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Inverse Chladni patterns, i.e., grains collecting at the antinodes of a resonating plate, are traditionally
believed to occur only when the particles are small enough to be carried along by the ambient air. We now
show—theoretically and numerically—that air currents are not the only mechanism leading to inverse patterns:
When the acceleration of the resonating plate does not exceed g, particles will always roll to the antinodes,
irrespective of their size, even in the absence of air. We also explain why this effect has hitherto escaped
detection in standard Chladni experiments.
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Introduction. A classic way of visualizing standing waves
is by sprinkling sand or salt on a horizontal plate and bring it
into resonance by, e.g., a violin bow. The particles will move
to the nodal lines, giving rise to the famous Chladni patterns,
by now a standard high-school demonstration experiment
�1,2�. Much less known is that very fine particles will move
to the antinodes: This was already noted by Chladni himself,
who observed that tiny hair shavings from his violin bow
were carried to the antinodes, and systematically studied by
Faraday with the use of lycopodium powder �3�. He and
others showed that the inverse Chladni patterning of fine
particles is due to air currents induced by the vibrating plate
�3–6�, which drag the particles along to the antinodes.

In this paper we give a proof-of-principle that all
particles—also large ones for which the effect of air can be
ignored—are able to form inverse Chladni patterns, by a
completely different mechanism: If the vibrational accelera-
tion of the plate remains below g, their movement due to the
vibration is directed toward the antinodes. In other words,
one can switch from standard to inverted Chladni patterns
simply by tuning the acceleration of the resonating plate. We
demonstrate this analytically and confirm it by numerical
simulation. We also propose how the phenomenon might be
observed experimentally, which turns out to be difficult but
not impossible.

Numerical simulations. The simulated system consists of
a flexible rectangular plate on which 80 000 glass beads ��
=2.50�103 kg /m3, diameter 1.0 mm� are uniformly distrib-
uted. The plate is fixed along its outer rim. We excite a stand-
ing wave pattern by applying one of the natural frequencies
�kl of the plate, corresponding to k sinusoidal half-
wavelengths in the x direction and l in the y direction. Ignor-
ing the additional bending of the plate under its own weight
�we come back to this later�, the vertical deflection at posi-
tion �x ,y� is then given by:

z�x,y,t� = a sin��klt�sin
k�x

Lx
sin

l�y

Ly
, �1�

�with k , l=1,2 ,3 , . . .�, where a is the amplitude of the vibra-
tion and Lx=Ly =62 cm the size of the plate. As an example,
in Fig. 1, we have excited the 2�2 mode, which for a typical
stainless steel plate of 1 mm thickness has a natural fre-
quency of f22�=�22 /2��=50 Hz �9�.

The trajectories of the particles are calculated via a
Granular Dynamics code �7�, in which the collisions �with
the plate, and between the particles themselves� are taken
care of by a three–dimensional soft sphere model including
tangential friction. The results do not depend sensitively on
the precise values of the coefficients of friction and �normal
and tangential� restitution, which are set to 0.20, 0.90, and
0.33, respectively, both for the particle-plate and particle-
particle interactions. Our key parameter is the dimensionless
acceleration �=a�kl

2 /g, i.e., the ratio of the �maximal� vibra-
tional and the gravitational acceleration. For a given mode,
with a prescribed frequency �kl, the value of � is varied via
the amplitude a.

