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Statistics of camera-based single-particle tracking
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Camera-based single-particle tracking enables quantitative determination of transport properties and pro-
vides nanoscale information about material characteristics such as viscosity and elasticity. However, static
localization noise and the blurring of a particle’s position over camera integration times introduce artifacts into
measurement results even for a particle executing simple diffusion. Common data analysis methods based on
the mean-square displacement do not properly account for these effects. In this paper, we analyze the statistics
of tracking data for freely diffusing particles in realistic experimental scenarios. We derive a convenient and
asymptotically optimal maximum likelihood estimator for the diffusion coefficient and for the magnitude of
localization noise together with the corresponding Fisher information, which bounds the performance of all
unbiased estimators. We find that the effect of varying the illumination profile during the camera integration
time is quantified by a motion blur coefficient, R. We also find that a double-pulse illumination sequence
maximizes the information content in some common experimental scenarios. Our results provide a rigorous
theoretical framework and practical experimental recipe for achieving optimal performance in camera-based

single-particle tracking.

DOLI: 10.1103/PhysRevE.82.011917

I. INTRODUCTION

Since its inception over two decades ago [1,2], camera-
based single-particle tracking has become a common tool in
many scientific areas, including membrane biophysics [3],
colloid physics [4], and microrheology of complex fluids
[5-8]. In a typical experiment, the trajectory of an individual
particle is imaged through a microscope and recorded with a
digital camera at a frame rate ranging from a few Hertz up to
a few hundred Hertz. The position of the particle is extracted
from a sequence of images [4] routinely, yet remarkably,
with nanometer accuracy [9-11]. Transport properties, par-
ticle size and shape, and material properties such as viscosi-
ties or frequency dependent elastic moduli can be determined
from measured velocities and diffusion coefficients, which
are extracted from raw data—a sequence of tracked positions
{X,}. The quantitative utility of this widespread method relies
critically on the quality of the statistical inference that relates
observed trajectories to underlying diffusion coefficients.
However, the estimation of diffusion coefficients from real-
istic particle-tracking data is a subtle task, with several dif-
ficulties recognized only recently. In this paper, we develop a
rigorous but practical statistical framework for overcoming
these difficulties.

Estimators of the diffusion coefficient from single-particle
tracking data have traditionally relied on the mean-square
displacement (MSD), a measure of the fluctuations in a par-
ticle’s position over specified time intervals. However, un-
avoidable experimental realities of camera-based single-
particle tracking, such as finite-resolution imaging and
motion blurring due to camera integration times, together
with technical difficulties arising from correlations between
MSD values calculated at different time intervals, obscure
the statistics of the MSD. These difficulties commonly result
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in experimental artifacts, inefficient use of data, and possibly
incorrect measurement results. In this paper, we resolve these
difficulties by presenting a complete statistical description of
camera-based single-particle tracking for particles undergo-
ing pure diffusion. In Sec. II, we briefly review the utility
and difficulties of using the MSD for single-particle tracking
data analysis. In Sec. III, we calculate the full distribution of
single-particle tracking measurement results in the presence
of motion blur and Gaussian-distributed localization noise.
Despite its fundamental importance for data analysis, this
distribution has not previously been presented. In Secs. IV
and V, it is shown that for large data sets, this distribution is
approximately diagonal in the frequency (Fourier) basis so
that the power spectrum of the displacements offers signifi-
cantly simplified statistics while also having a straightfor-
ward interpretation. With this approximate result, we com-
pute an asymptotically optimal maximum likelihood
estimator (MLE) of D and o together with the corresponding
Fisher information matrix, which bounds the variance of any
unbiased estimator of D and ¢ including those based on the
MSD. Finally, in Sec. VI we show through numerical simu-
lation that the MLE significantly outperforms the MSD as a
data analysis tool. Possible extensions of these results to
anomalous diffusion and microrheology of linear viscoelastic
materials are briefly discussed in Sec. VII In Appendix A, we
update previous literature results on the statistics of the MSD
to include the effects of motion blur and localization noise.
In Appendix B, we give the technical details of an important
mathematical approximation.

