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Stochastic slowdown in evolutionary processes
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We examine birth-death processes with state dependent transition probabilities and at least one absorbing
boundary. In evolution, this describes selection acting on two different types in a finite population where
reproductive events occur successively. If the two types have equal fitness the system performs a random walk.
If one type has a fitness advantage it is favored by selection, which introduces a bias (asymmetry) in the
transition probabilities. How long does it take until advantageous mutants have invaded and taken over?
Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has
a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows
a more intuitive understanding. We show that this effect can occur for weak but nonvanishing bias (selection)
in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher
model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to
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birth-death processes.
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I. INTRODUCTION

Birth-death processes belong to the simplest stochastic
models and are applied in a variety of fields [1-6]. In physics
these processes are connected, e.g., to the study of one-
dimensional classical diffusion in disordered media, anoma-
lous transport, and molecular motors [7-10]. In evolutionary
biology, birth-death processes are commonly applied to
model the evolution of traits with different reproductive fit-
ness that are under natural selection [5,11]. In the context of
evolutionary game theory, this particular class of Markov
chains has been used to model the spreading of successful
strategies in a population of small size [12-20]. Naturally,
the limit of weak selection is considered to be important in
biology. It describes situations in which the effects of payoff
differences are small, such that the evolutionary dynamics
are mainly driven by random fluctuations. While this ap-
proach has a long standing history in population genetics
[21,22], in the context of evolutionary game dynamics it has
been introduced only recently [14]. Often, from the discrete
stochastic process a continuous limit or diffusion approxima-
tion is motivated, where typically the impact of the relevant
parameters and time scales can be studied more easily
[11,23-25]. Here, we consider the Moran process from the-
oretical population genetics and related processes. We ad-
dress the speed of evolution when a resident population is
taken over by mutants that are more fit. Under the low mu-
tation rates that typically occur in biology, a mutant type
either goes extinct or takes over the population before an-
other mutation arises. Thus, for many purposes it is sufficient
to address the evolution of two types in a one-dimensional
system.

In the following, we first recall general properties of birth-
death processes (Sec. II) and then address asymmetry in the
transition probabilities (Sec. IIT). In Sec. IV, we then con-
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sider a more general Markov process to highlight that our
main finding is not a special property of birth-death pro-
cesses.

II. STATE DEPENDENT BIRTH-DEATH PROCESS

A one-dimensional birth-death process in position i can
move to i—1 or i+1 with probabilities 7; and 77. With prob-
ability 1-7;—T7, the process stays in state i. We assume
Ty =Ty =0, such that i=0 and i=N are absorbing states. In
discrete time, the probability to reach boundary N in ¢ steps,
starting from any i, obeys the master equation [6].

PXoy=(1 =T =T;)PYt= 1)+ T; PY (1= 1) + TTPY (1= 1).
(1)

The stationary conditional 2" moment of Pi»v (¢) is given by
()" 2 P (0. )
=0

The normalization constant, ¢'==PY(¢), is the probability
that the process gets absorbed at boundary N, called fixation
probability in population genetics. For #v a recursion is ob-
tained from Eq. (1), ¢'=(1-T/=T})\+T; ¢\ +T7 P,
With the boundary conditions ¢ =0 and ¢y=1, the solution
reads [4]

i-1

1+ I1

¢N_ k=1 m=1
i~ N-1 k

1+Z

=1 m=1

3)

éj- |§ﬁ ) Sj |§'j

A measure for the duration of the process is the conditional
mean time to absorption (average fixation time) 1{.\', i.e., the
first moment of Pf»v (). This gives the average number of time
steps until one of the two absorbing states is reached, starting
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from any i [7,13]. A recursion for 7 is obtained by multi-
plying each side of Eq. (1) with ¢ and summing over all 7 [6],
which  yields  ¢'n'=(1=T;=T))'n + T, (7). +1)
+T7 Y (7, +1). A similar recursion can be found for the
conditional mean exit time 7'?, such that the mean life time of
the process amounts to T?+ 7‘5\’ . Solving recursively with the
boundary conditions 7)=0 and 7y=0, leads to the condi-
tional mean time to reach state N, starting from i=1,

-
=22 11 22 (4)
1 k=1 I=1 T;m—l+] T:n

One common example for a birth-death process with absorb-
ing states 0 and N is the homogenous random walk, T’ f:c
=<1/2 for 0<i<N and Ty =Ty =0 [26]. This leads to ¢
=i/N and 7'=(N?>-1)/(6¢). The reference case of population
genetics is neutral evolution, where the symmetric transition
probabilities are state dependent, T; =i(N—i)/N>. This re-
sults in ¢Y=i/N and 7/=N(N-1) [5,11].

