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Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses,
we derive a mean-field theory for the population dynamics of microbe-virus systems, including the effects of
lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by
Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a
limit cycle, which we interpret physically. To test the robustness of our mean-field calculations to demographic
fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally,
we estimate the range of parameters that delineate the various steady states of our model.
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I. INTRODUCTION

Microbes and their viruses are the most genetically di-
verse, abundant, and widely distributed organisms across the
planet �1–4�. Microbes are major contributors to the global
biogeochemical cycles and catalyze the reactions that have
over evolutionary time brought the earth’s surface to its
present redox state �5�. Similarly, viruses, especially in the
oceans, manipulate marine communities through predation
and horizontal gene transfer �6,7�, recycle nutrients, and thus
drive the biological pump which leads inter alia to the se-
questration of carbon in the deep ocean �8–17�.

It is being increasingly realized that the classical view of
microbial viruses purely as predators is too limited. Many
microbe-virus interactions are lysogenic, not lytic: upon in-
fection, the viral genetic material is incorporated into the
chromosome of the host, replicates with the host, and can be
subsequently released, typically triggered by the stress re-
sponse of the host to environmental change �18�. As a result,
viruses can transfer genes to and from bacteria, as well as
being predators of them, so that the virosphere should prop-
erly be recognized as a massive gene reservoir �17,19–21�.
Thus, there is a coevolution of both communities, the effects
of which are complex and far reaching �10,17,20–25�, even
including the manipulation of bacterial mutation rates �26�.
This nontrivial interaction between microbes and viruses has
not gone unnoticed, with wide interest among biologists,
ecologists, and geologists �2,18,25,27–34�.

These findings highlight the importance of considering
ecosystem dynamics within an evolutionary context. Con-
versely, evolution needs to be properly understood as arising
from a spatially resolved ecological context, as was first rec-
ognized by Wallace over 150 years ago �35�. That speciation,
and adaptation in general, arises at a particular point in time
and space has a number of deep consequences that have not
yet been incorporated into current theory. First, it means that
evolutionary dynamics proceeds by the propagation of
fronts, resulting in a complex and dynamical pattern of spe-
ciation, adaptation, and genome divergence that reflects its
intrinsic dynamics and that of the heterogeneous and dy-

namical environment �36–39�. Second, as fronts expand,
there are only a few pioneer organisms at the leading edge,
and so demographic fluctuations are much larger than in the
bulk. Such fluctuations profoundly influence the spatial
structure of the populations, and during the last few years
have been recognized to play a major role in population
cycles �40� and even spatial pattern formation �41�. Third,
the existence of horizontal gene transfer and genome rear-
rangement processes is strongly coupled to spatial distribu-
tion. For example, it is known that the probability of conju-
gation events is dependent on the local density, being
essentially one per generation in closely packed biofilms, but
an order of magnitude smaller in planktonic culture �42�.
Moreover, the mechanism of horizontal gene transfer is also
dependent on the density, with viral-mediated transduction
being the most relevant mechanism at low density. How
these patterns of evolutionary dynamics and species distribu-
tion play out is essentially unexplored. However, there have
recently been the first reports of observations of the coupling
between evolutionary and ecological time scales. In one such
system �a predator-prey system realized in rotifer-algae inter-
actions�, it has been demonstrated that rapid evolutionary
dynamics is responsible for the unusual phase-lag character-
istics of the observed population oscillations �43�. Thus,
rapid evolution is not only a major force for adaptation, but
can have marked ecological consequences, too.

The complex interplay between evolution and the envi-
ronment is nowhere more important than in early life, where
the key questions concern how life emerged from abiotic
geochemistry. Early life experienced demanding environ-
ments, whose closest modern day correspondence might be
deep ocean hydrothermal vents or hot springs. It is known
that there are high occurrences of lysogens in both environ-
ments �4,44�, suggesting that microbe-phage interactions
might also be important in the early stages of life, with
lysogens playing an important role as a reservoir of genes
and perhaps even aiding in the stabilization of early life
populations through the limit cycle mechanism discussed in
this paper.

Our goal in this paper is to lay a theoretical foundation for
describing the interplay between ecology and evolution in
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the context of microbe-virus systems, as these are arguably
among the most important and probably the simplest of the
complex systems in biology. The questions that will ulti-
mately interest us are the evolutionary pressures that tune
genetic switches governing the lysis-lysogeny decision, as
well as the factors that shape prophage induction in response
to environmental stress �45–47�. Such a foundation must be-
gin with a proper account of the population dynamics itself,
before coupling in detail to other levels of description in-
volving genome dynamics, for example. Thus, we have cho-
sen to focus in the present paper on the dynamics of
microbe-virus systems, taking full account of both of the
major viral pathways. In this paper, we are not specific about
whether we are dealing with bacterial or archaeal viruses, but
because most of the experiments to date are carried out on
bacteria, we have tended to identify the microbes as bacteria
and the viruses as phages, even though this is not required by
the mathematics.

We are now ready to introduce the specific problem that
we treat in this paper. Upon phage infection, there are two
pathways awaiting the host bacterium �48�. In the first
pathway—lysis—the bacteriophage produces a large number
of copies of itself utilizing the bacterium’s genetic material
and molecular machinery. As a result, the bacterium ceases
its metabolic function, and ruptures, releasing the newly as-
sembled bacteriophage inside. The other pathway is lysog-
eny. In this process, the intruder integrates its own DNA into
the genome of the bacterium, enters a dormant stage, and
becomes a prophage. The infected bacterium is known as a
lysogen—a relatively stable state �49�, is immune to super-
infection from the same or related strains, and is proceeding
under normal replication life cycles. The DNA of the bacte-
riophage is duplicated, along with that of the host during cell
replication. The lysogenic state can be terminated by envi-
ronmental stress such as starvation, pollution, or ultraviolet
irradiation, resulting in the process known as prophage in-
duction: the exit of the prophage from the host genome and
the subsequent lysis of the original bacterium and its bacte-
rial descendants.

We now discuss briefly existing treatments of population
dynamics in the context of microbe-virus systems. In 1977,
Levin et al. �50� extended the celebrated Lotka-Volterra
equations to model the dynamics between virulent phages
and their victims, where only virulent phages are considered.
A number of extensions have been proposed, extending the
level of biological realism to include such features as the
time delay arising between infection and lysis as well as the
evolution of kinetic parameters �51–55�. In 2008, Weitz and
Dushoff �56� proposed another way to improve the classic
predator-prey model. Their attempt was mainly based on the
experimental observation that the ability of a bacteriophage
to lyse hosts degrades when the bacteria approach their car-
rying capacity �57–59�. Adding a new term to account for the
saturation of the infection of the bacteriophages, they ob-
tained an interesting phase diagram in which the fate of the
bacteria-phage community can depend on the initial condi-
tions. However, the new term is put in by hand, based on
intuition which needs detailed mathematical support. Fur-
thermore, they focused on virulent phages and excluded the
temperate ones that elicit lysogeny, now regarded as essential

to the survival of microbial communities through fluctuating
environments �18,29,33�.

