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We use Brownian dynamics simulations and analytical theory to investigate the physical principles under-
lying subdiffusive motion of a polymer. Specifically, we examine the consequences of confinement, self-
interaction, viscoelasticity, and random waiting on monomer motion, as these physical phenomena may be
relevant to the behavior of biological macromolecules in vivo. We find that neither confinement nor self-
interaction alter the fundamental Rouse mode relaxations of a polymer. However, viscoelasticity, modeled by
fractional Langevin motion, and random waiting, modeled with a continuous time random walk, lead to
significant and distinct deviations from the classic polymer-dynamics model. Our results provide diagnostic
tools—the monomer mean square displacement scaling and the velocity autocorrelation function—that can be
applied to experimental data to determine the underlying mechanism for subdiffusive motion of a polymer.
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I. INTRODUCTION

Much is known about the equilibrium and dynamic be-
havior of polymers through classical treatments of conven-
tional polymeric materials and fluids �1�. It is desirable to
leverage this wealth of knowledge to address a range of
biomacromolecular phenomena. However, in many in-
stances, new physical effects arise in biological systems that
have not been previously addressed by polymer physics ap-
proaches. For example, the motion of a locus, or specific
DNA segment, on a chromosome is potentially affected by
confinement, cytoplasmic viscoelasticity, and binding inter-
actions. This paper introduces these physical effects into the
classical picture of polymer dynamics to determine their net
impact on macromolecular behavior in vivo.

Chromosomal loci in prokaryotes �2,3� and eukaryotes
�4,5� have been observed to move subdiffusively. This
anomalous behavior is characterized by a non-linear relation-
ship between mean square displacement �MSD� and time,
such that ��R� �t�−R� �0��2�� t�, where 0���1 �6�. Predic-
tions from classical theories of polymer behavior do not
agree with the observed scaling exponent �. This discrep-
ancy raises the question of whether classic polymer-
dynamics models can explain such scalings, or whether ad-
ditional physical effects such as confinement, cytoplasmic
viscoelasticity, and binding interactions must be applied to
polymers to explain this behavior.

Subdiffusive motion of particles in vitro �7,8� and in vivo
�9,10� has been explained using physical models incorporat-
ing fixed obstacles �11�, environment viscoelasticity �12� and
random waiting �binding� in the particle trajectory �13,14�.
These three models generate similar scaling laws for long-
time, ensemble-averaged particle behavior. Recent studies
have identified other properties, such as ergodicity and first-

passage-time statistics, that can be applied to experimental
data to distinguish between these mechanisms �12,14–16�.

Here, we apply such physical effects to the monomers in a
polymer chain. In Sec. III, we perform Brownian dynamics
simulations of a single polymer and find a robust Rouse-like
monomer scaling, even under strong confinement and self-
interaction. We proceed to address the additional role of en-
vironment viscoelasticity and random waiting in the context
of the Rouse model for polymer dynamics. In Sec. IV, we
study the motion of a single polymer chain in a viscoelastic
environment, modeled using fractional Langevin motion
�fLm�. In Sec. V, we analyze the dynamic behavior of a
polymer whose monomers experience random waiting, mod-
eled as a continuous time random walk �CTRW�. In each
section, we follow our analytical derivation with a discussion
of the physical intuition and scaling arguments that emerge
from the theory. Our results provide diagnostic tools—the
monomer MSD scaling and the velocity autocorrelation
function—that can be applied to experimental data to deter-
mine the underlying mechanism for subdiffusive motion of a
polymer as observed in a living cell.

II. POLYMER MODEL

The physical phenomena of interest occur at length and
time scales where the polymer behavior is suitably captured
by the Gaussian-chain model �1�. We define a polymer chain
with length bN, where b is the Kuhn statistical segment
length and N is the number of Kuhn segments within the
chain. The chain configuration is defined by the coordinates
of M +1 discrete effective monomers, where R� m is the mth
monomer position �m=0,1 ,2 , . . . ,M�. Therefore, each inter-
monomer segment has a discretization of g=N /M.
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The configurational free energy of the polymer chain Fconf
is defined according to the discrete Gaussian-chain model,
such that

Fconf = �
m=1

M
3kBT

2gb2 �R� m − R� m−1�2, �1�

where kBT is thermal energy. This purely entropic free en-
ergy accounts for the entropic cost associated with the reduc-
tion in configurations available to each effective segment
upon stretching the chain. In the absence of other free-energy
contributions, this model results in a chain with mean square
end-to-end distance ��R� M −R� 0�2�=b2N, which is notably in-
dependent of the discretization M. This property alludes to
the fact that a Gaussian random walk is a continuous fractal,
self-similar at all length scales, and invariant to discretiza-
tion. This model is easily adapted to a circular polymer �as in
plasmid DNA� by including a term in the configurational free
energy joining monomer 0 with monomer M. We model both
linear and circular polymers in this paper.