II1. BIASED TRANSITION PROBABILITIES

In this section, we examine how the state dependent tran-
sition probabilities influence the conditional mean exit time.
We consider processes in which a parameter 8 continuously
introduces a bias toward moving into one direction: for 3
=0 the transition probabilities are symmetric, Tf:Tl' but for
B>0, an asymmetry arises, 77 =T7;. In evolutionary dynam-
ics, B is usually referred to as the intensity of selection. It
governs the selective advantage (or disadvantage) of mutants
in a wild-type population of finite size. Intuitively, it is clear
that the time 7) does not depend trivially on g, cf. Eq. (4).
With increasing f3, the probability d)ﬁv increases, but both
1/T; and T;/T; decrease in our setup. Thus, the average
time 7"1\’ can increase or decrease with B. In other words,
despite increasing the tendency to move in the direction of a
given boundary in each state, the conditional average time
until this boundary is reached can still increase.

In the Moran process, an individual selected for reproduc-
tion proportional to fitness produces identical offspring that
replaces a randomly selected individual from the population.
We consider the evolution of two types A and B in a finite
population of size N. Type A (with fitness f,) is usually
referred to as the mutant type, B (with fitness f3) is called the
wild type. Let i be the number of individuals of type A, such
that N—1i is the number of B individuals. In general, the tran-
sition probabilities are

T;:_ ifa ' N—i’
ifa+(N=i)fy N

N=i)fs i

ifa+ (N=i)fgN’ ©)

T;:

In the following, we discuss different choices of f, and f3, as
well as closely related, but simplified asymmetric transition
rates.
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FIG. 1. (Color online) The conditional mean exit time 711\'/ 711\’(0)
(normalized) as a function of the bias (selection intensity) 3, or the
mutation rate u, for the four different models discussed in the main
text. Symbols are simulations, lines show Eq. (4). (a) Moran pro-
cess with a=-0.1 and b=2, see Eq. (7). (b) Parabolic-step process
with i*=11, Eq. (9). (c) Constant-step process with i*=9 and ¢
=0.5, Eq. (12). (d) Birth-death process with directed mutations,
Egs. (15) and (16). The quantities 7, 3, and 8* indicate the maximal
relative increase of 7],\] , the according bias parameter, and the non-
trivial value of 8 where 7,'=7/'(0), respectively (also compare Fig.
2). The system size is N=20 in all panels, averages taken over 107
realizations.

A. Constant fitness

In the simplest case, the fitness of mutants is constant and
does not depend on their abundance [11]. In our model, this
can be parametrized as f,=1+p8 and fz=1-p8. In this case,
the fixation probability of a single mutant is [11]

Y =(1-p/(1-9), (6)

where y=(1-8)/(1+8). Up to linear order in 8 we have
¢ ~N""+B(N-1)N"'. The larger the fitness advantage, the
more likely the evolutionary takeover. For stronger selection
(B>0) an advantageous mutant is expected to fixate faster
compared to neutral (8=0).

B. Linear density dependence

In general, the fitness of the two types will depend on
their abundance. For example, the fitness f of each type can
change linearly with i, f4=1+B(ai+b) and fz=1-B(ai+Db).
The bias B is bound such that fitness never becomes nega-
tive. Then, the transition probabilities are

" 1= Bai+b)  i(N=i)

" T N-Bai+b)(N=2i) N

™)

We have T(f = Ti =0, such that both boundaries are absorbing
[14,27]. For a<0 and aN+b >0, type A is always fitter than
type B, f4>fp, but the conditional mean exit time 711\1 is
larger than neutral in a certain parameter range, compare Fig.
1(a). In this case, a mutant that is fitter than the rest of the
population needs more time to take over the population than
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a less fit mutant. Intuitively, this should not be the case. The
linear approximation of 7 for B<N~' (weak selection)
reads

N* (N*=3N+2)
B

WN=NN-1)-a T ,

(8)

see [28,29]. Note that the linear approximation of the condi-
tional mean exit time depends only on the parameter a, but
not on b, which holds for any system size. Hence, for small
bias B and a <0, the conditional average time grows with
increasing (3. This is an effect from state dependent fitness in
finite populations, as it cannot occur for a=0.