These works are based on an ensemble-level description
of the community, as in the classic work on predator-prey
systems �60�. However, as is well known �60�, the simplest
of these models fails to capture the intrinsic cyclical behavior
of predator-prey populations despite apparently incorporat-
ing fully the basic interactions that should give rise to cycles.
This paradox was resolved by the important work of McK-
ane and Newman �40�, who showed that cyclical effects
could only be captured at the level of an individual-level
model and arose through the amplification of demographic
noise. Their work showed how the conventional ensemble-
level equations for predator-prey systems arose as the mean-
field limit of the appropriate statistical field theory, with the
essential effects of demographic noise entering the analysis
as one-loop corrections to mean-field theory, in an inverse
population size expansion. These effects can also be treated
in a slightly more convenient formalism using path integrals
�61�. The literature also does not have an explicit represen-
tation of lysogeny as it modifies the population dynamics of
both host and phage.

The use of an individual-level model is important for a
separate reason. By starting from microscopic rate processes,
we can capture specific biological interactions and derive the
corresponding mean-field population dynamics systemati-
cally. Such models are not always straightforward to write
down phenomenologically, as shown by the fact that the
equations assumed by Weitz and Dushoff �56� are not, as we
show below, the most general form that takes into account
the effects of host fitness on lysis.

The purpose of this paper is to provide a detailed theory
of the population dynamics for host-phage communities. In
contrast to earlier work, we pose the problem at the micro-
scopic level, working with an individual-level model of bac-
teria and phage. From this fundamental description, we are
able to derive the usual community-level description analo-
gous to Lotka-Volterra equations from a mean-field theory.
Our results encompass both virulent phages, such as those in
Weitz and Dushoff’s work �56�, and lysogenic phages which
have not been studied mathematically up to now.

This paper is organized as follows. In Sec. II, as a pre-
liminary exercise, to present the technique, we treat a lysis-
only model, in which we derive a set of dynamical equations
roughly in the same form as in Weitz and Dushoff’s paper
�56� except for an additional parameter, which generally re-
sults in a relatively unimportant shift in the phase diagram.
In the full lysogeny-lysis model, presented in Sec. III, we
develop the formalism for the community of hosts and ph-
ages, including both lysis and lysogeny. Interestingly, we
find that for certain combination of parameters, the commu-
nity exhibits a limit cycle for all the species in the phase
space, even at the level of mean-field theory. In order to
interpret the corresponding range of parameters in a useful
way for experimental observations, we map the parameters
to rates in chemical reactions. In order to explore the robust-
ness of our results, we demonstrate in Sec. IV that the cor-
responding limit cycle arises also in stochastic simulations
with the Gillespie algorithm. Finally, in Sec. V we estimate
the feasibility of verifying our predictions in laboratory ex-
periments.
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II. LYSIS-ONLY MODEL

A. Derivation of the population dynamics
from an individual-level model

In this section, we adapt the classic predator-prey model
to the host-phage communities from a microscopic or
individual-level model. For simplicity, we first focus on two-
component competition, where lysogens are excluded in
spite of their biological importance. Hence, we are consider-
ing virulent phages and their hosts. Following the procedure
given by McKane and Newman �40�, we derive the popula-
tion dynamics for the host-phage system, which Weitz and
Dushoff �56� had written down phenomenologically. Here,
we work at the level of mean-field theory, and we do not, in
this paper, include the extension necessary for representing
spatial degrees of freedom. Our individual-level model for-
malism is still needed, however, to systematically derive the
population dynamics from the microscopic interactions. In
our model, the host-phage dynamics differentiates itself from
the classic predator-prey model in two ways: �1� only the
host population is restricted by carrying capacity due to re-
source limitation and �2� the lysis of one host releases a
particular number of phages �for example, about 100 repli-
cates for lambda phage �48��, instead of only one predator in
the classic predator-prey model. The above two points need
to be accounted for carefully in the setup of the model, es-
pecially in the introduction and application of the carrying
capacity, which will be explained explicitly as follows.

In our host-phage community, we have only one species
of host and one species of phage which preys upon the
former. Let us label the hosts by A and phages by B, whose
populations are m and n, respectively. The hosts, either het-
erotrophic or autotrophic, need to consume environmental
resources, which are renewable in every cycle, for survival
and reproduction. All the environmental limitations on the
hosts are abstracted into a maximal host population, which is
denoted by the carrying capacity K. The phages, on the other
hand, do not rely on the consumption of natural resources for
maintenance once they are released into the environment.
Thus, there is no such hard constraint on the phage popula-
tion. Although phages are not restricted by K, we still intro-
duce a virtual carrying capacity W for phages from dimen-
sional considerations. It can be imagined that W→�, so that
no true carrying capacity is imposed on the phage popula-
tion. The carrying capacities can be better visualized if we
conceive space to be equally divided into K units for hosts
and W units for phages. These units will be referred to as the
host and phage layers, respectively. In the host layer, each
unit is either occupied by one host or unoccupied, i.e., an
empty site E. The total number of empty sites E is K−m. We
construct the phage layer in a similar manner and denote the
empty sites there by � although the phage population is not
confined actually. The population dynamics of the system
can thus be modeled as arising from the following six micro-
scopic events �Table I�.

Here, b, c, d, e, f , and g are all constant rates. All the
events above are written with constraints, with a nonlinear
relation being incorporated automatically by adding empty
sites E to the left of the arrows to reflect the restriction of

carrying capacity K. For example, the birth of the host is
density dependent, which needs an empty site to accommo-
date the newly born host. If no empty site is found, such an
event cannot happen. Since we consider only the mean-field
case, no spatial inhomogeneity is introduced. There is no
concept of locality here, either. As long as an empty site is
found, the newly born host is permitted. The crowding effect
describes the competition in survival for limited natural re-
sources among hosts. No such crowding effect exists for ph-
ages, which is in line with our assumption that there is no
true carrying capacity confining the phage population. The
two events in host-phage interaction are carefully chosen to
give a minimal model while encompassing reduced lysis
when the host population is approaching its carrying capac-
ity. On the left-hand side of the arrows, we use “AE” and
“AA” to label the good and poor metabolic statuses of the
host, respectively. In this way, the effect of phage infection is
entangled with the metabolism of its host. On the right-hand
side of the arrows, � and � are the numbers of progeny for
phage reproduction under good and poor metabolisms, re-
spectively. There are two primary reasons which may ac-
count for the reduced lysis effect. The first is the decrease in
the phage reproduction number �57�, i.e.,

� � � , �1�

because phages need bacterial genetic materials, molecular
machinery, and energy in the synthesis of their replicates.
When the normal function of the host is downregulated, ph-
age replication is correspondingly downshifted. The second
reason is the reduced efficiency during phage infection, ei-
ther in adsorption rates or viable infection, which leads to a
diminishing of the infection cycle �57�, i.e.,

e � f . �2�

It might seem as if the model is discrete in the representation
of metabolism since we put in good and poor metabolisms
by hand. However, note that the actual metabolism of the
community may be somewhere between good and poor, i.e.,
a linear combination, depending on the probability or frac-
tion to enter either event. Hence, the separation of good and
poor metabolisms is an essential part of our model, which

TABLE I. Microscopic events in the lysis-only model.

Description Symbol

Birth of host AE→
b

AA

Death of host due to longevity A→
c

E

Death of host due to crowding effect AA→
d

AE

Host-phage interaction:

�i� under good metabolism AEB→
e

EE�B

�ii� under poor metabolism AAB→
f

EA�B

Death of phage B→
g

�
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yields the reduced lysis effect within the context of a mini-
mal model. Finally, although phages do not age, their death
can be induced by the rupture of capsids, and the correspond-
ing rate is constant with time �62�.