III. CONFINED POLYMER IN A NEWTONIAN FLUID

The chromosome of Escherichia coli is a single circular
polymer with a contour length 1.6�106 nm. Each E. coli
cell, with diameter �1 �m, contains two to four copies of
this circular chromosome. At this level of confinement, these
polymers have considerable self-interaction that could poten-
tially impact their dynamic behavior. However, the physical
constraints on a confined polymer differ significantly from
the assumptions made in existing polymer-dynamics theo-
ries. In this section, we adopt a simple approach to address
the dynamics of the E. coli chromosome by considering a
single polymer within a confinement that is much smaller
than its unconfined radius of gyration.

The Rouse �17�, Zimm �18� and reptation �19� models
describe the motion of polymers in infinite solutions. These
models do not consider how a polymer interacts with a
boundary �i.e., the cell membrane�. Furthermore, they as-
sume that polymer chains are linear, which is particularly
important for reptation, in which free ends must be able to
explore space beyond the reptation tube for large-scale relax-
ations. Finally, de Gennes’s reptation tube is defined by
many polymer chains whose motions are uncorrelated with
the entangled tracer chain. However, within a single polymer
chain, the motion of one segment is correlated with all oth-
ers, and the reptation tube will relax in concert with the
tracer segment. Given these issues of confinement, topology
and chain number, it is not clear whether the classic polymer-
dynamics models are applicable to the motion of bacterial
chromosomes in vivo. Thus, we use Brownian dynamics
simulations to explore the scaling of a monomer on a single
circular polymer under confinement.

Our simulations include five forces acting on each mono-
mer in the chain. First, the configurational free energy Fconf
results in an elastic restoring force

F� m
�E�=	

3kBT

gb2 �R� m+1 − 2R� m + R� m−1� , m = 1, . . . ,M − 1

3kBT

gb2 ��R� 1 − R� 0� − c�R� 0 − R� M�� , m = 0

3kBT

gb2 �c�R� 0 − R� M� − �R� M − R� M−1�� , m = M ,

�2�

where m is the monomer index and c is the ring closure
factor, such that when c=1, the chain is circular and mono-
mers m=0 and m=M are connected. When c=0, the chain is
linear with monomers m=0 and m=M as end points. Second,
the self-interaction force F� m

�I� accounts for the finite size of
monomers and prevents chain crossing. This force is gener-
ally written as

F� m
�I� = − �

m��m

�VI�Rm,m��

�Rm,m�
e�m,m�, �3�

where Rm,m�= 
R� m−R� m�
 is the distance between monomers m
and m�, e�m,m�= �R� m−R� m�� / 
R� m−R� m�
 is the unit vector be-
tween monomers m and m�, and VI�Rm,m�� is the two-body
interaction potential. Since the nature of these interactions
inside the cell is unknown, we test several different VI, in-
cluding the repulsive Gaussian potential, the Lennard-Jones
potential, and the repulsive part of a Lennard-Jones potential.
Third, the repulsive interaction between a monomer and the
confining boundary is captured by the force

F� m
�C� = 	− Aex�
R� m
 − r�3 R� m


R� m

, 
R� m
 � r

0, 
R� m
 � r ,
� �4�

where Aex is the strength of confinement and r is the radius
of confinement. Fourth, a viscous drag force represents fric-
tion that opposes the motion of a monomer through the sol-
vent. Hydrodynamic interactions are ignored as they are
likely screened in vivo due to a high degree of macromolecu-
lar crowding �1�. This velocity-dependent force, character-

ized by the drag coefficient �, is given by −g�
dR� m

dt . Finally, a
random Brownian force F� m

�B� arises from collisions between a
monomer and solvent molecules. The variance of the magni-
tude of this force is given by the fluctuation-dissipation theo-
rem

�F� m
�B��t�F� m�

�B��t��� = 2kBT�	m,m�	�t − t��I . �5�

Inertial forces are ignored, since these are negligible in com-
parison to viscous drag. For each time step in the simulation,
the Langevin equation of motion,

g�
dR� m�t�

dt
= F� m

�E��t� + F� m
�I��t� + F� m

�C��t� + F� m
�B��t� , �6�

is solved using a Runge-Kutta algorithm.
Figure 1 shows the results of a series of simulations with

a spherical confinement of decreasing radius r. In these
simulations, we choose the model parameters to be kBT=1,
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�=1, b=0.5477, g=1, and M =99. This choice of dimension-
less parameters is equivalent to rescaling the time by
10��gb�2 / �3kBT� and all lengths by b�10g /3, resulting in a
strongly confined polymer chain for small confinement ra-
dius �r�6�. When r→
 �the free, unconfined case�, the
polymer behaves according to the Rouse model. The center-
of-mass moves diffusively ��=1� across all time scales,
while the monomer moves diffusively at short and long
times, but subdiffusively for intermediate times, with �
=0.5. As the radius of confinement decreases, the scaling
exponents do not change until the polymer reaches the
boundary and cannot diffuse further. Interestingly, even un-
der extreme confinement, the subdiffusive scaling of a mono-
mer is Rouse-like ��=0.5� and not reptation-like ��=0.25�

The intermediate-time scaling result found in Fig. 1 ��
=0.5� is robust across a broad range of simulation param-
eters. For example, the scaling of the monomer MSD is in-
sensitive to all contour lengths tested �4�M �149�. It also
does not depend on polymer topology; linear polymers ex-
hibit the same � as circular polymers. Furthermore, the
monomer MSD does not depend on the self-interaction po-
tential. Our results for simulations with no self-interaction
and for simulations incorporating three different interaction
potentials �repulsive Gaussian, Lennard-Jones, and repulsive
Lennard-Jones� give a robust scaling exponent �
=0.51�0.02 for intermediate times �Table I�. Finally, we
performed simulations with five polymers within a single
confinement, and with this number of independent chains,
we still observe Rouse-like scaling for the monomer MSD.
This observation strongly suggests that the elastic Rouse
modes dominate polymer behavior. Thus, it appears that the
correlated motions of a single confined polymer annihilate
the polymer’s own reptation tube, leading to a Rouse-like
intermediate-time scaling.

IV. POLYMER IN A VISCOELASTIC FLUID

In this section, we analyze the dynamic behavior of a
single polymer within a viscoelastic medium. Our goal is to

focus on the Rouse modes of such a polymer in the absence
of self-interaction and confinement. With these approxima-
tions, we are able to find analytical results for experimentally
observable metrics, including the monomer MSD and the
velocity autocorrelation function. Our simulation results in
the previous section suggest that the dominant scaling behav-
ior for a confined polymer is associated with Rouse-like be-
havior, so our analyses in this section would adequately pre-
dict behavior under conditions of strong confinement and
self-interaction.

A particle moving through a viscoelastic environment will
undergo subdiffusive motion over a range of time scales due
to elastic stresses within the medium. A further signature of
viscoelasticity is the presence of time correlations in the par-
ticle’s trajectory, also arising from elastic stresses. This vis-
coelastic behavior can be cast in terms of a fluid memory that
propagates past deformation to the present response �1�.

We consider a model for viscoelasticity that results in
subdiffusive particle motion over all time scales. This model
can be used to address physical phenomena over time scales
where particle motion is experimentally observed to be sub-
diffusive. The particle is sufficiently small such that inertial
effects are completely negligible. Mathematically, the motion
of an isolated particle is governed by the fractional Langevin
equation

�
0

t

dt�K�t − t��
dR� �t��

dt
= F� �B��t� , �7�

where we adopt the memory kernel �12�

K�t − t�� =
�2 − ���1 − ��


t − t�
�
, �8�

and the Brownian force F� �B��t� satisfies the fluctuation-
dissipation theorem

10-3 10-1 101 103
10-4

10-2

100

102
<(
R(
t)−
R(
0)
)2 >

t

~t0.5
r → ∞
r = 6
r = 5
r = 4
r = 3
r = 1

FIG. 1. �Color� Ensemble-averaged MSD of a monomer �thin
curves� and the center-of-mass �thick curves� of a single circular
polymer under spherical confinement. Data are from a series of
simulations with Gaussian self-interaction and a decreasing radius
of confinement, where: r→
 �black�, r=6 �pink�, r=5 �orange�, r
=4 �green�, r=3 �red�, and r=1 �blue� �see text for parameter val-
ues�. The inset shows a typical snapshot from the r=3 simulations.

TABLE I. Intermediate-time scaling exponent � for simulations
with no self-interaction, or a repulsive Gaussian, a Lennard-Jones
or a repulsive Lennard-Jones interaction potential. Fits were made
to the monomer MSD for at least one decade in time beginning at
MSD=1 �i.e., beginning at the transition into the Rouse regime and
ending before the monomer reaches the confining boundary�. For
confinement radius r=1, the monomer reaches the boundary before
entering the Rouse regime and so does not exhibit a power law.
Column 3 �repulsive Gaussian potential� corresponds to Fig. 1.