II. MEAN-SQUARE DISPLACEMENT

In this section, we review the status of the most common
data analysis tool in single-particle tracking, the MSD.
Consider the analysis of one-dimensional motion in the
x-direction from a data set {X;}, 1 =k=N+1. In a fundamen-
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tal study [12], Qian er al. analyzed the statistics of the MSD,
defined as

N-n+1

1
> Xin—X)? (1)

Pi=N-n+1 &
with | =n=N. They calculated both the mean and variance
of p,, showing that for a particle with diffusion coefficient D
sampled at time intervals Az, the expected value of the MSD
is

{p,) =2DnAt, (2)

where (-) represents ensemble averaging over repeated real-
izations of the process. Based on this equation, p, has a
simple visual interpretation: for a particle undergoing simple
diffusion, the expectation value of a plot of p, vs n should be
a straight line with slope 2DAr. Conversely, a nonlinear re-
lation between (the expected value of) p, and n is taken as an
indication of non-Brownian, anomalous diffusion. The statis-
tical analysis of Ref. [12] and the intuitive visual interpreta-
tion of p, have led to widespread adoption of the MSD for
data analysis in single-particle tracking [3].

There are two significant difficulties with data analysis
based on the MSD. First, the transformation of the raw data
{X,} into {p,} results in a complicated, highly correlated data
set. Qian et al. noted this difficulty, and quantified it through
calculation of the covariance C,,,={0,,0.) = {Pm){Pn)- Cpn» the
variance in p,, is strongly dependent on n, which shows that
all data points in a plot of p, vs. n cannot be assigned equal
statistical weight. More troubling, when m # n, the covari-
ance C,,, is nonzero because p, and p,, are derived from the
same underlying data set {X;} [12]. As a result, the values of
p, from a single experiment are not symmetrically distrib-
uted about the line given in Eq. (2). Following up on these
observations, Saxton found that even for pure, unobstructed
diffusion, numerical estimates of D obtained by fitting a line
to p, vs n depend on subjective choices such as the range of
n over which to perform the fit. Seemingly satisfactory re-
sults were obtained for both pure and obstructed diffusion
using statistical weight coefficients proportional to C,,, [13].
The off-diagonal correlations C,,, were not considered.

The second difficulty with the MSD arises because the
statistics of p, considered above only apply when the data set
{X,} represents the rrue trajectory of the particle. This is not
the case in practical scenarios, and consequent difficulties
with data analysis based on the mean-square displacement,
have been recognized more recently, and only partially. Mar-
tin et al. recognized that static localization noise—the ran-
dom error in the measurement of an immobilized particle’s
position—alters the MSD [14]. They found (in the present
notation) that

(p,) =2DnAt + 207, (3)

where o is the static localization error, the standard deviation
in measured positions of an immobile particle [10,11]. A
log-log plot of p, vs. n, intended to ferret out deviations from
linear scaling, will therefore exhibit a reduced slope at small
n and may be incorrectly attributed to anomalous “subdiffu-
sion.” In the context of particle-tracking microrheology,
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Savin and Doyle [15] recognized the additional effect of mo-
tion blur (dynamic error), wherein a particle’s average posi-
tion over the camera frame interval Af is measured, rather
than its instantaneous position as tacitly assumed in Egs. (2)
and (3). They found, for averaging of the position over the
full frame, that

2
{p) =2DnAt + 20> — EDAI. (4)

Thus, even if static errors are absent (o=0), dynamic errors
alter the MSD. Motion blur due to full-frame averaging was
also considered in Ref. [16]. in the context of optical-tweezer
calibration, in Ref. [17] as it relates specifically to diffusion
coefficient estimation, and in Ref. [18] to determine the static
error o in a three-dimensional tracking geometry where par-
ticle immobilization was impractical.

Based on results given below, we find that each of these
formulas is a specific case of

1
4

(p)=2DnAt+20> —4DRAt, 0=R=—, (3)
where the “motion blur coefficient” R (discussed in detail
below) characterizes the illumination profile, or equivalently
the shutter state, during the camera integration time. Thus we
confirm that Eq. (2) applies when there is no measurement
error (0=0) and no motion blur (R=0), Eq. (3) applies when
there is no motion blur, and Eq. (4) applies when the motion
blur is due to full-frame averaging (R=1/6).

