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We use the torsional angles of the protein chain as generalized coordinates in the canonical formalism,
derive canonical equations of motion, and investigate the coordinate dependence of the kinetic energy ex-
pressed in terms of the canonical momenta. We use the formalism to compute the normal-frequency distribu-
tions of the � helix and the � sheet, under the assumption that they are stabilized purely through hydrogen
bonding. In addition, we obtain the free-energy relations of the � helix, the � sheet, and the random coil of a
15-residue polyalanine. Interestingly, our results predict a phase transition from an � helix to a � sheet at a
critical temperature.
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I. INTRODUCTION AND SUMMARY

At present, protein folding is one of the outstanding prob-
lems in protein science. Extensive research has been carried
out to understand how specific native structure can arise
from a given sequence of amino acids. This structure, which
determines the function of a protein, is known to exhibit a
certain range of slow vibration modes. It is these slow vibra-
tion modes that play an important part in the catalytic func-
tion of proteins �1�. Studies on these slow modes have been
performed both experimentally and theoretically �2�. Among
these, the normal-mode analysis �NMA� is a technique that
explores the flexibility and the slow range of motion of di-
verse protein configurations �3–8�. In the classical NMA ap-
proach, the degrees of freedom are described by a set of
generalized coordinates, with the force field being given
semiempirically, consisting of energy terms due to stretch-
ing, bending, torsion, as well as van der Waals and electro-
static interactions �4�. Although classical NMA has reduced
the computational expense on the investigation of low-
frequency collective modes of proteins in comparison to mo-
lecular dynamics, it is still limited to small proteins. This has
motivated the formulation of coarse-grained models such as
the Gō model �9,10�, the elastic network model �11–13�, and
the Gaussian network model �14–16�, which leads to greater
computational efficiency. Interestingly, the low-frequency
normal modes determined from these simplistic models cor-
respond closely not only to those obtained from the more
sophisticated force fields, but they also correspond to the
conformational transitions observed experimentally �17,18�.
In particular, the application of NMA to these simplistic
models has led to theoretical studies on model refinement of
crystallographic or diffraction data �19,20�, cooperative and
hinge-bending motion in enzyme �21�, mechanism of allos-
teric communication �22�, NMR order parameters �23,24�,
and conformational changes in large complexes such as vi-
ruses �25,26�. Remarkably, the results from these studies are
found to correlate well with those obtained experimentally.

It is known that the very low-frequency modes of a pro-
tein can be associated with those of secondary structures,

namely, � helices and � sheets. It is of particular interest to
study possible transitions between these structures, which
may cause protein misfolding, resulting in a loss of normal
biological functions. Protein misfolding is known to be a
source of debilitating diseases, such as the “mad cow” dis-
ease caused by prion misfolding �27�. A number of theories
for such transitions have been proposed �28–32�. Our inves-
tigation of the slow vibration modes involves the consider-
ation of protein as being made up of a chain of amino acids
connected by covalent bonds that are unbreakable. From the
point of view of the mechanics of protein folding, the inde-
pendent variables are the dihedral angles between successive
units of the chain. Other degrees of freedom, such as the
vibrations of bond lengths and angles, do not affect the gen-
eral shape of the protein and will be neglected.

We begin our work with a development of the canonical
formalism, using the dihedral angles as generalized coordi-
nates. An important consequence is that the kinetic energy,
when expressed in terms of the canonical momenta, becomes
a function of the coordinates. Specifically, masses are re-
placed with a mass matrix which depends on the coordinates,
and this gives rise to an effective potential. By studying this
mass matrix numerically, we find that the effective potential
is approximately constant for almost all conformations of the
chain. This result is significant for practical applications, par-
ticularly for the conditioned self-avoiding walk �CSAW�
model �33,34�, in which these generalized coordinates were
explicitly used.

The canonical formulation has a wide range of applica-
tions, including the formulation of kinetic equations for pro-
tein folding and the calculation of physical quantities from
statistical mechanics. In this work, we studied the phase tran-
sition of protein. We considered only hydrogen bonding as
the potential in our protein model. Thus, the low-frequency
collective modes considered in this paper arise solely from
this simple potential field. Although our model is crude, it is
proven to be sufficient. This was verified from the computa-
tion of the distribution functions of normal frequencies for a
pure � helix and a pure � sheet. We assume that the � helix
and � sheet are stabilized purely through hydrogen bonding,
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and the restoring potential about the equilibrium conforma-
tion arises from the deformation of hydrogen bonds.