Figure 1�a� shows the final pattern when the plate is given
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FIG. 1. �a� Top view of a flexible plate resonating in its 2�2
mode, at 50 Hz, with an amplitude of 0.40 mm �dimensionless
acceleration �=4.0�. After 4 s most particles have collected at the
nodal lines, forming a classic Chladni pattern. �b� The same plate at
a smaller amplitude of 0.09 mm ��=0.91�. The particles now mi-
grate from the nodal lines to the anti-nodes and after 1 min an
inverse Chladni pattern has formed. A movie of the formation pro-
cess can be found in �8�.
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an amplitude of 0.40 mm ��=4.0�. In this case the local
dimensionless acceleration is larger than unity over a size-
able region around the antinodes, with a maximum of 4.0 at
the antinodes themselves. The particles in these regions start
to bounce and the bounces tend �on average� to increase their
kinetic energy. On the other hand, at the nodal lines the di-
mensionless acceleration is zero and the inelastic collisions
with the plate reduce the kinetic energy of the particles; this
effect is further enhanced by the mutual particle-particle col-
lisions. Starting with all 80 000 particles uniformly distrib-
uted over the plate, within seconds most of them have mi-
grated to the nodal lines, forming a standard Chladni pattern.

If we reduce the amplitude to a=0.09 mm ��=0.91, Fig.
1�b��, the particles stop bouncing and start to roll toward the
antinodes. The motion gradually speeds up and after about
one minute most of the particles have accumulated at the
antinodes, forming an inverse Chladni pattern. We have per-
formed simulations also at other resonant frequencies, al-
ways with the same outcome: a standard pattern for ��1,
and an inverted one for �	1. So the pattern can be tuned by
amplitude only.

Theory. Why do the particles move to the antinodes for
accelerations below 1 g, i.e., when they do not bounce? The
explanation must lie in the fact that—as long as the particles
remain in contact with the plate—the horizontal force on the
particles, averaged over a complete vibration cycle, points
toward the antinodes. In our analysis we assume the particles
roll without slipping. We further ignore the influence of the
ambient air, which is a good approximation for 1-mm glass
spheres. Finally, we ignore the bending of the plate under its
own weight and that of the particles, as well as the slight
modification of the plate’s resonant mode due to the presence
of the particles �10�.

For �	1 the particles do not detach from the plate and
their vertical position is given by the same Eq. �1� as for the
plate, except that x and y are now functions of time. For
simplicity, let us for the moment only consider the x direc-
tion, so the vertical position of a particle is:

z�x,t� = a sin��klt�sin
k�x�t�

Lx
, k,l = 1,2,3, . . . . �2�

The up-and-down motion of the plate affects the particle’s
effective weight W �12�:

W�x,t� = − m�g + z̈�x,t��

� − m�g − a�kl
2 sin��klt�sin

k�x�t�
Lx

� , �3�

where m is the mass of the particle, and the minus sign
indicates that W is a force pointing in the negative z direc-
tion. Its magnitude �W� oscillates around mg. It can be split in
a component perpendicular to the plate W�, which is coun-
teracted by the normal force Fn on the particle, and a parallel
component W	, which gives the particle an acceleration along
the plate’s surface.

The forces W�, Fn, and W	 are shown in Fig. 2 at two
different instants. In Fig. 2�a� the plate is accelerating up-
ward at the location of the particle, so �W��mg. In Fig. 2�b�
it is accelerating downward, so now �W�
mg. As a result,

the component parallel to the plate �W	� is larger in Fig. 2�a�
than in Fig. 2�b�, hence the net acceleration over a complete
cycle is directed to the antinodes. This is the origin of the
inverse Chladni patterning.

Let us analyze this mechanism in some more detail. The
parallel component of the force W	 =W sin �, with � the lo-
cal angle of the plate with the horizontal, is approximately
equal to W times the local slope of the plate �sin �� tan �
=dz /dx�:

W	�x,t� � W�x,t�
dz�x,t�

dx
= W�x,t�

k�a

Lx
sin��klt�cos

k�x�t�
Lx

,

�4�

and this gives the particle both a translational and rotational
acceleration. The equation of motion for the translation is

F	 =W	 − f =macm �with f the friction force with the plate,
and acm the acceleration of the particle’s center of mass�,
while the rotational motion is governed by 
�= fr= Icm
,
with � the torque exerted by the friction, r the particle radius,
Icm= 2