Summarizing the present status of the MSD, we find that
consensus has been reached regarding the value of (p,), but
the full distribution of {p,} has not been found even when
localization noise and motion blur are neglected. Neverthe-
less, one can use the knowledge of {(p,) to form an unbiased
estimator of the diffusion coefficient, by choosing a particu-
lar n (usually n=1), plugging the observed value of p, into
Eq. (5), and solving for D. However, such an estimator
“wastes” data in the sense that there exist other estimators
that can perform just as well but with less data. On the other
hand, we can estimate D with the more complicated line-
fitting procedure described in Ref. [13], weighted by the
variances C,, while presumably a better estimate would also
incorporate C,,,. However, this fitting procedure yields such
a complicated function of the data that questions of bias and
efficiency become largely intractable. Furthermore, this pro-
cedure cannot be correctly implemented until the analysis of
Ref. [12] is updated to include localization noise and motion
blur. In Appendix A, we use the results of Sec. III below to
accomplish this task by calculating C,,, for the case of non-
zero R and o.

II1. DISTRIBUTION OF MEASUREMENT RESULTS

In view of the difficulties described in Sec. II, a new data
analysis method is desired that, like the MSD, has a simple
interpretation but a firmer statistical footing. We begin by
establishing a model of single-particle tracking and using it
to derive the distribution of measurement results.

Suppose that a particle moving in one dimension by pure
Brownian motion with diffusion coefficient D is imaged by a
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camera with frame integration time Ar. During the frame
time Az, the camera shutter may be opened or closed for a
variable interval or, equivalently, the illuminating intensity
may be varied during the frame. The observed position of the
particle is then the average of its position weighted by a
“shutter function” s(f), a non-negative function whose inte-
gral over the frame is unity. Finally, each individual frame is
corrupted by additive measurement noise &. For the kth
frame ending at time r=kAz, the observed position X, is
given by

kAt
Xk = f S[t, - (k_ 1)At]Xtrue(t,)dt, + &, (6)
(k=1)At

where X,,,,.(¢') is the true position of the particle at time ¢’
and g, is the value of the additive localization noise in frame
k. Next, we assume that &, can be approximated as zero-
mean Gaussian measurement noise with (sjsk)=025jk. Note
that o is the measurement resolution for a static particle,
which can be as small as a few nanometers under realistic
experimental conditions [9-11].
From Eq. (6) and the Brownian motion property [19]

<X[rlle(t,)Xfrlle(t”)> = X[rlle’(o)z + 2D min(t, ’tﬂ) ’

we find that the measured displacements Ay=X;,,—X, are
distributed according to a multivariate Gaussian distribution
with

(A =0 (7)
2DAt-2(2DRAt—6?), j=k

(AjA) =12DRA1 - 0, j=k=*1
0, otherwise

. (3

where the motion blur coefficient R summarizes the effect of
motion blur:

1 At At At
=— f dt’f dt"s(t")s(f")min(¢',¢") —J t's(t")dt’
At] Jo 0 0

)
1 At
=Ef0 S(O[1 - S(1)]dt. (10)
Here,
S(t)=fts(t’)dt' (11)
0

is the fraction of the total illumination occurring before time
¢ (within the frame), a nondecreasing function ranging from
S(0)=0 to S(Ar)=1. The integrand in Eq. (10) lies between 0
and 1/4, so we find

0=R=1/4,

a result that holds for any arbitrary variation of the illumina-
tion intensity. R is zero if and only if the shutter function s(z)
consists of a single vanishingly narrow peak (a delta func-
tion) at any point within the frame, in which case there is no
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motion blur. For uniform illumination, s(z)=1/A¢ and R
=1/6. Interestingly, these are not the limiting cases for R;
rather, a double-pulse sequence with a narrow pulse at the
start and end of the frame gives the maximum R=1/4.

The above considerations lead us to an important obser-
vation: although a free-Brownian particle moves with uncor-
related displacements, Eq. (8) shows that motion blur and
static localization noise induce correlations between o0b-
served displacements. Localization errors o induce a nega-
tive correlation, which is understood by noting that A,_,
=X;—X,_; and Ay=X;,,—X, depend on the same noise value
&y [cf. Eq. (6)] incorporated with opposite sign. Motion blur
induces a positive correlation, which is a familiar effect
when averaging over the frame is thought of as a low-pass
filter acting on the underlying motion [15]. Because of this
correlation, measurement results are not independently dis-
tributed, and the appropriate framework for statistical infer-
ence is time series analysis [20,21].