The time evolution of the whole community is accessed
by random sampling. In each time step, we have a probabil-
ity � to draw units in the host layer and a probability � to
draw units in the phage layer. In the host layer, we may draw
either one unit with probability � or two units with probabil-
ity 1−�. In the phage layer, only one unit is drawn. If a
combination not listed in Table I is drawn, such as EEB,
nothing happens. Thus, all we need to consider are the above
events. Using simple combinatorics, it is straightforward to
obtain the probability for the combinations as follows from
Table II where the factor of 2 accounts the equality in prob-
ability for events AE and EA, or AEB and EAB.

Thus, we obtain the transition matrices for each kind of
variation in the population during each time step, such as
�T�m+1,n �m ,n��, and further the evolution for the probabil-
ity in the population with m hosts and n phages at time t,
P�m ,n , t�. The reader is referred to Appendix A for calcula-
tional details.

The average of the population is given by summations

�m� = �
mn

mP�m,n,t� , �3a�

�n� = �
mn

nP�m,n,t� . �3b�

Thus, the time evolution for the population size is

d�m�
dt

= �T�m + 1,n�m,n�� − �T�m − 1,n�m,n��

− �T�m − 1,n + � − 1�m,n��

− �T�m − 1,n + � − 1�m,n�� , �4a�

d�n�
dt

= �� − 1��T�m − 1,n + � − 1�m,n��

+ �� − 1��T�m − 1,n + � − 1�m,n��

− �T�m,n − 1�m,n�� . �4b�

Here, we have taken the mean-field theory limit and ne-
glected all the correlations and fluctuations.

Omitting angular brackets for simplicity, the equations for
the evolution in population are

dm

dt
= rm	1 −

m

K

 − dmm − �mn	1 − am

m

K

 , �5a�

dn

dt
= 	�mn	1 − an

m

K

 − dnn , �5b�

where

r =
�2b + d���1 − ���1 − ��

K
, �6a�

� =
2e���1 − ��

KW
, �6b�

	 = � − 1, �6c�

dm =
�c� + d�1 − �����1 − ��

K
, �6d�

dn =
�1 − ���

W
, �6e�

am = 1 −
f

2e
, �6f�

an = 1 −
�f

2�e
. �6g�

Considering Eq. �1�, we notice that Eqs. �6f� and �6g� yield
the following relation:

0 
 am 
 an 
 1. �7�

Generally speaking, am�an unless

� = � , �8�

which implies that the reproduction numbers under good and
poor metabolisms are the same as in Weitz and Dushoff’s
model. This concludes the derivation of the equations for
population dynamics from the individual or microscopic
level.

B. Results

In this section we explore the predictions of the lysis-only
model given by Eq. �5�. Let

t� =
rt

am
, �9a�

TABLE II. Probabilities for the combinations in the lysis-only
model.

Combination Probability

A ��1 − ���
m

K

AA ��1 − ���1 − ��
m�m − 1�
K�K − 1�

AE ��1 − ���1 − ��
2m�K − m�
K�K − 1�

AEB ���1 − ��
2m�K − m�
K�K − 1�

n

W

AAB ���1 − ��
m�m − 1�
K�K − 1�

n

W

B �1 − ���
n

W
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�� =
�	K

r
, �9b�

dn� =
amdn

r
, �9c�

dm� =
amdm

r
+ 1 − am, �9d�

m� = am
m

K
, �9e�

n� =
amn

	K
, �9f�

an� =
an

am
. �9g�

We can nondimensionalize the evolution equations �5�.
Omitting the primes we obtain

dm

dt
= m�1 − m� − �mn�1 − m� − dmm , �10a�

dn

dt
= �mn�1 − anm� − dnn . �10b�

Setting

dm

dt
= 0, �11a�

dn

dt
= 0, �11b�

we obtain three fixed points. The first is a trivial fixed point,

m = 0, �12a�

n = 0, �12b�

which is stable when

dm � 1. �13�

The second corresponds to the phage extinction phase

m = 1 − dm, �14a�

n = 0, �14b�

which is stable when

0 
 dm 
 1 −
1

an
�15�

or

1 −
1

an

 dm 
 1, �16�

�

dn



1

�1 − dm��1 − an�1 − dm��
. �17�

The last is the coexistence of hosts and phages,

m = � , �18a�

n =
1

�
	1 +

dm

� − 1

 , �18b�

where � is a root of

an��2 − �� + dn = 0. �19�

The coexistence phase comes into existence and will be
stable when

�

dn
� 4an, �20�

dm 
 1 − � . �21�

The stability of the fixed points is governed by the Jacobian

	�1 − 2m��1 − �n� − dm − �m�1 − m�
�n�1 − 2anm� �m�1 − anm� − dn


 �22�

to the equations

m�1 − m� − �mn�1 − m� − dmm = 0, �23a�

�mn�1 − anm� − dnn = 0. �23b�

Thus, we obtain the three-dimensional phase diagram
plotted in Fig. 1. The basin of attraction for the trivial case is
not plotted. Region II is the basin of attraction for coexist-
ence fixed point only while region III is that for the phage
extinction. Region I will either go to coexistence or phage
extinction, depending on the initial conditions.

0
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φ/d
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d
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a n
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III

II

FIG. 1. �Color online� Three-dimensional phase diagram for the
lysis-only model. Region I depends on the initial conditions to flow
to the phage extinction or coexistence fixed point. Regions II and III
are basins of attraction for coexistence and phage extinction fixed
points, respectively.
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C. Discussion

As we can see, the bottom plane in Fig. 1 corresponds to
the phase diagram in Weitz and Dushoff’s model, where an
=1. When

� � � , �24�

leading to

an � 1, �25�

there is a shift in the phase diagram with a rapid shrinkage of
the basin of attraction for region II, where any initial condi-
tion flows to the coexistence phase. The boundary between
regions I and III also moves to larger � /dn, which implies
that the more the good and poor metabolisms differ from
each other in the progeny number, the easier the phages are
driven out of the system. In order to see the effect of the
phase shift more clearly, let us tune an=1.3 while keeping all
the other parameters as those in Fig. 2�I� in Weitz and Dush-
off’s paper �56� �Fig. 2�. When an=1, there is a neutral fixed
point for coexistence. However, such a fixed point disappears
�Fig. 3� when an=1.3. The flow diagrams are generated by
fourth-order Runge-Kutta method.

In summary, we have obtained Weitz and Dushoff’s
model by detailed derivation from the individual or micro-
scopic level and found a small shift in the phase diagram.
Such a shift, as we see, can be observed experimentally by
the onset of coexistence for the two species.

III. LYSOGENY-LYSIS MODEL

A. Derivation of the population dynamics
from an individual-level model

In this section, we extend the lysis-only model above to
incorporate lysogeny and investigate the important role of
lysogeny in host-phage dynamics. Now there are three types
of organism in the community. There are “healthy” hosts,
which have no integration of phage genes, lysogens, and free
phages, which live outside bacteria membranes. We will la-
bel healthy hosts, lysogens and free phages by A, D, and B,

respectively, with population sizes m, s, and n. For the same
reasons as in the lysis-only model, hosts and phages are
thought of as being confined in different layers characterized
by different carrying capacities. Hence both healthy hosts
and lysogens are in the host layer with a total carrying ca-
pacity K. The empty sites in the host layer are denoted by E
and their number is K−m−s. In the phage layer, the empty
sites are labeled by � as before.

