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The folding of the triangular lattice embedded in two dimensions �discrete planar folding� is investigated
numerically. As the bending rigidity K varies, the planar folding exhibits a series of crumpling transitions at
K�−0.3 and K�0.1. By means of the transfer-matrix method for the system sizes L�14, we analyze the
singularity of the transition at K�−0.3. As a result, we estimate the transition point and the latent heat as K
=−0.270�2� and Q=0.043�10�, respectively. This result suggests that the singularity belongs to a weak-first-
order transition.
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At sufficiently low temperatures, a polymerized mem-
brane becomes flattened macroscopically �1�; see Refs. �2–5�
for a review. It still remains unclear �6–8� whether the crum-
pling transition �separating the flat and crumpled phases� is
critical �9–21� or belongs to a discontinuous one with an
appreciable latent heat �22–24�.

In this Brief Report, we investigate a discretized version
of the polymerized membrane embedded in two dimensions
�25–28�; details are overviewed afterward. This model, the
so-called discrete planar folding, exhibits a series of crum-
pling transitions at K�−0.3 and 0.1 �27,28�, as the bending
rigidity K changes. The latter transition exhibits a pro-
nounced discontinuous character, whereas the nature of the
former transition remains unclear. In this Brief Report, we
utilized the transfer-matrix method �27� for the system sizes
L�14. We implemented a modified folding rule �29� �Eq.
�5��, which enables us to impose the periodic-boundary con-
dition. Technically, the restoration of the translational sym-
metry admits a substantial reduction in the transfer-matrix
size.

To begin with, we explain a basic feature of the discrete
planar folding �27,28�; see Fig. 1�a�. We consider a sheet
of the triangular lattice. Along the edges, the sheet folds
up. The fold angle � is either �=0 �complete fold� or �
�no fold�. The elastic energy at each edge is given by
K cos � with the bending rigidity K. The thermodynamic
property of the planar folding has been studied extensively
�27,28�. The transfer-matrix simulation for the system sizes
L�9 �27� revealed a series of crumpling transitions at
K�−0.3 and K=0.11�1�. The behavior of the specific heat
around K�−0.3 indicates that this transition would be
a continuous one. The cluster variation method �CVM�
of a single-hexagon-cluster approximation �28� indicates
that there occur crumpling transitions at K=−0.284 and
K=0.1013 of the continuous and discontinuous characters,
respectively.

The crumpling transition K�−0.3 is closely related �32�
to that of an extended folding �30–32� at K3�−0.8. �The
extended folding, the so-called three-dimensional folding,
has four possibilities, cos �= �1, �1 /3, as to the joint angle
�.� That is, according to an argument based on a truncation
of the configuration space �32�, the following �approximate�
relations should hold:

K = K3/3, �1�

Q = Q3. �2�

Here, the variables Q and Q3 denote the latent heat for
the planar- and three-dimensional-folding models, respec-
tively. A number of results, �K3 ,Q3�= �−0.852,0� �32�,
(−0.76�1� ,0.03�2�) �33�, and (−0.76�10� ,0.05�5�) �29�, have
been obtained via the CVM, density-matrix renormalization-
group, and exact-diagonalization analyses, respectively. The
nature of its transition at K3�−0.8 is not fully clarified, be-
cause the three-dimensional folding is computationally de-
manding. It is a purpose of this Brief Report to shed light on
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FIG. 1. �a� We consider a discrete folding of the triangular lat-
tice. The fold angle �with respect to the adjacent triangular
plaquettes� is discretized into either �=0 or �. �b� A drawing of a
transfer-matrix strip is shown.
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this longstanding issue from the viewpoint of the planar fold-
ing. �It has to be mentioned that the planar folding has rel-
evance to a wide class of systems �26,34–37�.�

For the sake of self-consistency, we present the transfer-
matrix formalism for the discrete planar folding explicitly.
We place the Ising variables ��i� at each triangle i �rather
than each joint�; see Fig. 1�a�. Hereafter, we consider the
spin model on the dual �hexagonal� lattice. The Ising-spin
configuration specifies each joint angle between the adjacent
triangles. That is, provided that the spins are �anti�parallel,
�i� j =1 �−1�, for a pair of adjacent neighbors, i and j, the
joint angle is �=� �0�. The spin configuration is subjected to
a constraint �folding rule�; the prefactor of the transfer-
matrix element �Eq. �3�� enforces the constraint. As a conse-
quence, the discrete folding reduces to an Ising model on the
hexagonal lattice. In Fig. 1�b�, a drawing of the transfer-
matrix strip is presented. The row-to-row statistical weight
T��i�,��i�� yields the transfer-matrix element. The transfer-
matrix element for the strip length L is given by �27�

T��i��,��i�
= �	

i=1

L

���2i + �2i+1 + �2i+2 + �2i−1� + �2i�

+ �2i+1� mod 3,0�
exp�− �
i=1

L

Hi�K�/T
 , �3�

with the local Hamiltonian

Hi�k� = −
K

2
��2i�2i+1 + �2i+1�2i+2 + �2i+2�2i+1�

+ �2i+1� �2i� + �2i� �2i−1� + �2i−1� �2i� , �4�

due to the bending-energy cost for spins surrounding each
hexagon i. Here, the parameter K denotes the bending rigid-
ity, and the expression ��n ,m� is Kronecker’s symbol. The
periodic-boundary condition �L+i=�i is imposed. We set
T=1, considering it as a unit of energy.

In practice, the above scheme does not work. The folding
rule is too restrictive to impose the periodic-boundary con-
dition. So far, the open-boundary condition has been imple-
mented; more specifically, the range of the running index i in
Eq. �3� was set to 1� i�L−1 �27�. In this Brief Report,
following Ref. �29�, we make a modification as to the con-
straint �prefactor of Eq. �3�� to surmount the difficulty. We
replace the above expression with

T��i��,��i�
=

1

L
�
l=1

L

�	
i�l

���2i + �2i+1 + �2i+2 + �2i−1� + �2i�

+ �2i+1� mod 3,0�
exp�− �
i�l

Hi�K� − Hl�K��
 .

�5�

That is, the constraint is released at a defect hexagon i= l.
Additionally, the local bending rigidity at the defect is set
to K�. In order to improve the finite-size behavior, we adjust
K� to

K� = 2K . �6�

A justification is shown afterward.
Based on the transfer-matrix formalism with a modified

folding rule �5�, we simulated the planar folding numerically.
The numerical diagonalization was performed within a sub-
space specified by the wave number k=0 and the parity even;
here, we made use of the spin-inversion symmetry �i→−�i.

In Fig. 2, we plot the free-energy gap

	f = f2 − f1, �7�

for the bending rigidity K and various system sizes L
=6,7 , . . . ,14. Here, the free energy per unit cell is given by
f i=−ln 
i / �2L� with the �sub�dominant eigenvalue 
1�2� of
the transfer matrix. �Here, the unit cell stands for a triangle
of the original lattice rather than a hexagon of the dual lat-
tice; see Fig. 1.� From Fig. 2, we see a signature of a crum-
pling transition �closure of 	f� at K�−0.27. The location of
the transition point appears to be consistent with the preced-
ing estimates �27,28�.

In Fig. 3, the approximate transition point K�L� is plotted
for 1 /L2 and 6�L�14. The approximate transition point
minimizes 	f; namely, the relation

FIG. 2. The free-energy gap �7� is plotted for the bending rigid-
ity K and the system sizes 6�L�14.
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FIG. 3. The transition point K�L� �8� is plotted for 1 /L2.
The linear least-squares fit for L=0 �+� and 1,2 mod 3 �� �
�6�L�14� yields K=−0.2697�12� and −0.2695�14�, respectively.
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�K	f �K=K�L� = 0 �8�

holds. The least-squares fit to a series of results for L
=6,9 ,12 yields an estimate K=−0.2697�12� in the thermo-
dynamic limit L→�. Similarly, for L=1,2 mod 3, we obtain
K=−0.2695�14�. �An observation that the data L=0 and
1,2 mod 3 behave differently was noted in Ref. �27�.� The
above independent results appear to be consistent with each
other, validating the 1 /L2-extrapolation scheme. As a result,
we estimate the transition point as

K = − 0.270�2� . �9�

We then proceed to estimate the amount of the latent heat
with Hamer’s method �38�. A basis of this method is as fol-
lows. At the first-order transition point, the low-lying spec-
trum of the transfer matrix exhibits a level crossing, and the
discontinuity �sudden drop� of the slope reflects a release of
the latent heat. However, the finite-size artifact �level repul-
sion� smears out the singularity. According to Hamer �38�,
regarding the low-lying levels as nearly degenerate, one can
resort to the perturbation theory of the degenerated case and
calculate the level-splitting �discontinuity of slope� explic-
itly. To be specific, we consider the matrix