IV. APPROXIMATION OF THE LIKELIHOOD FUNCTION

We can use the distribution of measurement results, A,
to construct estimators of the diffusion coefficient D and
static localization noise o. We choose the maximum-
likelihood estimator since it has a simple form and asymp-
totically optimal properties in many situations [22]. Let A be
the N-component column vector of observed displacements
A, and let 3 be the N X N covariance matrix defined by Eq.
(8). Denoting the nonzero elements of 2, by

a=2DAt - 2(2DRAt - &?) (12)

B=2DRAt - &?, (13)

we can write the (log) likelihood function of the data A as
(dropping an irrelevant constant term)

1 1
L(A)=- ElogIEI - EATE‘IA. (14)

From Eq. (14), one can already implement a maximum-
likelihood estimator by plugging in the observed displace-
ments A and numerically maximizing L(A) considered as a
function of D and o. However, this procedure requires cal-
culating the determinant and inverse of the N X N covariance
matrix % at each value of D and o during the numerical
search. For measurements consisting of hundreds or thou-
sands of points, this becomes a numerical inconvenience or
impossibility. Furthermore, to facilitate calculation of quan-
tities such as the Fisher information, a simpler closed-form
expression for the likelihood function is desired. Closed-
form expressions for the determinant and inverse of 3 are
available [23], but the results are not particularly simple.
Fortunately, a standard approximation leads to significant
simplification of the problem. In this approximation [24], we
replace 3, with a more convenient matrix defined by setting
the corner elements %, y and %y equal to B. The rows of
this new matrix, denoted 3, are cyclic permutations (it is
“circulant”), which immediately implies that it is diagonal in
the frequency (Fourier) domain—a very convenient property
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indeed. As N becomes large, X, becomes a very good ap-
proximation to X; further details and technical justification
are given in Appendix B Under this approximation, the fre-
quency components

N

—~ 1 .
Ak= /__2 Aj eZm(;—l)(k—l)/N (15)
VN j=1

are (complex) Gaussian distributed with

<&j5;> = Y0 (16)

¢k=a+2ﬁcos{%7(k—l)} (17)

i, are the eigenvalues of 3, while &k is the kth component
of the discrete Fourier transform of A; in other words, %, is
diagonal in the discrete Fourier transform (frequency) basis
for all values of @ and 3, or equivalently D and o. We can
now write the likelihood function in the frequency domain as

1 v
L(A) =~ L,(A) =~ 52 (10g W + ;}%) (18)

k=1 k

I3 1)

The choice of subscript “p” is explained in Appendix B This
equation is convenient for numerical maximization, since
it is a simple weighted sum over the power spectrum (or

periodogram [20]) of the data |A,|?, found from a discrete
Fourier transform of the observed displacements A. Equation
(18) is the main result of this section; it facilitates simple
calculation of the maximum likelihood estimate of D and o
and is simple enough to accommodate thorough analysis.

V. FISHER INFORMATION IN D AND o

From the simple form of L,(A) provided by Eq. (18), we
can calculate the Fisher information matrix I, in the param-
eters D and o. I, is a measure of the information about D
and o contained in a sample, and its inverse I, gives the
Cramer-Rao bound on the covariance matrix of all unbiased
estimators [22]. Although the MLE is not necessarily an un-
biased estimator, under certain conditions (satisfied here
[22]), it asymptotically approaches the Cramer-Rao bound as
the number of data points N becomes large; that is, the MLE
of one or several parameters becomes asymptotically normal
(multivariate Gaussian distributed) with covariance matrix
given by IBIU. In this way, the Fisher information matrix char-
acterizes the optimal performance of all unbiased estimators
and also characterizes the asymptotic behavior of the particu-
lar estimator derived above, the MLE. In this section, we
calculate the Fisher information in D and o and use it to find
the best possible performance in estimates of D and o for
realistic particle tracking experiments.