5mr2 the particle’s moment of inertia for rotation
around its center of mass, and 
 the angular acceleration
�13�. Assuming that the particle rolls without slipping �i.e.,

=acm /r�, the translational acceleration is given by:

acm�x,t� � ẍ�x,t� =
5W	�x,t�

7m
. �5�

Substituting this result in the translational equation of mo-
tion, we also find the friction force: f = 2

7W	. To ensure that
the particle will not slip, the particles and plate must be
chosen such that the coefficient of static friction between
them ��s� is able to deliver this force �14�. Since the maxi-
mum force of static friction equals �sW�, this means that we
require �s� f /W�= 2

7W sin � /W cos �= 2
7 tan �. Since � al-

ways remains small, the above condition is easily fulfilled;
e.g., steel beads on a steel plate ��s=0.74� will do fine.

To calculate the average horizontal acceleration over a
complete cycle, we must integrate Eq. �5� from t=0 to
2� /�kl. Compared to the wavelength of the plate, the change
in x position of a particle during one cycle is very small and
we may treat x�t� as a constant. This gives:

FIG. 2. The effective weight W of a particle on the resonating
plate and the normal force Fn at two moments during a vibration
cycle; the amplitude of the plate has been exaggerated for clarity.
The component W� and the normal force Fn balance each other,
while the component W	 gives the particle an acceleration along the
plate’s surface. It is larger in �a� than in �b� and hence the accelera-
tion averaged over a complete vibration cycle is directed toward the
antinodes.
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�ẍ
�x,t� =
�kl

2�
�

0

2�/�kl

ẍ�x,t�dt =
5k�a2�kl

2

28Lx
sin

2k�x�t�
Lx

,

�6�

where �=a�kl
2 /g is understood not to exceed 1. Note that the

term of Eq. �3� involving g vanishes in the integration, re-
flecting the fact that the time-averaged contribution of grav-
ity to the parallel acceleration is zero.

The acceleration in both directions x and y simultaneously
can be derived in analogous manner, and Fig. 3 shows the
average horizontal acceleration as a function of the position
�x ,y� for one quarter of the vibrating plate in the 2�2 mode,
in top view. The acceleration field is directed to the
antinodes, and its magnitude is maximal somewhere midway
between the nodes and antinodes. At the nodes and antinodes
themselves the horizontal acceleration is zero. That is why
the migration of particles beginning at the nodes �as in Fig.
1�b� and the accompanying video �8�� starts slowly, then
speeds up, and finally comes to rest again at the antinodes
�15�.

Close inspection of Fig. 3 shows that the arrows are not
pointing straight toward the anti-node �except on the diago-
nals�: They are curving gently toward the four diagonal lines,
bending around the four “islands” of maximal acceleration.
Together with the regions of small acceleration near the
nodal lines, this explains the observed diagonal migration
channels in Fig. 1�b�.

In order to quantitatively compare theory and numerical
simulation, we carried out a simulation for 900 evenly dis-
tributed particles, initially at rest with respect to the plate.
Owing to the limited number of particles and their uniform
initial distribution, they do not collide with each other during
the first 7 s �this is important for the comparison, since the
analysis given above does not take into account collisions�:
The solid dots in Fig. 4 are the particle positions after 5 s of
simulation, whereas the line crossings represent the theoreti-

cally predicted positions according to the �x ,y�-version of
Eq. �6�. The correspondence is seen to be very good.

Experimental considerations. Our simulations and theo-
retical analysis show that inverse Chladni patterns are not
reserved to fine dust particles that are swept along by the air
currents around the resonating plate. Large beads �on which
the air currents have no effect whatsoever� can form inverse
Chladni patterns too. Why is it then that no one has ever
reported this observation, even though the Chladni plate is a
well-known and often conducted experiment? We discuss
two important reasons.