The incorporation of lysogens brings us more microscopic
events. There are two pathways after phage infections: lysis
and lysogeny. Immediate lysis for temperate phages is the
same process as for virulent ones, which has been character-
ized by events in the previous section. Lysogeny is an option
only for temperate phages, which will be investigated in de-
tail here. First, there should be an event corresponding to
lysogen formation, i.e., a phage integrates its DNA into the
genome of the host and turns itself into a prophage. Second,
lysogens will survive, replicate, and die as healthy hosts.
Last, environments might trigger prophage induction, which
lyses the lysogen and releases the prophages inside. All
in all, there are 18 microscopic events, which are listed in
Table III.

Here, b, c, d, e, f , g, h, k, p, and q are constant reaction
rates. � and � are phage reproduction numbers under good
and poor metabolisms, respectively. Although prophage in-
duction enhances the survival ability for lysogens in several
ways, such as suppressing the latter’s metabolism �18�
through downregulation �63�, for simplicity we have as-
sumed the same birth and death rates for healthy hosts and
lysogens. We have the condition

� � � , �26�

as before. Furthermore, there are the following advantages
under better metabolism: more successful and effective in-
fection �Eq. �27a��, greater possibility to lyse the host �Eq.
�27b��, and faster prophage release �Eq. �27c��. Since the
mechanism for the lysis-lysogeny decision making of initial
infection is different from the genetic switch for prophage
induction �48,64�, we do not expect any special relationship
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FIG. 2. �Color online� Flow diagram for an=1, �=5, dn=1, and
dm=0.1. “” denotes saddle points and “·” is for stable fixed points.
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FIG. 3. �Color online� Flow diagram for an=1.3, �=5, dn=1,
and dm=0.1. “” denotes saddle points and “·” is for stable fixed
points.
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between e and f , and p and q. These advantages can be
expressed mathematically by the following inequalities:

e + h � f + k , �27a�

e

h
�

f

k
, �27b�

p � q . �27c�

We draw events from the two layers the same way as in the
lysis-only model and this results in the probabilities shown in
Table IV.

From these events, we obtain the following evolution
equations for all the three species after the calculations pro-
vided in Appendix B:

dm

dt
= rm	1 −

m + s

K

 − d1m

− �1mn�1 −
1

K
��1 − a1�m + �1 − 2a1�s�� , �28a�

ds

dt
= rs	1 −

m + s

K

 − d1s

+ �2mn�1 −
1

K
��1 − a21�m + �1 − 2a21�s��

− d2s�1 −
1

K
��1 − 2a22�m + �1 − a22�s�� , �28b�

dn

dt
= ��� − 1��1 − ��2�

mn�1 −
1

K
��1 − a31�m + �1 − 2a31�s��

+ �d2s�1 −
1

K
��1 − 2a32�m + �1 − a32�s�� − d3n ,

�28c�

where

TABLE III. Microscopic events in the lysogeny-lysis model.

Description Symbol

Birth of host AE→
b

AA

DE→
b

DD

Death of host due to longevity A→
c

E

D→
c

E

Death of host due to crowding AA→
d

AE

DD→
d

DE

AD →
�1/2�d

DE

AD →
�1/2�d

AE

Host-phage interactions:

�i� lysis under good metabolism AEB→
e

EE�B

�ii� lysis under poor metabolism AAB→
f

EA�B

ADB→
f

ED�B

�iii� lysogeny under good metabolism AEB→
h

DE

�iv� lysogeny under poor metabolism AAB→
k

DA

ADB→
k

DD

Prophage induction:

�i� under good metabolism DE→
p

EE�B

�ii� under poor metabolism DD→
q

DE�B

DA→
q

AE�B

Death of free phage B→
g

�

TABLE IV. Probabilities for the combinations in the lysogeny-
lysis model.

Combination Probability

AE ��1 − ���1 − ��
2m�K − m − s�

K�K − 1�

DE ��1 − ���1 − ��
2s�K − m − s�

K�K − 1�

A ��1 − ���
m

K

D ��1 − ���
s

K

AA ��1 − ���1 − ��
m�m − 1�
K�K − 1�

DD ��1 − ���1 − ��
s�s − 1�

K�K − 1�

AD ��1 − ���1 − ��
2ms

K�K − 1�

AEB ���1 − ��
2m�K − m − s�

K�K − 1�
n

W

AAB ���1 − ��
m�m − 1�
K�K − 1�

n

W

ADB ���1 − ��
2ms

K�K − 1�
n

W

B �1 − ���
n

W
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r =
�2b + d���1 − ���1 − ��

K
, �29a�

d1 =
�c� + d�1 − �����1 − ��

K
, �29b�

d2 =
2p��1 − ���1 − ��

K
, �29c�

d3 =
�1 − ���

W
, �29d�

�1 =
2�e + h����1 − ��

KW
, �29e�

�2 =
2h���1 − ��

KW
, �29f�

a1 =
f + k

2�e + h�
, �29g�

a21 =
k

2h
, �29h�

a22 =
q

2p
, �29i�

a31 =
�f − k

2��e − h�
, �29j�

a32 =
�q

2�p
. �29k�

We note that

�2 
 �1, �30�

0 
 a1,a21,a22,a31,a32 
 1, �31�

a32 
 a22. �32�

We also notice some kind of symmetry in the correction
terms such as “1−a1” and “1−2a1.” a1 originates from the
poor metabolism of hosts A, which indirectly downshifts the
efficiency of phage infection and synthesis. In Eq. �28a�,

“a1” comes from the event AAB→
f

EA�B, while “2a1” is

from ADB→
f

ED�B. The factor of “2” appears since “AD” is
the same as “DA.”

Considering

� � 1, �33�

for example,

�  100 �34�

for lambda phage �48�, we approximate

�� − 1��1 − ��2  ���1 − �2� . �35�

Hence Eq. �28c� can be simplified as

dn

dt
= ���1 − �2�mn�1 −

1

K
��1 − a31�m + �1 − 2a31�s��

+ �d2s�1 −
1

K
��1 − 2a32�m + �1 − a32�s�� − d3n .