We begin by calculating the Fisher information matrix I,z
in the more convenient parameters « and 3. A simple trans-
formation converts these into the desired result for D and o.
For a zero-mean multivariate Gaussian distribution, the (j,k)
matrix element of the Fisher information between two pa-
rameters, 6; and 6,, is given by
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N
1 1 dyy

Ty p) 6= 5 P B (19)
215 ‘ﬁzz‘wj’wk

where ¢, is the [th eigenvalue of the covariance matrix.
When N is large, we can approximate the sum over / as an
integral (see Appendix B) to find the matrix elements [25]

N 1 f” du N a

I = =
Mg 227), (a+2Bcosu)® 2 (a?-4BY)%?

(L) _ZXLIZW 2cosudu N 28
W 00m)y (a+2Bcosu)’ 2 (a?—4p2)3>

(L) _]l’ifzw 4 cos® udu
W2 202m)y (a+2Bcosu)?

N| 1 8a-d’/p?

(20)

The Fisher matrix 1,5 is converted into I, by the formula
[22]

da Jda

) D 7
Ip.=1J IaﬁJ, J= 0B B . (21)

oD o

When N is large, Egs. (20) and (21) give the Fisher infor-
mation for any values of diffusion coefficient D and static
localization noise o, while accounting for motion blur
through R. When the number of samples becomes large
enough, the distribution of a joint maximum-likelihood esti-
mate of D and o is Gaussian with 2 X2 covariance matrix
VD(T:IZ)IU. If o is known and D is estimated, the asymptotic
variance of the MLE is given by 1/(Ip,);;; similarly, if D is
known and o is estimated, the asymptotic variance of the
MLE is 1/(Ip,),. These formulas cover the general cases,
but they are rather complicated, so we will break them down
into two categories depending on whether the static localiza-
tion noise o is large or small compared to the characteristic
diffusion length within a frame.

A. Large localization noise o= \DA¢/2

First, consider the case where the localization noise is
large compared to the diffusion length during the camera
frame, o> \DA¢t/2. In this case, we can approximate the
Fisher information matrix and its inverse by expanding in the
small parameter e=\DAt/(20”?). To facilitate comparison
of different frame intervals Az, we suppose that the total
measurement time is 7 so the number of data points is
N=T/Atr. Keeping the lowest-order term for each matrix
element, we find (using - to denote symmetric off-diagonal
terms)
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e €
T 4D* \2DAt
Do At 4é
DAt
LS D B
4\2D3?At 207 \2DAt
=T (22)
2
o?At
and
40> 1 [DAt
~£ € € 2
Do T D_At
4é
. 4\2D30?At - DoAt
=— o?Ar . 23
pa - (23)

Note the important feature that the diagonal elements of I,
and Vp,, are reciprocals of each other; this indicates that in
the large noise limit, the variance of an estimate of D when o
is known asymptotically approaches the variance of D when
o is unknown but estimated jointly with D. A similar result
holds for estimation of o when D is known. In other words,
whenever the localization noise is large, o> VDAt/2, with
sufficiently long measurement time, D can be estimated
equally well whether or not the value of the localization
noise o is known prior to the experiment. As expected, mo-
tion blur has no contribution in this large-noise case.

B. Small localization noise << \DA#/2

In the case of small localization noise, we expand in the
small parameter 1/e=20>/(DAt). In this case, motion blur
is a significant factor, and we will consider its effects for R
=0 (short-pulse excitation), R=1/6 (full-frame averaging)
and R=1/4 (double-pulse excitation). As above, we take N
=~ T/At. The analysis is complicated by the fact that the low-
est order term in 1/€ may be dominated by a higher order (in
1/€) quantity multiplied by a large or even divergent
R-dependent term near R=1/4. Mathematically, we can
avoid divergence problems by plugging in values for R prior
to expanding in 1/€, but we must keep in mind that the
results may only hold in practical cases where (R—1/4) is
very small—smaller even than high-order terms in 1/e. Of
course, the exact expressions of Egs. (20) and (21) hold as-
ymptotically in all cases and are simple to evaluate numeri-
cally. Results for this small localization noise case are quoted
in Table I.

C. Summary table of results

In Table II, we summarize the asymptotically optimal
noise-to-signal ratio in estimating D and o, by recording
appropriate values from matrices I, and Vp,. From the
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TABLE I. Table of Fisher information matrices I, and corre-
sponding covariance matrices VDU=II_)1(r in the small noise (e>1)
limit.