The first reason stems from the fact that the plate must be
perfectly horizontal: Even a small deviation may already out-
balance the tiny vibration amplitudes imposed by the condi-
tion �
1 �typically one-tenth of a millimeter or less, cf.
Figure 1�b��. At the outer rims of the plate this is just a
question of accurate alignment, but the horizontality is also
affected by the bending of the plate under its own weight and
that of the particles. Under normal circumstances, the deflec-
tion of the middle of the plate due to its own weight will be
considerably larger than the largest admissible vibration am-
plitude a, so the particles will simply roll toward the center,
overpowering any tendency to form inverse Chladni patterns.

The deflection for a square plate of dimensions L�L,
density �, and thickness h is given by �17�:

dbend = 0.004 06
g�hL4

D
, �7�

where D=Eh3 /12�1−�2� is the stiffness of the plate, with E
the elastic modulus and � Poisson’s ratio �18�. This is to be
compared with the largest admissible vibration amplitude
amax=g /�kl

2 �from the condition �
1�, with the frequency of
the k� l mode being given by �kl= �k2+ l2��2L−2�D /�h�1/2

�9�, so

FIG. 3. �Color online� Time-averaged horizontal acceleration
field experienced by beads rolling over a rectangular plate resonat-
ing in its 2�2 mode for �=0.91, as in Fig. 1�b�. Only one quarter
of the plate is shown. The contour lines show the magnitude of the
acceleration, also indicated by the length of the arrows. The accel-
eration field points to the antinode, explaining the formation of the
inverse Chladni pattern.

FIG. 4. Position of 225 particles after 5 s of vibration �starting
out from a uniform distribution� on one quarter of a resonating plate
in the 2�2 mode at �=0.91. The grid line crossings represent the
theoretically predicted positions �from Eq. �6� generalized to both
the x and y direction�, the dots are the positions obtained by nu-
merical simulation.
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amax =
1

�k2 + l2�2�4

g�hL4

D
. �8�

Interestingly, the ratio R=dbend /amax=0.004 06�k2+ l2�2�4 is
independent of the material properties or plate dimensions: It
only depends on the mode that is excited. For the 2�2 mode
one finds R=25.3, and even for the 1�1 mode the ratio is
still 1.58 �19�. It is therefore necessary to experimentally
suppress the deflection of the plate by raising the air pressure
below the plate by an amount g�h N /m2 �the plate’s weight
per square meter�. Apart from that, it is preferable to work
with a limited number of particles.

The second reason concerns the minimum force required
to set a particle in rolling motion. This force is equal to
�rW�, with �r the coefficient of pre-rolling friction �20�, so
we require W	 ��rW�. It is clearly advantageous to choose
the particles and plate such that �r is small, i.e., both of them
should hardly deform. For steel particles on a steel plate its
value is in the order of �r=0.002–0.003, if proper care is
taken to eliminate disturbing effects such as the formation of
liquid bridges due to humidity or a liquid film on particle and
plate.

Now, W� is approximately equal to mg, and for the par-
allel force we use W	 =

7
5m�ẍ
 with �ẍ
 given by Eq. �6�. In

fact we use its maximum value, at the moments when
sin�4�x�t� /Lx�=1, and with �=1. The condition for setting
the particles in rolling motion then takes the form
k�g /4L�kl

2 ��r. Inserting the expression for �kl given above
Eq. �8�, this yields the following condition for the size of the
plate:

L � �4�k2 + l2�2�3D

kg�h
�r�1/3

. �9�

For the 2�2 mode �k= l=2� on a steel plate of thickness h
=1�10−3 m �the same as in the simulations of Fig. 1� this is
readily evaluated to give L�10�r

1/3 �18�. With �r=0.003, to
be on the safe side, this means that the size of the plate must
be at least 1.45�1.45 m2.

The above requirements �the pressurization below the
plate, and its large size� are demanding but not forbidding. It
will be highly interesting to perform the experiment and wit-
ness the inverse Chladni patterning in real.
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