The ratio 7; /7] is a measure of the stochastic flow. Sto-
chastic slowdown can occur if this ratio changes with the
position (abundance of A) i, leading to an asymmetry. When
B becomes larger, T]IV decreases again with (3, which is the
strong selection behavior one would expect, compare Fig.

1(a).

C. Steplike asymmetry

Is there a simpler process with similar characteristics? In-
deed, we can introduce asymmetry also as a step in the fit-
ness of the two types in our Moran process. This leads to
parabolic transition probabilities with an additional steplike
discontinuity,

=200« gogi- ). ©)

where O[x] is the step function (@[x<0]=0 and O[x=0]
=1). The integer i is the location of the step. This process
has the fixation probabilities

L—qﬁf if i=i"
e P (N-i*)y +1 (10
i i . ,*+1
STy +1

$(N-i)y +1

where ¢]f=(1 —v)/(1=9F) is the probability to get from 1 to
k, and y=(1-pB)/(1+pB). Note that this general formula re-
duces to the standard fixation probability for constant fitness
in the case of i*=N, cf. Eq. (6). For weak bias, 8<<1/N, we
have y=1-2p, as well as

v i BN 42— - (1+i7)] if i=i,

A .

YON S N (N=D)it(1+ ) if i>i"
(11)

¢fv increases with S in this approximation, whereas 7y de-
creases with 8. Hence, the mean exit time can also increase
in an appropriate parameter range. The average delay of the
absorption is rather high in this case, cf. Fig. 1(b), where it is
10%. Fig. 2(c) illustrates that even a delay of 400% is pos-
sible, but this delay decreases with increasing i*.

An even simpler model with stochastic slowdown is the
constant-step process
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FIG. 2. (Color online) Scaling with system size for the two
models with step like asymmetry: Parabolic-step model Eq. (9)
[Fig. 1(b)] on the left, constant-step model Eq. (12) with ¢=1/2
[Fig. 1(c)] on the right. (a) The threshold value NB*, defined by
7"?'(,8*):7’1\’ (0). Note that B=1 permits a minimal value of i*/N
only relatively far from zero. (b) N, ,é, defined as the bias parameter
where the mean exit time 7"1\' is maximal. When plotted against the
asymmetry parameter i*, both models approach a limit curve with
growing size N. This suggests that nontrivial values of 8" and [3 can
be found for any system size N after appropriate rescaling: the
asymptotic scaling relations are B~N-!, and B*~N"'. (c) The
maximal increase of the mean exit time (normalized), 7T
=7(B)/7(0), quickly approaches a limiting curve with growing N.
This suggests the asymptotic scaling relation 7~ N°. Open symbols
N=20, filled symbols N=200, lines N=2000.

T =c(1 = BO[i* - i])

if 0<i<N, (12)

and Tg:Tﬁ:O, with i*=<N, and the constant ¢ chosen such
that 77 +T; = 1. Clearly, the fixation probability of this pro-
cess obeys Egs. (10) and (11). Then, the remaining sums can
be expressed by means of the exact form of (;Sf-v, respecting
that 1/77 only gives contributions different from 1/c¢ if /
=i*. The conditional mean exit time 7, can now be written
in the form