We find that all normal frequencies are positive definite,1

and this shows that the � helix and the � sheet are mechani-
cally stable under hydrogen bonding alone. This leads one to
expect that, in the unfolded protein chain, which is subject to
random bombardments from water molecules, these second-
ary structures should have transient existence. We further
examine our theory on an all-� myoglobin protein. Our com-
puted results agree with those calculated using the classical
NMA.

We calculate the partition functions of a pure � helix and
a pure � sheet, which are treated as collections of harmonic
oscillators with given frequency distributions. For compari-
son, we also calculate the partition function of a random coil.
We compare the free energies of these conformations as
functions of temperature. By identifying the one with least
free energy as the equilibrium conformation, we find the
critical temperatures at which phase transitions occur. With
choices restricted to pure � helix, pure � sheet, or random
coil, we find that the � helix has the lowest free energy at
low temperatures. It makes a transition to the � sheet at 475
K, and the latter makes a transition to the random coil at 600
K. These results agree with those from independent calcula-
tions. In a real protein, the critical temperatures may be
modified by interactions with the rest of the protein and by
the effects of dissipation.

II. MODELING THE PROTEIN CHAIN

The protein chain consists of a sequence of amino acids
chosen from a pool of 20. These amino acids all center about
a carbon atom called C� and differ from one another only in
the side chains connected to C�. The side chains are typically
represented by hard spheres in our model. When the amino
acids are joined into a chain, they become interlocked “resi-
dues.” From a dynamical point of view, the independent
units of the chain are “cranks” made up of coplanar chemical
bonds, which connect one C� to the next, as shown in Fig. 1.
The bond lengths and bond angles in a crank are given in
Table I �36�.

The backbone of the protein chain is thus a sequence of
cranks. The angle between two adjacent cranks is fixed at the
tetrahedral angle cos−1�−1 /3��109.5°. Thus, the orientation
of one crank with respect to its predecessor is specified by
two dihedral angles �� ,��, as illustrated in Fig. 1.

The conformation of the backbone of the protein is com-
pletely specified by a set of dihedral angles
��1 ,�1 ;�2 ,�2 ; . . .�. In this study, we only consider these di-
hedral degrees of freedom, ignoring the small high-
frequency vibrations within the cranks. Such a description
has been used in the CSAW model of protein folding �33,34�.

III. CANONICAL FORMALISM

Consider a crank consisting of C�, C, N, O, H, and S
�hard-sphere side chain� molecules. For a chain of n cranks,

this gives a total of 6n atoms. We label each atom by an
index j. Let

R j = position vector of atom j ,

j = 1, . . . ,6n . �1�

Let the set of dihedral angles be ��i ,�i� �i=1, . . . ,n−1�
which makes up a total of 2�n−1� degrees of freedom. As-
suming the cranks to be perfectly rigid, it places constraints
on the vector positions. The constraints are solved by using

1Note that modes with zero eigenvalues have been ignored since
they do not relate to the normal frequencies and are found to cor-
respond to the entropic freedom of the protein chain.

TABLE I. Bond lengths and bond angles. Data are obtained
from Protein Data Bank website �36�.

Bond length
�Å�

Bond angle
�deg�

C�uC 1.525 �C�CN 116.2

CuN 1.329 �CNC� 121.7

NuC� 1.458 �NC�C 109.5

CuO 1.231 �C�CO 120.8

NuH 1.000 �C�NH 114.0

FIG. 1. Upper panel shows the crank that connects the center of
one residue to the next. The vectors a, b, c, d, and e represent
chemical bonds, which all lie in the same plane. �Side chains have
been omitted for clarity.� Lower panel shows how the cranks are
connected to form the backbone of the protein. The vector position
of C� is denoted by RC�i. S denotes the side chain molecule being
modeled as a hard sphere. The bond length of hard-sphere side
chain can be obtained from �35�. The angle between cranks is fixed;
the relative orientation of successive cranks is specified by two
dihedral angles � and �. The conformation of the backbone chain is
completely specified by a set of dihedral angles. Data for bond
lengths and angles are given in Table I.
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the dihedral angles as generalized coordinates, which we de-
note by the notation

qik �i = 1, . . . ,n − 1; k = 1,2� . �2�

Thus, for example,

q11 = �1, q12 = �1,

q21 = �2, q22 = �2, etc. �3�

We also use the notation q�, where �= �i ,k�. We are to regard
R j as functions of �q��.