ID(T VDo’
1 o 2D*AF
— —— 6D*At —
. 2D?Ar  D*AP o
R=0 302 T D>A7
D*AP o2
1 220 L3D°A/ 0.53D°Ar
. 2D*At  D*Af I o
R=— 1867 T 0.12D*AF
D*AP o’
L —1— 2D%At DAt
2D’At  \2D3AP 1 7
— Dd*AP
R=— [ 2 T\ - 5
Da*AP

table, several useful facts can be gleaned. First, in the com-
mon experimental scenario where D is estimated and o is
small and known prior to the experiment, motion blur has no
effect on the asymptotic efficiency of estimating D. Note that
motion blur still affects the statistics of the measurement
through R, but the maximum-likelihood estimator of Eq. (18)
fully accounts for the altered statistics, making the final es-
timate immune to motion blur artifacts. Second, for a typical
resolution-calibration experiment with an immobile particle

TABLE II. Table of squared noise-to-signal ratios for a range of
experimental scenarios. As an example of how to read the table,
consider the first row: (6D?)=(Vp,);; is the variance in an estimate
of diffusion coefficient D, and (o known) refers to the case that the
localization noise o is known prior to the experiment through a
separate measurement. The squared noise-to-signal ratio, {SD?)/D?
is then recorded for large and small localization noise and, in the
latter case, several cases of varying motion blur.

Small noise
(ex>1)
Large noise

(e<1) R=0  R=1/6 R=1/4
g%)222(0' known) %\,% 2%’ 2—?’ 2—?’
g5'%222(0' unknown) %\,% 6%[ ‘%Af 2—?
872D known) & 033285 006280 41 DA
g%r’z(D unknown) ZA—} % 0.12% %\/%
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D, the variance in estimating o tends to o/(2N) where N
=T/At is the number of data points. Finally, a surprising
result can be seen in the second row of the table: when the
diffusion coefficient is estimated and the localization noise is
unknown (that is, both D and o are free parameters in the
maximum-likelihood search), the variance in D and o are
each improved by engineering the experiment to exhibit
maximum motion-blur, R=1/4. For this case, an estimate of
D can in principle be just as accurate as in case where o is
known. It is important to keep in mind that in many experi-
mental cases, the measurement noise o may not be indepen-
dent of the frame time Af or the motion blur parameter R.
For example, achieving R=0 or R=1/4 requires very short
pulsing of the excitation intensity. If the localization noise o
is photon-limited, moving to shorter pulses will increase the
noise o, and intermediate values of R and o may be neces-
sary to achieve the minimum variance in estimating D. These
cases will not fall neatly into the summary table, but can be
treated with the exact results in Egs. (20) and (21).

VI. NUMERICAL SIMULATIONS

To investigate the performance of the MLE, we numerical
simulated a one-dimensional tracking experiment on a freely
diffusing particle, including the effects of motion blur and
localization noise. For each simulation, we generated an (N
+1)-element set of positions {X,}, specifying D, At, o, and
the shutter function s(z), from which a motion blur coeffi-
cient R was calculated according to Eq. (10). From each data
set, we estimated D and o using two estimators, the MLE
derived above and a variance-weighted fit to the MSD. For
the latter case, we calculated p, from {X,} according to Eq.
(1) and estimated D and o by least-squares fitting to Eq. (5).
We accounted for the non-uniform statistical weight of each
p, by weighting each point p, by 1/C,, as calculated in
Appendix A This weighted-MSD estimator roughly corre-
sponds to the procedures of Refs. [12,13], updated to incor-
porate localization noise and motion blur. As in those refer-
ences, the off-diagonal correlations C,,, were not considered.

In Fig. 1 we show the effect of the localization noise on
estimates of D. Similarly, in Fig. 2, we show the effect of
varied diffusion coefficients on estimates of o. In the figures,
we show the tenth and 90th percentile in estimating one of
the parameters, and compare this to the same percentiles for
an optimal estimator that achieves the Cramer-Rao bound
(shaded regions in both figures). The MLE clearly outper-
forms the estimator based on the mean-square displacement,
approximating an optimal unbiased estimator in many cases.
Note that, because the MLE is normal (Gaussian) and unbi-
ased only in the asymptotic limit N—, some cases in the
figure show biased performance with variances below the
Cramer-Rao bound.

