.0

D. carotad 30 90.0 30.8 45.0

N. tabacum
�protoplast�e 20 1.56�10−5 5.2�10−6 7.8�10−6

aReferences �3,7�.
bReference �3�.
cReference �3�.
dReference �3�.
eReferences �8,9�.

TABLE II. Natural frequencies �2 /2�, quality factors Q2, resonance frequencies fmax, and characteristic
frequencies �K /2� and �T /2� of the quadruple �n=2� oscillation for different types of cells.

Cell type
�2 /2�
�MHz� Q2

fmax

�MHz�
�K /2�
�MHz�

�T /2�
�MHz�

E. coli 7.2 1.2 4.7 8.5

14.4 0.5 12.7

B. yeast 0.16 1.6 0.19 0.14 0.17

0.584 0.6 0.488

B. emersonii 2.24 16.0 2.25 1.39 1.97

24.2 0.9

D. carota 0.517 23.5 0.517 0.32 0.45

7.0 0.9

N. tabacum �protoplast� None None 0.24�10−3 0.34�10−3

COMMENTS PHYSICAL REVIEW E 82, 013901 �2010�

013901-2



pulsating bubble, using the same procedure and parameters
in the 2009 paper. Figure 2 shows the relative area deforma-
tion �S /S of E. coli as a function of frequency. �Note that the
curve in Fig. 2 does not agree with the counterpart labeled
“a=0.5 	m” in Fig. 5 of the 2009 paper. The reason for the
discrepancy is not clear, although it may be partly due to the
use of a surface tension �ST=0.0725 N /cm in the 2009 pa-
per, instead of the correct value which is 0.0725 N/m.� The
deformation has the maximum at fmax=12.7 MHz, which is
unequivocally closer to the second natural frequency �14.4
MHz� than the first �7.2 MHz�. The resonant peak expected
at the first natural frequency does not appear, perhaps be-
cause two low-quality resonances in close proximity have
merged into one resonant peak. Figure 3 shows the case of B.

yeast, where the frequency response exhibits two resonant
peaks. The first peak occurs at 0.19 MHz, close to the first
natural frequency �0.16 MHz�. The second resonant peak at
0.488 MHz is the testament to the existence of the second
root of the dispersion relation �Eq. �1��, hence the second
natural frequency at 0.584 MHz. The second peak is rela-
tively broad because of the low-quality factor �Q2=0.6�.

In Table II, characteristic frequencies �K /2� and �T /2�
are judged against resonance frequencies fmax for their valid-
ity. Here, �K /2� and �T /2� are defined by

�Kn
2 =

n�n + 1�KA

��a3 , �4�

FIG. 1. Condition number of the system matrix as a function of
frequency � /2� and decay rate � /2� for the case of E. coli: �a�
T0=7.50�10−2 N /m, �b� T0=0.1KA, and �c� T0=0.
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FIG. 2. Relative area deformation �S /S of E. coli as a function
of frequency. Locations of characteristic frequencies given by Eqs.
�4� and �5� are marked with dashed ��K /2�� and dash-dot ��T /2��
lines.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

f (MHz)

∆s
/s

(%
) ω

T
/2π

ω
K
/2π

FIG. 3. Relative area deformation �S /S of B. yeast as a function
of frequency. Locations of characteristic frequencies given by Eqs.
�4� and �5� are marked with dashed ��K /2�� and dash-dot ��T /2��
lines.
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and

�Tn
2 =

�n − 1�n�n + 1��n + 2�T0

��a3 , �5�

where ��= �n+1��i+n�o is the normalized density and n=2
for the quadruple mode. Note that, contrary to the conclusion
in the 2009 paper, �T /2� consistently provides better esti-
mates of resonance frequency than �K /2� �see Fig. 3 for
example�. The exceptions are E. coli �see Fig. 2� and N.
tabacum �no resonance frequency� for which neither �K /2�
nor �T /2� can be used as a reliable predictor of resonance
frequency. One should exercise caution when using these
characteristic frequencies because they can be misleading
particularly for cells with no resonance.

IV. CONCLUSIONS

In light of our computation of natural frequencies and the
area deformation of cells for the quadruple mode of vibra-

tion, we make the following observations contrary to Zinin
and Allen �2009�. First, there are more than one natural fre-
quency associated with the quadruple mode. Second, the di-
chotomy of cells based on the quality factor is not warranted
because a cell can have multiple resonances with both high
�Q�1� and low �Q�1� quality factors. Third, the quadruple
mode shows resonance more closely at the characteristic fre-
quency �T /2� than at �K /2�.
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