The velocity is given by

Ṙ j = �
i=1

n−1

�
k=1

2
�R j

�qik
q̇ik = �

�

�R j

�q�

q̇�. �4�

The total kinetic energy is

K�q, q̇� =
1

2�
j=1

6n

mjṘ j
2 =

1

2�
�,�

q̇�	�
j=1

6n

mj
�R j

�q�

·
�R j

�q�

q̇�

=
1

2
q̇TMq̇ , �5�

where the mass matrix is given by

M�� = �
j=1

6n

mj
�R j

�q�

·
�R j

�q�

. �6�

This is a symmetric matrix, with MT=M.
The Lagrangian of the backbone chain is given by

L�q, q̇� = K�q, q̇� − U�q� = 1
2 q̇TMq̇ − U�q� . �7�

Hence, the canonical momentum is

p =
�L

� q̇
= Mq̇ �8�

and the generalized force is

�L

�q
=

1

2
q̇T�M

�q
q̇ −

�U

�q
. �9�

The Lagrange equation of motion,

d

dt
	 �L

� q̇

 =

�L

�q
, �10�

leads to

Mq̈ = −
1

2
q̇T�M

�q
q̇ −

�U

�q
. �11�

The Hamiltonian is

H�p,q� = K�p,q� + U�q� = 1
2 q̇TMq̇ + U�q� . �12�

From Eq. �8� we have q̇=M−1p and q̇T= pT�M−1�T. Therefore,

H�p,q� = 1
2 pTM−1p + U�q� . �13�

The canonical equations of motion,

ṗ = −
�H

�q
, q̇ =

�H

�p
, �14�

take the forms

ṗ = −
1

2
pT�M−1

�q
p −

�U

�q
,

q̇ = M−1p . �15�

These are, of course, the same as the Lagrangian equation of
motion as given by Eq. �11�.

IV. EFFECTIVE POTENTIAL

The partition function of the system is, up to a constant
scale factor, given by

Z =� � e−��K�p,q�+U�q��dp�dq� , �16�

where �= �kBT�−1 is the inverse temperature. The p integra-
tion is Gaussian and can be immediately carried out, and the
result generally depends on q,

Z =� �� e−�K�p,q�dp�e−�U�q�dq� �17�

=� �� e−��1/2�pTM−1pdp2�n−1�e−�U�q�dq�

= 	2�

�

n−1� �det M e−�U�q�dq� . �18�

This gives rise to an effective potential Veff�q�, which is de-
fined through the relation

e−�Veff�q� � 	 �

2�

n−1� e−�K�p,q�dp2�n−1�. �19�

Thus,

Z =� �con�q�dq� ,

�con�q� � 	2�

�

n−1

e−��U+Veff�, �20�

where �con is the configurational probability density. That is,
�condq is the relative probability of finding the system in dq,
regardless of the momentum p. If the kinetic energy is inde-
pendent of q, the effective potential is a constant.

In a canonical ensemble, the relative probability of find-
ing the state in the element dp�dq� in phase space is given by
dp�dq� exp�−�H�. If we are only interested in the probability
of finding the state in dq, we integrate the above over p and
obtain
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dq�� dp� exp�− �H� = dq� exp�− �U�� dp� exp�− �K�

= dq�	2�

�

n−1

exp�− ��U + Veff�� .

�21�

This is the probability to be used, for example, in the Monte
Carlo algorithm in the CSAW model �33,34�. From Eqs. �18�
and �19�, we have

�Veff�q� = − 1
2 ln�det M� = − 1

2Tr�ln M� . �22�

Since Veff�q� depends on all the dihedral angles, it is a
function of the chain conformation. Our calculations show
that it is sensibly constant for almost all different conforma-
tions. The percentage change of the effective potential for a
three-crank model is less than 0.2%. Hence, we shall assume
that it is a constant in our subsequent derivation. Represen-
tative results are shown in Fig. 2.