Finally, in Fig. 3, we show the effect of varying the shut-
ter function over the full range of motion blur coefficients
0=R=1/4, in the moderately low noise regime correspond-
ing to 1/e=0.14. Estimates of D are slightly improved by
increasing R (the standard deviation decreases by about
10%) while the sensitivity to o is greatly improved with
increasing R. In experimental scenarios, this fact may be
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G [pum]

FIG. 1. (Color online) tenth and 90th percentiles in estimating
D. For each simulation, D=1 ,u,mz/s, Ar=1 s, N=500, and the
shutter function s(z) was constant over the frame time (R=1/6). For
each value of measurement noise o, 100 individual simulations
were performed and the values of D and o were estimated using the
MLE and MSD. For each estimator, the 10th and 90th percentile of
D estimates is shown (MLE: filled circles, red online; MSD: filled
squares, blue online); in other words, at each value of o, the region
between the upper and lower point contains 80% of the D estimates.
The same percentiles for an optimal unbiased estimator, with cova-
riance matrix equal to Il_)la, are also shown (hatched region). A
single set of MLE estimator results with =1 um is shown (open
circles, red online). The MLE achieves nearly optimal performance,
and significantly outperforms the MSD.

used to increase sensitivity of calibration experiments on
moving particles by tailoring the temporal profile of the illu-
mination intensity. Anecdotally, we find that the maximum
likelihood estimator is significantly easier to implement in
computer code and executes much faster than the MSD

10

10 o

D [um?/s]

10" bl
0 0.1 0.2 0.3 0.4 0.5
o [um]

FIG. 2. (Color online) Tenth and 90th percentiles in estimating
o. For each simulation, 0=0.1 um, Ar=1 s, and N=500. The
shutter function s(z) was constant over the frame time (R=1/6). For
each value of D, 100 individual simulations were performed and the
values of D and o were estimated using the MLE and MSD. For
each estimator, the tenth and 90th percentile of D estimates is
shown (MLE: filled circles, red online; MSD: filled squares, blue);
in other words, at each value of D, the region between the left and
right point contains 80% of the o estimates. The same percentiles
for an optimal unbiased estimator, with covariance matrix equal to
I, are also shown (hatched region). A single set of MLE estimator
results with D=0.1 um?/s is shown (open circles, red online). The
MLE achieves nearly optimal performance, and significantly out-
performs the MSD.
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FIG. 3. (Color online) Comparison of maximum-likelihood es-
timates for different motion blur coefficients R. For each case, N
=1000 data points were simulated with D=10 um?/s, Ar=0.1 s,
and 0=0.1 um. Three different shutter functions were used (top
row) giving, from left to right, R=0.01, R=0.17, and R=0.24. A
scatter plot of the resulting maximum-likelihood estimates are in
the D—o plane (bottom row). Increasing R has little effect on D
estimates, but significantly improves the estimate of o.

estimator, primarily due to the difficulty of calculating new
weight factors 1/C,, at each point in the numerical search.

VII. CONCLUSIONS

We have derived the full statistics of single particle track-
ing measurements on freely diffusing particles, properly ac-
counting for the effects of localization noise and motion blur.
We defined a motion blur coefficient R that fully accounts for
the latter effect. We derived a computationally simple
maximum-likelihood estimator and also derived information-
theoretic limits on the measurement sensitivities of separate
or joint measurements of the diffusion coefficient D and lo-
calization noise o. We showed by numerical simulation that
the MLE approaches optimality on data sets consisting of a
few hundred points, and that the MSD is significantly sub-
optimal. In Appendix A, we give updated expressions for the
mean, variance, and covariance values of the mean-square
displacement when measurement noise and motion blur are
considered.

In future work, a linear viscoelastic response can be in-
cluded in the analysis in order to facilitate proper statistical
estimation in particle-tracking microrheology or linear mate-
rials [5-8]. For linear materials, the dynamics of the dis-
placement increments will be more complicated but remain
multivariate Gaussian distributed, so that results from time
series spectral analysis will likely be similarly useful in that
context. In cases of anomalous diffusion, the displacement
statistics will no longer be Gaussian distributed, but obser-
vation of a smoothed power spectrum of displacements may
nevertheless provide a visual symptom similar to the devia-
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tions from linearity of the MSD. Such an effect can be in-
vestigated through numerical simulation.