�36�

B. Results

In this section, we explore the predictions of the
lysogeny-lysis model given by Eqs. �28a�, �28b�, and �36�.
Letting

t� = rt , �37a�

�1� =
��1K

r
, �37b�

�2� =
��2K

r
, �37c�

d1� =
d1

r
, �37d�

d2� =
d2

r
, �37e�

d3� =
d3

r
, �37f�

m� =
m

K
, �37g�

s� =
s

K
, �37h�

n� =
n

�K
, �37i�

and omitting the primes, the equations after nondimension-
alization become

dm

dt
= m�1 − m − s�

− d1m − �1mn�1 − �1 − a1�m − �1 − 2a1�s� ,

�38a�

ds

dt
= s�1 − m − s� − d1s + �2mn�1 − �1 − a21�m − �1 − 2a21�s�

− d2s�1 − �1 − 2a22�m − �1 − a22�s� , �38b�
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dn

dt
= ��1 − �2�mn�1 − �1 − a31�m − �1 − 2a31�s�

+ d2s�1 − �1 − 2a32�m − �1 − a32�s� − d3n . �38c�

Formally, the fixed points can be solved by requiring that

dm

dt
= 0, �39a�

ds

dt
= 0, �39b�

dn

dt
= 0. �39c�

However, we can only obtain four fixed points analytically.
The first is the trivial case for the extinction of all the spe-
cies,

m = 0, �40a�

s = 0, �40b�

n = 0. �40c�

The second is the healthy host extinction fixed point,

m = 0, �41a�

s =
1 − d1 − d2

1 − d2�1 − a22�
, �41b�

n =
d2

d3
s�1 − �1 − a32�s� . �41c�

The third is the healthy host only fixed point,

m = 1 − d1, �42a�

s = 0, �42b�

n = 0. �42c�

The last is the lysogen extinction,

m =
1

1 − a21
, �43a�

s = 0, �43b�

n =
1 − m − d1

�1�1 − �1 − a1�m�
, �43c�

whose existence requires that

��1 − �2��a31 − a21� = d3�1 − a21�2. �44�

The more interesting coexistence of all the three species is
hard to solve analytically since the orders of the equations

m�1 − m − s� − d1m − �1mn�1 − �1 − a1�m − �1 − 2a1�s� = 0,

�45a�

s�1 − m − s� − d1s + �2mn�1 − �1 − a21�m − �1 − 2a21�s�

− d2s�1 − �1 − 2a22�m − �1 − a22�s� = 0, �45b�

��1 − �2�mn�1 − �1 − a31�m − �1 − 2a31�s�

+ d2s�1 − �1 − 2a32�m − �1 − a32�s� − d3n = 0

�45c�

are too high. Using a fourth-order Runge-Kutta method, we
found numerically a stable fixed point, shown in Fig. 4.

C. Discussion

As shown in Eqs. �38�, there are, in total, ten parameters
so that the phase space is difficult to visualize. We have
studied the general trend of the transition between phases,
starting with the dependence on phage mortality rate d3. In
Fig. 5, it is shown that when the phage mortality rate is low,
the systems flow into a healthy host extinction phase. The
phage population decreases with the increase in the phage
mortality rate, which is very reasonable physically. For inter-
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FIG. 4. �Color online� In the lysogeny-lysis model, a stable
fixed point for the coexistence of all the three species. The param-
eters are �1=1, �2=0.8, d1=0.5, d2=0.49, d3=0.1, a1=a21=a31

=0.1, and a22=a32=0.5.
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FIG. 5. �Color online� The population of the community with
increasing phage mortality rate d3. “ms“ indicates the sum of m and
s.
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mediate values of d3, there is coexistence for all the three
species, while for large values of d3, the only survival is
healthy host, where all phages die out quickly out, leading to
the extinction of lysogens.

We show the trend of the population with increasing lysis
rate d2 in Fig. 6. The phage prospers with the increase in the
lysis rate, while the lysogen diminishes. The peak in the
phage population appears when there is a balance in the
number of lysogens available to lyse and the lysis rate. When
the lysis rate is beyond the threshold at 0.54, lysogen number
falls dramatically and there is a proliferation of healthy
hosts. The total host population is roughly the same after-
ward while the phage population upshifts a little with the
increase in the healthy host available to infect, but does not
change further when the ratio between healthy hosts and
lysogens converges.

We have studied the effect of host mortality rate in Fig. 7.
Obviously the total host population will fall monotonically
when the hosts are more likely to die. We draw attention to
the interesting peak in the phage population. When the host
mortality rate is low, the phage population is suppressed due
to the overcrowding of the lysogens, which degrades the me-

tabolism and hence the infection and synthesis of phages.
When the host mortality rate is high, on the other hand, the
phages have insufficient hosts to infect and their population
also declines.

D. Existence of a limit cycle

We have noticed that the dynamics exhibits a limit cycle
�65,66� for some combination of parameters �Fig. 8�. In this
section, we describe our numerical evidence for this asser-
tion and present a plausible physical interpretation of our
finding. In order to verify that it is a limit cycle instead of
some unexpected slowing down near a putative stable or
neutral fixed point, we have chosen an initial condition lo-
cated inside the conjectured limit cycle. If there is, in fact, no
real limit cycle, the dynamics will flow inward no matter
how slow it will be. However, as we can see in Fig. 9, the
trajectory indicated by the red �light gray� curve flows out.
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FIG. 6. �Color online� The population for the community with
the increase in the lysis rate d2.
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FIG. 7. �Color online� The population for the community with
the increase in the host mortality rate d1.
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FIG. 8. �Color online� A limit cycle in the flow diagram for
different initial conditions with parameters �1=1, �2=0.8, d1=0.5,
d2=0.49, d3=0.03, a1=a21=a31=0.1, and a22=a32=0.5.
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FIG. 9. �Color online� A limit cycle in the flow diagram with
different initial conditions for parameters �1=1, �2=0.8, d1=0.5,
d2=0.49, d3=0.03, a1=a21=a31=0.1, and a22=a32=0.5. The limit
cycle is in a curved space. The blue �black� curve initiated outside
the cycle flows in, while the red �light gray� one from inside flows
out.
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Hence we have observed in the flow diagram an oscillation
in the population for all the three species. If we inspect
neighboring time steps, it appears that the convergence is
slow since the deviation from step to step is very small.
However, on longer time scales, we can see that the conver-
gence is an illusion. Moreover, tilting the view angle, we see
that the limit cycle is in some curved space instead of a
single plane in Fig. 10. In order to investigate the emergence
of the limit cycle, we have scanned part of the parameter
space. For example, there is a stable coexistence fixed point
for d1�0.41 while �1=1, �2=0.8, d2=0.9, d3=0.048, a1
=a21=a31=0.1, and a22=a32=0.5. However, the above fixed
point becomes unstable if d1
0.41 leading to the limit
cycle. As we see it, such an oscillation of the population in
the community is a manifestation of the role of lysogens
�Fig. 11�. When the populations for hosts and phages are
both small, the host will enjoy a boom because of good me-
tabolism and little phage infection. Meanwhile prophages
replicate with the fast reproduction of lysogens. Once the
lysogeny-lysis switch is triggered, the destruction of
lysogens will yield a huge virus burst. Then healthy host will
encounter intensive phage infection and hence be sup-
pressed. When most of the hosts die out, phage population
shrinks quickly due to lack of infection. In this way, a cycle
forms. Integrating its DNA into the genome of a lysogen, a
prophage is sheltered although it is temporarily dormant in
the sense of viral infection. Such a stage assists prophages to
survive demanding environmental conditions and provides
an opportunity to resurrect the population when there are
abundant healthy hosts. Thus, lysogens are perfect genetic
reservoirs for phages for potential future burst �18,21�.

IV. STOCHASTIC SIMULATION

Up to now, all the calculations above were carried out
within the scope of mean-field theory. As a next step, it is
important to see to what extent such predictions are disturbed
by demographic fluctuations, and especially whether the
limit cycle in the lysogeny-lysis model is stable. A second
goal of this section is to link the parameters the parameters in
our model to those which could characterize real experi-

ments. In this section, we perform stochastic simulations us-
ing the Gillespie’s algorithm �67,68�, which is a very effi-
cient strategy to simulate chemical reactions. The reaction
rates �b, c, d, e, f , and g in Table I; and b, c, d, e, f , g, h, k,
p, and q in Table III� are interpreted as average probability
rates for the occurrence of the corresponding reactions in line
with the Gillespie algorithm, where the effect of draw prob-
ability is incorporated automatically.