Tgv_d’lzz'}/”(l*")’) d’l E E')/ 1+

C k=1 I=1 2¢1 C rzitsl =1 2¢1
N N-1 k-1
42X {(k ] (13)
k=i*+1 I=i* ¢1

With y=1-28 and Eq. (11) this leads to

011925-3



ALTROCK, GOKHALE, AND TRAULSEN

N -1 (N=)(N-1-i"(1+i")
+

7-/1" ~
6¢ 3Nc

B.  (14)

The constant contribution is that of the homogenous random
walk. The correction linear in S is always greater than or
equal to zero, i.e., within the range of this approximation it
just adds a positive value to the symmetric part. Also note
that 7(8=0,i*,c) serves as an upper bound for the mean
exit time if i* = N—-1. Hence, below a certain threshold of the
bias, 7’1\’ is always greater than or equal to the homogenous
random walk between absorbing boundaries. This is surpris-
ing as the process defined by Eq. (12) fulfills 77 =77, and
thus never gives a disadvantage to movement toward the
boundary i=N. Moving into the direction of N is always at
least as likely as moving into the opposite direction in this
setup. In this particular process, the stochastic slowdown can
be quite large, cf. Figs. 1(c) and 2(c).

What is the effect of system size on this stochastic slow-
down? Let 8 denote the upper bound of the parameter 8 for
which 7'11V (B)> 7'11\’ (0), which is the parameter range in which

slowdown can be observed. Additionally, with E we denote
the parameter value of maximal slowdown of the exit time
7]1\] . They change with N and i* in both models with a steplike
asymmetry, Egs. (9) and (12). The expansions linear in 3 are
valid if NB<<1 [13,27,29]. In Figs. 2(a) and 2(b) we show
that with increasing system size N, the quantities NG(i*) and
NB*(i*) approach limiting curves if B is rescaled appropri-
ately. Thus, stochastic slowdown does not rely on small sys-
tem size, but B* and S asymptotically scale as N~!. However,
the maximal relative increase of the mean exit time itself,
7= 7"1\’ ([3)/ 711\' (0), does not scale with system size, 7~ N, as
illustrated in Fig. 2(c).

D. Directed mutations

To stress the generality of the effect of stochastic slow-
down in asymmetric birth-death processes we briefly discuss
a model with directed mutations. Fitness does not need to be
position/state dependent to observe stochastic slowdown in
population genetics. As above we consider two types, A and
B, in a population of size N, both having the same reproduc-
tive fitness. In one reproduction step of this Moran process,
type B mutates to type A with a probability u, back-
mutations are excluded. This introduces asymmetry in the
transition rates,

i N—i\N—i

TF(XI“‘ N ) N (1)
N—i i

7;=< . (1—m)1—v, (16)

where i is the abundance of A. Obviously, Ty =T,=0, but
with directed mutations we have T, =0. The process has one
absorbing boundary. The ratio of the transition probabilities
is T,/ T}, =~ 1— uN/m, for mutation rates u << 1/N?. For larger

M, the dependence on the inverse mutation rate makes the
calculation of an approximation of Eq. (4) unwieldy. As w
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FIG. 3. (Color online) The conditional mean exit time (normal-
ized) for the Wright-Fisher model with N=1000, as a function of
the rescaled bias (selection intensity, mutation rate). The line shows
the analytical diffusion approximation result Eq. (24), namely
AN"1)/(2N-1). Symbols are simulation results. Left: The state de-
pendent fitness model, Eq. (17) (2X 10° realizations, a=-0.1, b
=Nlal). For relatively small bias 8 slowdown is observed. Right:
The directed mutations model, Eq. (A1) (5X10° realizations).
Here, a strong slowdown effect can be observed over a wide range
of the bias, Nu=1. This is due to the different nature of the di-
rected mutation process, which has only one absorbing boundary.

increases we expect that A has an advantage during repro-
duction and hence, the conditional fixation time (that a single
mutant takes over before going temporarily extinct) should
decrease. Nevertheless, we observe an increase in the value
of 7]1\] , see Fig. 1(d). The time shows a maximum when w is
close to N7,

A more general process is given in the Appendix. There,
we derive an expression for the fixation probability in a
Wright-Fisher model with directed mutations. Although this
quantity increases with u, the associated conditional mean
exit time also increases in a certain parameter range, com-
pare Fig. 3.