V. POTENTIAL ENERGY OF HYDROGEN BONDING

In our model, the main stabilizing agents for protein sec-
ondary structures such as � helix and � sheet are hydrogen
bonds, which exist between NuH and CvO groups from
different residues �37,38�. We assume that a hydrogen bond
is formed when the distance between the H and O atoms is
2.0�1.0 Å, and the bond angle between NuH and C=O is
180° �45° �37�.

The � helix, also known as the 413 helix, is the most
abundant secondary structure due to its tight conformation
�38�. In this configuration, a hydrogen bond connects the
CvO group of the ith crank to the NuH group of the �i
+3�th crank.

The � sheet is a two-dimensional mat made up of back-
bone strands stitched together by hydrogen bonds �38�. The
participating strands may be parallel or antiparallel. In this
paper, we will only study the latter case.

We wish to study the normal modes of small vibrations
about an equilibrium configuration. The potential energy U is
assumed to be minimum, and taken to be zero, at this con-
figuration. The equilibrium is assumed to be maintained by
hydrogen bonds. Deviations from equilibrium arise from the
stretching and bending of these bonds. Let bi be the bond

vector of the ith hydrogen bond, i.e., the vector between O
and the bonded H, in the equilibrium situation. Let bi� be the
same vector when the configuration is displaced from equi-
librium. The displacement vector is given by

ui = bi� − bi. �23�

For small displacements, we take the potential energy to be

U =
1

2
	1�

i

��b̂i · ui��2 +
1

2
	2�

i

��b̂i 
 ui��2, �24�

where b̂i=bi / �bi�, and 	1 and 	2 are the force constants as-
sociated with the stretching and bending of hydrogen bonds,
respectively �39�,

	1 = 13 N/m,

	2 = 3 N/m. �25�

Let the generalized coordinates be denoted by

q = q0 + � , �26�

where q0 corresponds to equilibrium and � represents a small
deviation. We can write

ui = �
�
	 �bi�

�q�



0
�� + O��2� , �27�

where the subscript 0 indicates evaluation at equilibrium.
This leads to the quadratic form

U =
1

2
�T�	1D + 	2C�� , �28�

D�� = �
i
�b̂i ·

�bi�

�q�
�

0
· �b̂i ·

�bi�

�q�
�

0
, �29�

C�� = �
i
�b̂i 


�bi�

�q�
�

0
· �b̂i 


�bi�

�q�
�

0
. �30�

VI. NORMAL MODES

For small oscillations about equilibrium, the linearized
equation of motion is

M�̈ = −
�U

�q
. �31�

From Eq. �28� we have

�U

�q
= �	1D + 	2C�� . �32�

Thus,

M�̈ + �	1D + 	2C�� = 0. �33�

The normal frequencies � and normal modes � are eigenval-
ues and eigenvectors of the equation

FIG. 2. Effective potential of a three-crank chain at different
�� ,�� angles between the second and third cranks. The percentage
change of the effective potential is less than 0.2%.
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M−1�	1D + 	2C�� = �2� . �34�

Our model’s validity is subject to the following condi-
tions:

�1� We treat small oscillation about a presumed equilib-
rium configuration q0. Whether q0 indeed corresponds to
equilibrium can be verified through the requirement that all
normal frequencies are nonzero and positive.

�2� We ignore electrostatic and other interactions. Our re-
sults can serve as a test on whether the structures investi-
gated can maintain equilibrium purely through hydrogen
bonding. Inclusion of other interactions will introduce cor-
rections.

�3� Actual � and � structures are embedded inside a pro-
tein molecule in solution and are subject to other forces not
considered here, particularly those arising from Brownian
motion in the solution, the hydrophobic effect, and interac-
tion with other atoms in the protein. These forces will give
rise to corrections and may even destroy the stability of the
structure.

In view of the limitations of the model, we only examine
normal modes in a frequency range corresponding to wave
numbers 10−1–103 cm−1. This is because, in a real protein,
the very low-frequency end will be dominated by binding
effects to the rest of the protein, while the very high-
frequency region will be dominated by bond oscillations.