Software for calculating the Fisher information matrix,
the covariance of the MSD, and implementing the
maximum-likelihood estimator is available from the author
on request.
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APPENDIX A: STATISTICS OF THE MEAN-SQUARE
DISPLACEMENT

In this appendix, we give the mean and covariance C,,,
=(PPm) — PP of the MSD incorporating static localiza-
tion noise and motion blur. In the main text, we calculated
the Gaussian statistics of A. We can write p, as a quadratic
form on A:

p,=ATA A,

where A, is a symmetric N X N matrix found from examin-
ing Eq. (1). A standard theorem [26] states that p, and p,, are
independently distributed if and only if A, 2 A,,=0. This con-
dition is not satisfied in the present case, owing to the strong
correlation of p, and p,,.

To calculate the mean and covariance C,,,, we use the fact
that [26]

Cmn =2 Tr(AmzAnz)

where Tr denotes the trace. After a lengthy calculation, one
finds that

(py=Tr(A,X)=n(a+2B)-28, (A1)
which is Eq. (5), and for m=n
Con= KmKn[azzg;f; +4apZi + 262 + 2],
(A2)
where
Zﬁf; = {[K,, + min(0,s,m —n—s)]
s=s_
X [n+min(0,s +a,m—n—s—a)]
X [n+min(0,s —b,m—-n—s+b)]}, (A3)

with

s_=max(m-N,1-n-a,1-n+b)

s,=min(N-n,m—1-a,m-1+b).

K,=N-m+1 and K,=N-n+1. The use of min and max
functions conveniently summarizes many contingencies that
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depend on the values of N, m, n, a, and b. Once a set has
been chosen, the summation can be explicitly computed. The
variance and covariance results of Ref. [12], neglecting the
effects of static localization errors and motion blur (8=0) are
recovered from the Zgﬂl term.

APPENDIX B: APPROXIMATION
OF THE LIKELIHOOD FUNCTION

In this appendix, a discussion of the approximate likeli-
hood function is presented.

There are two ways to justify the approximate form of the
likelihood function in Eq. (18). First, as discussed briefly in
the main text, we can view Eq. (18) as arising from the
approximation of 3 by 3. However, it is generally not the
case that one can simply alter a few elements of a matrix and
expect to retain similar values of, for example, its eigenval-
ues, determinant, or inverse. Some mathematical justification
is therefore required: the “circulant approximation” used
here is a well-studied technique in applied mathematics—the
standard reference is [24]. Application of results in Ref. [24]
to the present context reveal that % ~¥_ and ™' ~37" as N
grows to infinity, where “~” denotes the matrix weak norm.
This indicates a certain “average” equivalence of these ma-
trices, but does not imply that their individual entries are
close together. Further justification for the approximation
comes from that observation that the eigenvalues of 3 and
3. are asymptotically absolutely equally distributed, which

PHYSICAL REVIEW E 82, 011917 (2010)

means that in the limit N— o, the eigenvalues (and all func-
tions of them, including the determinant) are equal [24].

While these results suggest a good matrix approximation,
they do not strictly imply that L(A) =~ L,(A). To see this, Eq.
(18) should be viewed a second way, as an application of
Whittle’s approximation [21,27] in which the likelihood
function is approximated by its “principal part,” given here
by:

N L7 04
L,(A)= 2l277f0 log Zﬁf()\)d)\+2ﬂ_ T d)\],

(B1)

where f(N\)=(1/27)(a+28 cos \) is the spectral density of
the (exact) covariance matrix % and

1 N 2
INNA) = —— | 2 Ae™™
WA) = | 2 e

When N is large, we can approximate the integral over \ as
a Riemann sum over the convenient grid of points A
=2as/N, s=0-+-N—1, in which case Eq. (B1) becomes Egq.
(18) after some manipulation of indices. Whittle’s approxi-
mation is well characterized [21], in particular it is known
that the approximate likelihood converges to the true likeli-
hood in probability and is asymptotically normally distrib-
uted according to the inverse of the Fisher information ma-
trix given by Eq. (21).
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