In the lysis-only model, the map between the two sets of
parameters for reactions is

b̃ = bK , �46a�

c̃ = c , �46b�

d̃ = 1
2dK , �46c�

ẽ = eK , �46d�

f̃ = 1
2 fK , �46e�

g̃ = g , �46f�

where overtilde is used to indicate the probability rates in the
Gillespie algorithm. Since there are more degrees of freedom
in choosing microscopic event rates, different stochastic
simulations may map into the same mean-field phase dia-
gram.
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FIG. 10. �Color online� A limit cycle in the flow diagram with
different initial conditions for parameters �1=1, �2=0.8, d1=0.5,
d2=0.49, d3=0.03, a1=a21=a31=0.1, and a22=a32=0.5. The limit
cycle is in a curved space.

FIG. 11. �Color online� Cartoon explanation for the limit cycle.
When the populations for hosts and phages are both small, the host
will enjoy a boom because of good metabolism and little phage
infection. Meanwhile prophages replicate with the fast reproduction
of lysogens. Once the lysogeny-lysis switch is triggered, the de-
struction of lysogens will yield a huge virus burst. Then healthy
host will encounter intensive phage infection and hence be sup-
pressed. When most of the hosts die out, phage population shrinks
quickly due to lack of infection. In this way, a cycle forms.
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Our main interest is to explore the mean-field limit cycle
in the lysogeny-lysis model. We keep employing the over-
tilde symbol to label the probability rates in the Gillespie
sense and the map is

b̃ = bK , �47a�

c̃ = c , �47b�

d̃ = 1
2dK , �47c�

ẽ = eK , �47d�

f̃ = 1
2 fK , �47e�

h̃ = hK , �47f�

k̃ = 1
2kK , �47g�

p̃ = pK , �47h�

q̃ = 1
2qK , �47i�

g̃ = g . �47j�

In Fig. 12, we show a limit cycle observed in our stochas-
tic simulations. It is broadly consistent with the mean-field
predictions, as can be noted easily by the obvious similarities
between Figs. 13 and 14, and Figs. 15 and 16 �when we
project the three-dimensional phase space onto two dimen-
sions�, whose relationship is Eqs. �37g�–�37i�. As expected,
we notice fluctuations in the stochastic simulation. For ex-
ample, if Fig. 12 were shown in better resolution, we can see
that the curve fluctuates slightly around the limit cycle. Usu-
ally the fluctuation is two orders of magnitude smaller than

the mean value. In order to explore the robustness of the
limit cycle, we ran extensive tests to try and estimate their
lifetime. As an example, for a given set of mean-field param-
eters that yield the limit cycle, we varied d1, mapped the
model onto the corresponding parameters for a stochastic
simulation, and then ran simulations for 1010 time steps each
with five sets of different initial conditions. As long as the
carrying capacity K was large enough �above 107�, we were
unable to observe any disappearance of the limit cycle within
the duration of our simulation. Furthermore, all simulations
flowed into the same limit cycle.

In general terms, there is the following intuition about the
conditions under which the limit cycle is robust: if the viral
burst from lysogens is too big, it will drive healthy hosts to
extinction. If the burst is too small, it will lose control over
the population of the healthy hosts. In either case, the limit
cycle will fail to form or become unstable. Hence, we con-
clude that the limit cycle is inherent to the model and robust
to stochastic fluctuations, which serves to confirm the essen-
tial role of lysogens in stabilizing the cycling in the popula-
tions.
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FIG. 12. �Color online� A limit cycle in the phase space with

parameters in the Gillespie algorithm b̃=0.4, c̃=0.1, d̃=0.2, ẽ

=1.210−10, f̃ =1.210−11, g̃=0.018, h̃=4.810−10, k̃=4.8
10−11, p̃=0.54, and q̃=0.27.
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FIG. 13. �Color online� The projection of Fig. 12 onto the m-s
plane.
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FIG. 14. A limit cycle projected onto m-s plane in the mean-
field theory with parameters �1=1, �2=0.8, d1=0.5, d2=0.9, d3

=0.03, a1=a21=a31=0.1, and a22=a32=0.5.
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V. PARAMETERS IN THE MODEL

Up to this point, all the parameters above or their values
we have explored are difficult to relate to experiment. The
purpose of this section is to bridge the gap.

The birth rate of the host b is medium dependent. Usually
the expression of Lac proteins is highly suppressed by Lac
repressors in a lacose-free medium to optimize energy in-
vestment and metabolism of the bacteria. In the above two
models, we have categorized the death of the hosts to lon-
gevity and crowding. In fact, it is hard to mark a watershed
clearly. Instead, what is observed is a population-dependent
growth rate, which is a combined effect of b, c, and d.
Herein, the rate d for the death of the host due to crowding is
introduced artificially to account for the actual population
dependence. Thus, we are justified in assuming that the death
rate of the host due to longevity c, which incorporates other
physical and non-density-dependent factors, is fixed with the

variation in host population. The growth rate for E. coli may
drop to 0.2 h−1 at 37 °C when glycolate serves as the carbon
source but usually is in the range from 0.5 to 2.0 h−1

�27,69�. The growth rate is species and strain specific, which
for Pseudoalteromonas sp. strain SKA18 �accessible number
AF188330 in GenBank� �57�, for example, is an order of
magnitude smaller. Similarly, the lysis rate f , lysogeny rate k,
prophage induction rate q, and replicate number per capita �,
which are all under poor metabolism, are introduced manu-
ally to characterize the population-dependent feature of the
interactions in order to leave their population-independent
counterparts e, h, p, and � fixed. In the case of virulent
phages, such as the one in the family Siphoviridae �70� at-
tacking Pseudoalteromonas sp. strain SKA18 �57�, corre-
sponding to the lysis-only model, the reported lysis rate
spans from 0.2 to 2.0 h−1 subject to the growth rate of the
bacteria, so that we can estimate e to be on the order of
1.0 h−1 and f to be an order of magnitude smaller than e.

For temperate phages in the lysogeny-lysis model, the
spontaneous lysis rate is far smaller, being on the order of
10−9–10−7 per generation per cell �71�. The percentage of
lysogens is assayed through prophage induction by the addi-
tion of mitomycin C, uv radiation, or other environmental
conditions that may inhibit lambda phage repressors. Under
good metabolism the lysogeny rate h for � phage infecting E.
coli and prophage induction rate are on the order of 1 and
2 h−1, respectively �72�. Their counterparts under poor me-
tabolism are estimated to be one or two orders of magnitude
smaller. For instance, the prophage induction rate for log-
phase marine lysogens �73� is on the order of 0.03 h−1. Rep-
licate number per capita � is about 100 for phage � �48�, and
may be up to 600 for phage W-14 �74�, while � is about 20
or 30 for both. Although virions do not age �62�, their mor-
tality is caused by the destabilization of the capsid, which is
dependent on physical conditions such as temperature, hu-
midity and pH values. Jepson and March �75� reported that
phage � is highly stable, whose half life in suspension ranges
from 2.3 days at 4.2 °C to 36 days at 20 °C. Even if we take
the half life be 1 day, the corresponding death rate g is on the
order of 10−6 /s and can be suppressed by cooling down.
Actually, the loss of free phage in nature, to a great extent, is
through diffusion since bacteria are more immobile due to
their large particle size compared to that of phages. In labo-
ratory, the death rate can be manipulated through continuous
dilution and washing out, and a wide range of death rates can
be realized.