VII. � HELIX

In this study, we have taken polyalanine as our model for
a generic � helix. Since the CH3 side chain group of alanine
residues is not a big molecule, it is easily expressed in terms
of a fully atomic model instead of using the implicit hard-

sphere model. Formally, it is straightforward to generalize
this all-atom side chain model.

The dihedral angles � ,� of polyalanine �40� are given by

��,�� = �− 57.4 ° ,− 47.5°� . �35�

The equivalent spring system is illustrated in Fig. 3. In this
example, there are seven cranks, but only four hydrogen
bonds. In general, for n cranks, the number of hydrogen
bonds is n−3. The number of degrees of freedom from
stretching and bending of the hydrogen bonds is thus 2�n
−3�. The total number of degrees of freedom of the system,
however, is 2�n−1�. Thus, we expect to have four zero
modes, apart from rigid translations and rotations. These will
not be included in our results.

Figure 4 shows the distributions of normal modes as a
function of wave number, for different crank numbers n. All
calculated frequencies are positive. The distributions exhibit
four peaks associated with various types of deformation,
which can be ascertained by examining the corresponding
eigenvectors. The results are listed in Table II.

VIII. � SHEET

We model a generic antiparallel � sheet �41� by setting
the dihedral angles in each strand to

��,�� = �− 139 ° ,135°� . �36�

The connectivity of hydrogen bonds for the antiparallel �
sheet is shown in Fig. 5. An extra crank is included to join
two adjacent strands.

Compared to the � helix, the � sheet has fewer hydrogen
bonds formed within the structure. Thus, we expect that in
our model there will be more zero modes compared to the �

TABLE II. Normal modes of � helix.

Frequency
�cm−1� Mode

0–10 Twisting

30–40 Stretching and bending

90–100 Bending

120–130 BendingFIG. 3. The mechanical system corresponding to small oscilla-
tions of the � helix �solid lines�. Springs are hydrogen bonds
�dashed lines�.

FIG. 4. �Color online� Normal-frequency distributions for the � helix, with different numbers of cranks n. Types of distortion corre-
sponding to the peaks are listed in Table II.
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helix; but we ignore them for reasons stated previously. Oth-
erwise, all calculated frequencies are positive.

Normal frequencies are computed for varying numbers of
strands, and cranks per strand. We display representative dis-
tributions in Fig. 6. We see that the frequencies are dominat-
ing the far-infrared frequency region. This is consistent with
calculations on real protein with �-sheet structure �2,41–43�.
In general, the peak positions of the distributions depend
only on the number of cranks per strand and are independent
of the number of strands. The peaks tend to widen with in-
creasing crank number.

IX. COMPARISON WITH OTHER RESEARCH WORK

Our calculation of normal modes for both � helix and �
sheet is in agreement with results calculated by ben-Avraham
�1�. ben-Avraham found that the density of states of globular
proteins follows a characteristic universal curve �c.f. Fig.1 of
�1��. We found similar behavior for both the � helix and �
sheet. The number of modes for these two secondary struc-
tures converges to their respective characteristic curves that
are independent of the number of cranks for the � helix and
the number of strands for the � sheet. In addition, our results
show that the main contribution to the normal modes of these
secondary structures comes from physical effects due to the
hydrogen bonds.

In order to further validate our results, we obtain the
normal-mode distribution of myoglobin �1MBD� �44� �see
Fig. 7�, which is made up of eight � helices. We found that
our result is in good agreement with those obtained by
Krimm and Reisdorf, Jr. �c.f. Fig. 7�b� of �40��, who derived
their normal-mode distribution from a different approach.

X. �-� TRANSITION

The transition between � helix and � sheet is an impor-
tant subject in view of the existence of proteins with ambiva-

lent structures �45�. From our results, we now proceed to
making the following calculation. Based on Eqs. �13� and
�28�, we can write the partition function as follows:

Zi =� exp�− ��Ki�p� + Ui�q� + Ui
e��dp�dq�

=� exp�− ��1

2
pTMi

−1p +
1

2
qT�	1Di + 	2Ci�q

+ Ui
e�dp�dq� , �37�

with the index i being �, �, or c depending on whether the
configuration is a � helix, a � sheet, or a random coil, re-
spectively. Note that Ui

e is the total chemical potential of the
hydrogen bonds formed within a particular polypeptide con-
figuration. Ui

e can also be viewed as the energy minima of
the potential well and, since it is independent of the dihedral
angles, it does not affect the earlier normal-mode analysis.