IV. STATE DEPENDENT WRIGHT-FISHER PROCESS

The phenomenon of stochastic slowdown is not restricted
to birth-death processes. It also occurs in the Wright-Fisher
process that is commonly used in population genetics
[11,30]. Again, we consider a population of two types A and
B. If i is the abundance of A, the fitness of each type is f,
=1+pB(ai+b), and fz=1-B(ai+b), respectively. Birth-death
processes, such as the Moran model considered above, deal
with one reproductive event at a time. Now, one time step of
the Wright-Fisher process corresponds to one generation
where all individuals reproduce: In each generation, the N
individuals reproduce a large number of offspring propor-
tional to fitness. The new generation of size N is a random
sample from this offspring pool, which corresponds to bino-
mial sampling proportional to fitness. The transition prob-
ability to go from i to j A individuals reads [30]

o) 5
NG INifa+ (N=i)fg) \ifa+ (N=i)fp '

(17)

For this process, a closed treatment is not possible. Apart
from simulations, for large N a diffusion approximation leads
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to analytical results [11,31-34]. With x=i/N, the process is
approximately described by the Langevin equation dx
=D, (x)dt+\D,(x)dW(t), where W(¢) is the Wiener process
with zero mean and autocorrelation (W(z)W(s))=min(z,s)
[1]. The drift term D,(x) can be written as

fa(x) = f5(x)

D= I (-0 Y
For the diffusion term D,(x) we find
2
Do) = x(1 - ) Fa)fp(x) Dl(x). (19)

(a0 + (1 -0f00)2 T N

If the initial fraction of A types is x,, the probability of ab-
sorption in x=1 (fixation probability) reads

_ S(xp)
P(xo) = s()° (20)
where
— ) _ Y 2D1(Z)
S(x)—f0 dy exp|: fo dZ—Dg(Z) ] (21)

If there is no bias, 8=0, we have f,(x)=f5(x) and hence
D,(x)=0. Thus, consistently with the previous section, we
obtain ¢(i/N)=i/N. For sufficiently weak bias, N8<<1, we
have

2DD2_1((Z§) ~4N(aNz + b) 3, (22)
which leads to
Bxo) ~ 3o + 2x0(1 = xo)N[aN(1 + x,) + 3b]13. (23)

3

The conditional mean time this process takes to exit at x=1,
7(xy), can be obtained from the associated backward Fokker-
Planck equation [11],

X0 1
T(x) = Nf dxt(x,xo) + Nf dxt,(x,xp), (24)
0 X0
where
L #(x) 1= lxp) f Y 2Dy(2)
11 (x,x0) = 2D2(x) o) S(x)expl . dz D) },
., $x) *2D(2)
to(x,x0) = 2D2(x) (S(1) - S(x))expl fo dZ—D2(z) ] .

(25)

For weak bias Eq. (22) holds, as well as S(x)=x
—2/3Nx*(aNx+3b) . This results in

N
7(1/N) =~ 2N(N - 1)1n{N_J

N-1
o

- g(N— 1)<C1 +C, ln{

with
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Cy=a(7TN*+ 13N + 6) + 18b,

C,=6N(aN(N +2) + 3b).

For large N, the right hand side of Eq. (26) simplifies, lead-
ing to
2N*(N -3)

H1N)=2N-1-a——R.

9 (27)

Hence, we can predict an increase of 7(1/N), in the case of
state dependent bias with a <0, also for the Wright-Fisher
process, in particular when A always has a fitness advantage
over B, see Fig. 3. This goes along with the findings for the
Moran model in the previous section. Thus, the slowdown
effect can also be observed in the traditional framework of
population genetics, where times of fixation (or rather extinc-
tion) have been considered typically for constant selection
[11,35].

V. DISCUSSION

This paper addresses several stochastic evolutionary pro-
cesses asking how long an advantageous mutation needs to
take over. We have first concentrated on birth-death pro-
cesses which model population dynamics with successive re-
productive events, like the Moran process. However, the phe-
nomenon of stochastic slowdown is also present in more
general Markov processes, e.g., the Wright-Fisher process
from population genetics. Stochastic slowdown is relevant in
the invasion and fixation of beneficial traits with small state
dependent selective advantage, which is typically assumed in
evolutionary biology [36]. However, consequences of weak,
but nonvanishing selection are hard to reveal in empirical
studies, as the dynamics are still dominated by random ge-
netic drift and averages over large ensembles are necessary.
Biological examples of weak selection include amino acid
substitutions which are only slightly advantageous or delete-
rious [37-39]. Weak state dependent fitness changes (such as
the thresholds we discuss in our model with steplike asym-
metry) may help explain situations in which a substitution is
likely, but takes a very long time.