V = �V11 V12

V21 V22

 , �10�

with Vij = 
i��KT�j� and the transfer matrix T. The bases �1�
and �2� are the �nearly degenerate� eigenvectors of T with the
eigenvalues 
1,2, respectively. The states ��i�� are normalized
so as to satisfy 
i�T�i�=1. According to the perturbation
theory, the eigenvalues of Eq. �10� yield the level-splitting
slopes due to K. Hence, the latent heat �per unit cell� is given
by a product of this discontinuity and the coupling constant
K�L�,

Q�L� = �K�L����V11 − V22�2 + 4V12V21
1

2L
, �11�

for the system size L.
In Fig. 4, we plot the latent heat Q �11� for 1 /L2 and

6�L�14. The least-squares fit for L=6,9 ,12 yields an es-
timate Q=0.0482�59� in the thermodynamic limit L→�.

Similarly, for L=1,2 mod 3, we obtain Q=0.0391�38�. Con-
sidering the deviation of these results as a possible system-
atic error, we obtain

Q = 0.043�10� . �12�

The error margin covers both the statistical and systematic
errors.

We consider the 1 /L2-extrapolation scheme. The finite-
size data are expected to converge rapidly �exponentially� to
the thermodynamic limit around the first-order transition
point for periodic boundary conditions, because the correla-
tion length �typical length scale� 
 remains finite. Hence, the
dominant finite-size corrections in our case should be de-
scribed by 1 /L2 �rather than 1 /L�. On one hand, the curve in
Fig. 4 appears to be concave down, indicating an existence
of a correction of O�1 /L�. However, this possibility �second-
order phase transition� should be excluded: in a preliminary
stage, we made a finite-size-scaling analysis and arrived at a
conclusion that the scaling theory does not apply; the critical
index � estimated from the excitation gap tends to diverge as
L→�. Therefore, we set the abscissa scale in Fig. 4 to 1 /L2;
actually, the result in Fig. 3 demonstrates that the abscissa
scale 1 /L2 is sensible.

As a comparison, we provide a simulation result, setting
the defect parameter to K�=0 tentatively. In Fig. 5, we
present the free-energy gap 	f for the bending rigidity K; the
scale of K is the same as that of Fig. 2, Clearly, the data in
Fig. 5 are less conclusive. As a matter of fact, the signatures
of the crumpling transition strongly depend on the system
size L. This result indicates that the choice of the defect
parameter K� affects the finite-size behavior. In the prelimi-
nary stage, we survey a parameter space of K� and arrive at
a conclusion that the above choice �Eq. �6�� is an optimal
one.

In summary, the crumpling transition of the discrete pla-
nar folding in the K�0 regime was investigated with the
transfer-matrix method for L�14. We adopted a modified
folding rule �5�, which enables us to implement the periodic-
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FIG. 4. The latent heat Q�L� �11� is plotted for 1 /L2. The linear
least-squares fit for L=0 �+� and 1,2 mod 3 �� � �6�L�14� yields
Q=0.0482�59� and 0.0391�38�, respectively. FIG. 5. The free-energy gap �7� is plotted for the bending rigid-

ity K and the system sizes 6�L�14. Tentatively, the defect param-
eter �5� is set to K�=0.
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boundary condition. As a result, we estimate the transition
point and the latent heat as K=−0.270�2� and Q=0.043�10�,
respectively. The planar- and three-dimensional-folding
models are closely related; see Eqs. �1� and �2�. Making
use of K3=−0.76�1� �33� and the present result K=0.270�2�,
we arrive at K3 /K=2.815�43� ��3�. Relation �1� appears
to hold satisfactorily; a slight deviation indicates that the
truncation of the configuration space is not exactly validated.
Encouraged by this result, we estimate Q3=0.043�10� via

Eq. �2�. This result is consistent with Q3=0.03�2� �33� and
Q3=0.05�5� �29�, indicating that the singularity belongs
to a weak-first-order transition rather definitely. Because a
direct approach to the three-dimensional folding is computa-
tionally demanding, an indirect information from the planar
folding would be valuable. A further justification of the
configuration-space truncation would be desirable to confirm
this claim. This problem will be addressed in the future
study.
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