After evaluating the integral in Eq. �37�, the partition
function takes the following form:

Zi =
�2�kBT�n−1

�det Mi
−1

�2�kBT�Ni

�detp�	1Di + 	2Ci�
�2��2�n−1�−2Nie−�Ui

e

=
�2�kBT�n−1

��̄i
M�2�n−1�

�2�kBT�Ni

��̄i
K�2Ni

�2��2�n−1�−2Nie−�Ui
e
, �38�

where

��̄i
M�2�n−1� = ��i

M1�i
M2�i

M3
¯ �i

M2�n−1��1/2,

��̄i
K�2Ni = ��i

K1�i
K2�i

K3
¯ �i

K2Ni�1/2. �39�

Note that �i
Mj and �i

Kj are the jth eigenvalues of the matrices
Mi

−1 and �	1Di+	2Ci�, respectively. In Eq. �38�, n is the

FIG. 5. Schematic diagram of antiparallel � sheet, illustrating the connectivity of hydrogen bonds.

FIG. 6. Normal-frequency distributions of � sheets, for the same number of cranks per strand, but different number of strands.
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number of cranks, while Ni is the number of hydrogen bonds
in the configuration. Since Ni is less than n, zero eigenvalues
are to be expected in the potential matrix �	1Di+	2Ci�.
Hence, we have a “pseudo” determinant term detp� � which
takes in only the nonzero eigenvalues.

Next, we evaluate the Helmholtz free energy of a particu-
lar protein configuration from Eq. �38�,

Fi = − kBT ln Zi = Ui − kBTSi, �40�

where

Si = �n − 1�ln�2�kBT� − 2�n − 1�ln �̄i
M + Ni ln�2�kBT�

− 2Ni ln �̄i
K + Ni

z ln�2�� . �41�

We observe that the zero modes now play a significant role
in the determination of the free energy of the protein con-
figuration. In other words, the zero modes are directly related
to the entropy of the protein configuration with Ni

z=2�n−1�
−2Ni zero modes giving rise to Ni

z multiples of 2� entropy.
Furthermore, the third and fourth terms on the right-hand
side of Eq. �41� give the competition between the entropic
effects of the environment and the internal stretching and
bending energy of the hydrogen bonds, respectively. These
results imply that the smaller the number of hydrogen bonds
in the protein configuration, the higher the entropy. Since a
protein in a random coil configuration has no hydrogen bond
�i.e., Ni=0�, it has the highest entropy.

Figure 8 shows the Helmholtz free energy of a 15-crank

polyalanine in the � helix, in the two-strand � hairpin, and
the random coil configuration as a function of temperature.
The � helix has been taken as a reference state in the figure
in the following way:

Fi = �Ui − U�� − kBT�Si − S�� . �42�

Note that the values of the quantities used in the plot are
given in Table III, with Ui

e=−Nihb, where hb=5 kcal /mol
is the potential energy of a hydrogen bond. The plot shows
that the random coil has the steepest curve, followed by the
� hairpin and then the � helix. This is to be expected since
without the constraint of hydrogen bonds, the random coil
has the highest entropy. At the other extreme, the structure of
the � helix is stabilized by 12 hydrogen bonds, six more than
the � hairpin. Hence, it has the least configurational freedom
and the flattest curve of the three.

The critical temperature at which protein phase transition
occurs can be determined through the free-energy curves in
Fig. 8. For example, by examining the intersection between
the free-energy curves of the � helix and the random coil, the
critical temperature of 535 K is observed for the �-coil tran-
sition. Similarly, the critical temperatures for the �-coil and
�-� transitions are found to occur at 600 and 475 K, respec-
tively. As a protein adopts its stable configuration by mini-
mizing its free energy, we expect the 15-crank polyalanine to
form an �-helix structure at low temperature. As temperature
increases, entropy begins to gain importance against the
dominance of the internal energy of the protein at low tem-
perature. At the �-� transition temperature, the more en-

FIG. 7. Normal-frequency distribution for myoglobin, consisting of eight � helices.