Our finding also has applications in evolutionary game
theory [40-42]: When a group of cooperative individuals is
eventually driven to extinction by defectors, this process may
take longer than the corresponding neutral process, although
the defectors always have a fitness advantage. This observa-
tion is closely related to the fact that the conditional fixation
time of an advantageous mutation is the same as the condi-
tional fixation time of a deleterious mutation [28,35].

To sum up, we have shown that an asymmetric bias in a
random walk, which is generic in population genetics, can
lead to a counterintuitive observation that an advantageous
mutant needs longer to take over the population than a neu-
tral mutant in the same system. This is a property of weakly
biased systems, i.e., weak selection, and is recovered for any
system size if the intensity of selection is rescaled with N~!.
The relative maximal increase in time itself is independent of
the system size. Especially in the state dependent Moran or
Wright-Fisher process, this can have a crucial impact on
macroscopic observable quantities.
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APPENDIX: STATE DEPENDENT WRIGHT-FISHER
PROCESS WITH DIRECTED MUTATIONS

Consider a finite population of size N, which consists of
two types A and B. Both types have the same reproductive
rate, which is set to one. In one generation, each type pro-
duces a large number of identical offspring proportional to its
abundance. Additionally, a directed mutation from B to A can
occur with probability . The next generation of size N is a
random sample from the offspring pool. The transition ma-
trix reads

N\(i N-iVJ[N-i N=j
T;= i ;/4‘# N N (1-w] . (AD

The conditional moments of this Markov chain are given by

[11]

N
M= (G=D"T;;. (A2)
j=0
In a diffusion approximation we rescale the state space as
x=i/N, and the timescale as Ar=1/N, such that for large
system size and weak bias the process is well described by
the first two moments, D, ={(x,,2,—x)")/At, i.e.,

N .
Dy(x) = g Mi(0),
k=1,2. For the given Markov chain Eq. (A1), the drift and
diffusion terms read

(A3)

D;(x) = uN(1 —x), (A4)
Dy(x) = (1 =0)[(1 = )N = D+ (1 = 20)p +x].

(A5)

Next, we derive a closed expression for the probability that

the process exits at x=1 without hitting the non-absorbing

boundary x=0 first, starting form x,, ¢(x,), Eq. (20). The
general expressions Egs. (20) and (21), as well as Egs. (24)
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and (25) hold. However, due to the different nature of this
process, where only one absorbing boundary at x=1 exists,
these quantities have a slightly different meaning.

We define 2D, (x)/D,(x)=2Nu/D5(x), where

Dy(x)=(1-x)(N-Dp>+(1=2x)u+x,  (A6)
and obtain
2D .
I(z) = j dz Dzl((zz)) =—vlIn Dy(z) (A7)
with
= 2N (A8)

uW(N-1p+2]-1"

Now, with D,(0)=D,(0) and

1) = expl=[1,) - 1,(0)]} = L’?Eg; ] (A9)

we can calculate the second integral in Eq. (21),
1 D¥'(x) - DY(0)
DY(0) 1 —u[2—u+NQ2+w]
(A10)

S(x) =f dyly(y) =
0

Hence, the fixation probability, Eq. (20), reads

5V+1 _5V+1 0
Bl = 20 =202 O
D3 (1) - D37 (0)

(A11)

As Dy(0)=[(N=1)pu+1]u, Dy(1)=1-p, and lim,, . Dy(x()
=Xxg, we have lim,,_, ¢(x)=x¢. Up to first order in mutation
rate, we see that ¢(x,) increases with increasing bias,

$(xp) = xo = (2Nxg In xp) .

With expressions (A10) and (A11) the conditional mean exit
time, Eq. (24), can be tackled as well. However, we do not
address the conditional mean exit time analytically, as its
explicit form is elaborate and does not lead to further insight.
From a numerical solution [Eq. (24)] and from simulations
[Eq. (Al)] the mean exit time of a single mutant, 7{(1/N), as
a function of u is shown in Fig. 3.

(A12)
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