When all the parameters are tuned properly, the limit
cycle in the lysogeny-lysis model is observable in experi-
ment. We estimate the period of the limit cycle to be on the
order of days, and thus in principle observable in laboratory
experiments. For example, consider Fig. 13. A cycle there is
composed of about 10 000 computational steps, in other
words 10 000 events, which corresponds to about 120
�time units� in the simulation. In Fig. 13 the birth rate is
0.6 �time units�−1, while in the real world the life cycle of
an E. coli in good laboratory conditions, for example, is
about half an hour, which is 2 h−1. Hence the cycle is
1200.6 /2=36 h, which is 1 and 1/2 day. When we vary
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FIG. 15. �Color online� The projection of Fig. 12 onto the s-n
plane.
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FIG. 16. A limit cycle projected onto the s-n plane in the mean-
field theory with parameters �1=1, �2=0.8, d1=0.5, d2=0.9, d3

=0.03, a1=a21=a31=0.1, and a22=a32=0.5.
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parameters in the Gillespie algorithm, as long as they map to
the same limit cycle in the mean-field theory, the period stays
the same. The period will change only when it corresponds
to different limit cycles in the mean-field sense. When we
increase d1� from 0.32 to 0.41 in the mean-field theory, the
period may drop from 36 to 28 h at the edge of the disap-
pearance of the limit cycle.

VI. CONCLUSION

We have derived the mean-field population dynamics for
host-phage communities both without and with lysogens. In
the lysis-only model, we successfully obtained a description
similar to the starting point assumed by Weitz and Dushoff
�56�, and we found that the phase diagram was modified only
slightly to the difference in good and poor metabolisms. In
the lysogeny-lysis model, we identified the asymptotic states,
which included not only coexistence and extinction fixed
points, but population cycling of all microbes, lysogens, and
phages. Our findings support the notion that lysogens act as
a reservoir and are in principle amenable to experimental
verification. We simulated the stochastic process using the
Gillespie algorithm and verified the robustness of our results
to fluctuations, and especially demonstrated the stability of
the limit cycle.

Although complicated, our model inevitably makes some
drastic assumptions, among which the most severe is the
omission of spatial structure. Discreteness in the occurrence
of speciation and adaptation in time and space may have a
complex interplay with spatial heterogeneity since it propa-
gates with large fluctuations at fronts �36–39�. Such demo-
graphic noise may also induce robust spatial patterns beyond
mean-field predictions �41�. Hence, inclusion of spatial struc-
ture may yield interesting predictions about the spatial struc-
ture of microbe-virus communities, with concomitant conse-
quences for the evolutionary dynamics, too. Another
simplification is that we treat healthy hosts and lysogens in
the same way regarding their natural birth, death, and crowd-
ing effect. However, experimentally, the expression of proph-
age genes and the control of host gene expression by viral
genes seem to impart to lysogens economization in their me-
tabolism �18�. When unnecessary metabolic activities are
suppressed, lysogens optimize their energy expenses and
therefore gain some survival advantage compared to healthy
hosts in unfavorable conditions, which suggests that the
natural birth, death, and crowding effects of lysogens are
distinct from those of healthy hosts. Hence, our model is a
reasonable minimal model that can capture the nontrivial
role of lysogens in the population dynamics of microbe-
phage communities, in addition to the usual predator-prey
interactions, but more biological realism could be intro-
duced.

This work can be extended in several ways, but perhaps
the most interesting are those which relate to the evolution of
the field of genes distributed among the microbes, viruses,
and lysogens. Lysogens are genome carriers of not only mi-
crobes but also prophages, capable of yielding virus bursts
when triggered by environmental stress. In this way, the role

of lysogens and viruses as a reservoir of genes is mediated
through phage infection and the lysogeny-lysis switch by the
metabolism of the host. The metabolism of the host is, in
turn, to a great extent influenced by environmental condi-
tions. Thus, this model is a starting point for ecology-
mediated evolution. It is also useful to stress that each indi-
vidual microbe or virus constitutes a part of another
organism’s environment. Thus, the effects which our work
begins to treat represent a microcosm of the intricate inter-
play between ecology and evolution in microbe-virus com-
munities.
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APPENDIX A: TRANSITION MATRICES
FOR THE LYSIS-ONLY MODEL

Here, we provide the transition matrices, which are the
probabilities for the change in the population in each time
step in the lysis-only model,

T�m + 1,n�m,n� = b��1 − ���1 − ��
2m�K − m�
K�K − 1�

= b̃m	1 −
m

K

 , �A1�

b̃ =
2b��1 − ���1 − ��

K − 1


2b��1 − ���1 − ��
K

, �A2�

T�m − 1,n�m,n� = c��1 − ���
m

K
+ d��1 − ���1 − ��

m�m − 1�
K�K − 1�

= c̃m + d̃m	m

K
−

1

K



 c̃m + d̃
m2

K
, �A3�

c̃ =
c��1 − ���

K
, �A4�

d̃ =
d��1 − ���1 − ��

K − 1


d��1 − ���1 − ��
K

, �A5�

T�m − 1,n + � − 1�m,n� = e���1 − ��
2m�K − m�
K�K − 1�

n

W

= ẽmn	1 −
m

K

 , �A6�
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ẽ =
2e���1 − ��

�K − 1�W


2e���1 − ��
KW

, �A7�

T�m − 1,n + � − 1�m,n� = f���1 − ��
m�m − 1�
K�K − 1�

n

W
= f̃

m2n

K
,

�A8�

f̃ =
f���1 − ��
�K − 1�W


f���1 − ��

KW
, �A9�

T�m,n − 1�m,n� = g�1 − ���
n

W
= g̃n , �A10�

g̃ =
�1 − ���

W
. �A11�

All the other transition matrices are zero. Noting that all the
events in Table I are Markovian processes, we know that the
time evolution for the probability with m hosts and n phages
at time t will be

d

dt
P�m,n,t� = T�m,n�m − 1,n�P�m − 1,n,t� + T�m,n�m + 1,n�P�m + 1,n,t� + T�m,n�m + 1,n + � − 1�P�m + 1,n + � − 1,t�

+ T�m,n�m + 1,n + � − 1�P�m + 1,n + � − 1,t� + T�m,n�m,n + 1�P�m,n + 1,t� − �T�m + 1,n�m,n�

+ T�m − 1,n�m,n� + T�m − 1,n + � − 1�m,n� + T�m − 1,n + � − 1�m,n� + T�m,n − 1�m,n��P�m − 1,n,t� . �A12�

Applying summations according to Eqs. �3�, we will get

d�m�
dt

= �T�m + 1,n�m,n�� − �T�m − 1,n�m,n�� − �T�m − 1,n + � − 1�m,n�� − �T�m − 1,n + � − 1�m,n��

 �b̃ + d̃��m�	1 −
�m�
K

 − �c̃ + d̃��m� − ẽ�m��n��1 − 	1 −

f̃

ẽ

 �m�

K
� , �A13a�

d�n�
dt

= �� − 1��T�m − 1,n + � − 1�m,n�� + �� − 1��T�m − 1,n + � − 1�m,n�� − �T�m,n − 1�m,n��

= �� − 1�ẽ�m��n��1 − 	1 −
�� − 1� f̃

�� − 1�ẽ

 �m�

K
� − g̃�n� . �A13b�

Letting

r = b̃ + d̃ , �A14a�

� = ẽ , �A14b�

	 = � − 1, �A14c�

dm = c̃ + d̃ , �A14d�

dn = g̃ , �A14e�

am = 1 −
f̃

ẽ
, �A14f�

an = 1 −
�� − 1� f̃

�� − 1�ẽ
, �A14g�

which are Eqs. �6�, we can arrive at Eqs. �5�.