FIG. 8. Free-energy curves of � helix, � sheet, and random coil. The intersection of the curves indicates phase transition. The transition
temperatures are found to be T��=475 K, T�c=535 K, and T�c=600 K.
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tropic � hairpin emerges as the more stable structure with a
lower free energy. A further increase in temperature will
eventually lead to the critical state of �-coil transition, upon
which the � hairpin denatures into a random coil.

Interestingly, our results correspond to those obtained by
Ding et al. �46� through molecular-dynamics simulations.
However, we notice that they have overestimated their de-
grees of freedom in their analytical estimates. Since the de-
gree of freedom in their model is also based on the � and �
dihedral angles, the total degree of freedom is 2N for a pair
of dihedral angles per residue, with N being the number of
residues. Thus, a more reasonable entropy calculation should
be Si=A ln�rms dr�i+S0 with A=2N instead of A=3N. Note
that �rms dr�i is the expected root-mean-square deviation for
configuration i from a chosen reference structure �46�. Re-
markably, this correction leads to results which corroborate
with ours in Fig. 8 �see Fig. 9�, with �-�, �-coil, and �-coil
transition temperatures of 427, 504, and 616 K, respectively,
by employing the data given in �46�. Further support of our
approach is given by Yasar and Demir for a hydrophobic
homogeneous polypeptide chain with a helix-coil transition
temperature of 550 K �47�. Our result is also in agreement
with computational work performed by Lee et al. �48�,
whose analysis has found a helix-coil transition temperature
of about 475 K for a 15-residue polyalanine �refer to Fig.
2�a� of �48��.

Finally, it should be noted that by assuming a simple hy-
drogen bond potential, we have considered the polyalanine to
be in the gas phase in this paper. However, if we were to
include the effects of solvent, we would expect a lowering of
the Helmholtz free energies as the polyalanine folds toward a
new optimal conformation �47�. Indeed, if the solvent is wa-
ter, the new conformation is non-� helical since polyalanine
is a purely hydrophobic polypeptide.

XI. CONCLUSION

In this paper, we have formulated the mechanics of pro-
tein chains in terms of the Hamiltonian formalism. We have
applied this formalism to determine the normal modes of the
� helix and the � sheet, and the phase transition of these
secondary structures. By modeling the protein as a sequence
of cranks and making small deviations from the equilibrium
potential of the hydrogen bonds, we have obtained normal-
mode distributions that correspond to those computed based
on classical NMA �3�. This has served to validate our for-
malism. Unlike these prior models that employed a complete
range of force fields, results from our simplified model re-
veal that the slow modes observed in the � helices and �
sheets are mainly attributed to the vibrational effects of the
hydrogen bonds in these structures.

Finally, we have pursued the subject of protein phase tran-
sition from a different perspective by formulating the parti-
tion function and the Helmholtz free energy in terms of re-
sults obtained from our canonical formalism and normal-
mode analysis. Remarkably, our analytical results on the free
energy for a 15-crank polyalanine have reaffirmed previous
numerical prediction �46� of an �-� followed by a �-coil
transition, as temperature is increased. While we had per-
formed our analysis in the gas phase, which leads to a high
critical temperature of 475 K for the �-� transition, we ex-
pect such a transition to occur under normal physiological
conditions if there are present enzymatic influences in a hy-
drated environment. We plan to investigate deeper on such
enzymatic effects in our future research. Our model could
add on to the existing studies of structural transition in pro-
tein secondary structures �31,32,45–48�, which we believe
could lead us to another step closer to an understanding on
the mechanism of both helix-coil and �-� transitions in pro-
tein.

TABLE III. Quantities employed in the calculation of the free energy versus temperature curve for the �
helix, � sheet, and random coil configurations.

i Ui
e 
10−19 �J� Ni �̄i

M 
1022 �kg−1/2 m−1� �̄i
K 
10−10 �kg1/2 m s−1�

� helix −4.17 12 1.165 5.878

� hairpin −2.09 6 1.190 6.960

Random coil 0.00 0 1.714

FIG. 9. Modification of the free-energy curves of Ding et al. �46� based on Si=2N ln�rms dr�i+S0. The transition temperatures are found
to be T��=427 K, T�c=504 K, and T�c=616 K.
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