APPENDIX B: TRANSITION MATRICES
FOR THE LYSOGENY-LYSIS MODEL

In this appendix, we provide details for the derivations of
the lysogeny-lysis model. According to Tables III and IV, we
can obtain the following nonzero transition matrices:

T�m + 1,s,n�m,s,n� = b��1 − ���1 − ��
2m�K − m − s�

K�K − 1�

= b̃m	1 −
m + s

K

 , �B1�

b̃ =
2b��1 − ���1 − ��

K − 1


2b��1 − ���1 − ��
K

, �B2�
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T�m,s + 1,n�m,s,n� = b��1 − ���1 − ��
2s�K − m − s�

K�K − 1�

= b̃s	1 −
m + s

K

 , �B3�

T�m − 1,s,n�m,s,n�

= c��1 − ���
m

K
+ d��1 − ���1 − ��

m�m − 1�
K�K − 1�

+
1

2
d��1 − ���1 − ��

2ms

K�K − 1�

= c̃m + d̃m
m + s

K
, �B4�

c̃ =
c��1 − ���

K
, �B5�

d̃ =
d��1 − ���1 − ��

K − 1


d��1 − ���1 − ��
K

, �B6�

T�m,s − 1,n�m,s,n�

= c��1 − ���
s

K
+ d��1 − ���1 − ��

s�s − 1�
K�K − 1�

+
1

2
d��1 − ���1 − ��

2ms

K�K − 1�

= c̃s + d̃s
m + s

K
, �B7�

T�m − 1,s,n + � + 1�m,s,n� = e���1 − ��
2m�K − m − s�

K�K − 1�
n

W

= ẽmn	1 −
m + s

K

 , �B8�

ẽ =
2e���1 − ��

�K − 1�W


2e���1 − ��
KW

, �B9�

T�m − 1,s,n + � + 1�m,s,n�

= f���1 − ��
m�m − 1�
K�K − 1�

n

W
+ f���1 − ��

2ms

K�K − 1�
n

W

= f̃mn
m + 2s

K
, �B10�

f̃ =
f���1 − ��
�K − 1�W


f���1 − ��

KW
, �B11�

T�m − 1,s + 1,n − 1�m,s,n�

= h���1 − ��
2m�K − m − s�

K�K − 1�
n

W
+ k���1 − ��


m�m − 1�
K�K − 1�

n

W
+ k���1 − ��

2ms

K�K − 1�
n

W

= h̃mn	1 −
m + s

K

 + k̃mn

m + 2s

K
, �B12�

h̃ =
2h���1 − ��

�K − 1�W


2h���1 − ��
KW

, �B13�

k̃ =
k���1 − ��
�K − 1�W


k���1 − ��

KW
, �B14�

T�m,s − 1,n + ��m,s,n� = p��1 − ���1 − ��
2s�K − m − s�

K�K − 1�

= p̃s	1 −
m + s

K

 , �B15�

p̃ =
2p��1 − ���1 − ��

K − 1


2p��1 − ���1 − ��
K

, �B16�

T�m,s − 1,n + ��m,s,n� = q��1 − ���1 − ��
s�s − 1�

K�K − 1�

+ q��1 − ���1 − ��
2ms

K�K − 1�

= q̃s
2m + s

K
, �B17�

q̃ =
q��1 − ���1 − ��

K − 1


q��1 − ���1 − ��
K

, �B18�

T�m,s,n − 1�m,s,n� = g�1 − ���
n

W
= g̃n , �B19�

g̃ =
�1 − ���

W
. �B20�

Ignoring fluctuations and correlations, we derive the popula-
tion dynamics at the mean-field level. The time evolution for
population size is
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d�m�
dt

= �T�m + 1,s,n�m,s,n�� − �T�m − 1,s,n�m,s,n�� − �T�m − 1,s,n + � − 1�m,s,n��

− �T�m − 1,s,n + � − 1�m,s,n�� − �T�m − 1,s + 1,n − 1�m,s,n��

= �b̃ + d̃��m�	1 −
�m� + �s�

K 
 − �c̃ + d̃��m� − �ẽ + h̃��m��n��1 −
1

K�	1 −
f̃ + k̃

ẽ + h̃

�m� + 	1 − 2

f̃ + k̃

ẽ + h̃

�s��� ,

�B21a�

d�s�
dt

= �T�m,s + 1,n�m,s,n�� − �T�m,s − 1,n�m,s,n�� + �T�m − 1,s + 1,n − 1�m,s,n��

− �T�m,s − 1,n + ��m,s,n�� − �T�m,s − 1,n + ��m,s,n��

= �b̃ + d̃��s�	1 −
�m� + �s�

K 
 − �c̃ + d̃��s� − h̃�m��n�

�1 −
1

K�	1 −
k̃

h̃

�m� + 	1 − 2

k̃

h̃

�s��� − p̃�s��1 −

1

K�	1 − 2
q̃

p̃

�m� + 	1 −

q̃

p̃

�s��� , �B21b�

d�n�
dt

= �� − 1��T�m − 1,s,n + � − 1�m,s,n�� + �� − 1��T�m − 1,s,n + � − 1�m,s,n�� − �T�m − 1,s + 1,n − 1�m,s,n��

+ ��T�m,s − 1,n + ��m,s,n�� + ��T�m,s − 1,n + ��m,s,n�� − �T�m,s,n − 1�m,s,n��

= ��� − 1�ẽ − h̃��m��n��1 −
1

K�	1 −
�� − 1� f̃ − k̃

�� − 1�ẽ − h̃

�m� + 	1 − 2

�� − 1� f̃ − k̃

�� − 1�ẽ − h̃

�s���

+ �p̃�s��1 −
1

K�	1 − 2
�q̃

�p̃

�m� + 	1 −

�q̃

�p̃

�s��� − g̃�n� . �B21c�

Letting

r = b̃ + d̃ , �B22a�

d1 = c̃ + d̃ , �B22b�

d2 = p̃ , �B22c�

d3 = g̃ , �B22d�

�1 = ẽ + h̃ , �B22e�

�2 = h̃ , �B22f�

a1 =
f̃ + k̃

ẽ + h̃
, �B22g�

a21 =
k̃

h̃
, �B22h�

a22 =
q̃

p̃
, �B22i�

a31 =
�� − 1� f̃ − k̃

�� − 1�ẽ − h̃
, �B22j�

a32 =
�q̃

�p̃
, �B22k�

which are Eqs. �29�, and omitting angular brackets for sim-
plicity, Eqs. �B21� can be written as Eqs. �28�.
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