Radius of
confinement

Self-interaction potential

None
Repulsive
Gaussian Lennard-Jones

Repulsive
Lennard-Jones

r→
 0.51 0.50 0.50 0.49

r=6 0.52 0.51 0.53 0.53

r=5 0.50 0.51 0.52 0.51

r=4 0.47 0.51 0.50 0.54

r=3 0.46 0.51 0.51 0.52

r=1 N/A N/A N/A N/A
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�F� �B��t�F� �B��t��� = �kBTK�t − t��I . �9�

The power law in Eq. �8� persists over all time scales in the
model, leading to particle subdiffusion over all time scales.
Thus, the fractional Langevin motion �fLm� of this model
results in a particle MSD

��R� �t� − R� �0��2� =
3kBT

�

sin����

��1 −
�

2
��1 − ���

t�, �10�

where 0���1 and smaller values of � correspond to more
subdiffusive behavior. This behavior approaches ��R� �t�
−R� �0��2�= �6kBT /��t as �→1, corresponding to diffusion in
a Newtonian fluid. Our definition of fLm is identical to pre-
vious treatments �12,20� with some minor alterations in the
definition of parameters. Specifically, the Hurst parameter
H=1− �

2 typically appears in the definition of fractional
Langevin motion; our preference is to define our model by �
since this is the physical observable involved in all subse-
quent discussions.

We now consider a large linear polymer chain that is im-
mersed in a medium that itself is viscoelastic. Our goal is to
derive the behavior for an isolated ideal chain �i.e., no self-
interaction� in the absence of long-range hydrodynamic in-
teractions. In other words, our theoretical treatment intro-
duces the fLm memory kernel into the classical Rouse model
of polymer dynamics. The model for viscoelasticity defined
above results in a governing equation of motion for the mth
monomer in the chain

g�
0

t

dt�K�t − t��
dR� m�t��

dt
= F� m

�E��t� + F� m
�B��t� , �11�

where F� m
�E��t� is given by Eq. �2�, with c=0 to designate a

linear chain with monomers m=0 and m=M as end points.
Our simulations in Sec. III show similar values of � at inter-
mediate time scales for circular and linear chains, so we
proceed with a linear chain topology in all following sec-
tions. Assuming N is large, we can pass the monomer index
m=0,1 , . . . ,M to the continuous variable n� �0,N�, result-
ing in the chain configuration defined by the space curve
r��n , t�. With this, we arrive at the governing differential
equation

�
0

t

dt�K�t − t��
�r��n,t��

dt
=

3kBT

b2

�2r��n,t�
�n2 + f��B��n,t� ,

�12�

where the Brownian force f��B��n , t� satisfies the fluctuation-
dissipation theorem

�f��B��n,t�f��B��n�,t��� = �kBTK�t − t��	�n − n��I . �13�

Since the chain ends are free and effectively unstressed, the
boundary conditions on the polymer ends are �nr��n=0, t�
=0� and �nr��n=N , t�=0� .

As in the Rouse model �1�, it is convenient to define a set
of normal coordinates that effectively decouple the interac-
tions implicit within the equation of motion �Eq. �12��. We
define the normal modes

p�n� = 	�2 cos� p�n

N
� , p = 1,2, . . .

1, p = 0.

�14�

These modes represent a complete basis set that satisfy the
boundary conditions for r��n , t�; orthogonality is demon-
strated by


0

N

dnp�n�p��n� = N	p,p�. �15�

The amplitude of the pth mode X� p�t� is given by

X� p�t� =
1

N


0

N

dnr��n,t�p�n� , �16�

and the inversion back to chain coordinates is written as

r��n,t� = �
p=0




X� p�t�p�n� . �17�

The equation of motion of the pth normal mode is written
as

N�
0

t

dt�K�t − t��
dX� p�t��

dt
= − kpX� p�t� + F� p

�B��t� , �18�

where kp= �3�2kBT / �Nb2��p2, and the Brownian force on the
pth mode F� p satisfies

�F� p
�B��t�F� p�

�B��t��� = N�kBTK�t − t��	p,p�I . �19�

The resulting equation of motion �Eq. �18�� demonstrates
the decoupling of the normal coordinates such that all normal
coordinates are dynamically independent. Furthermore, the
force on the pth mode −kpX� p�t� corresponds to that of a
harmonic spring with spring constant kp. At equilibrium, the
normal-mode amplitude satisfies the equipartition theorem
�X� p�t�X� p��t��=

kBT

kp
	p,p�I.

The chain dynamics are analyzed by defining the correla-
tion function Cp�t�= �X� p�t� ·X� p�0��, which is governed by the
differential equation

N�
0

t

dt�K�t − t��
dCp�t��

dt
= − kpCp�t� �20�

with initial condition Cp�t=0�=3kBT /kp for p�1. Perform-
ing a Laplace transform of Eq. �20� from t to s, rearranging,
and inverting, we arrive at the solution

Cp�t� =
3kBT

kp
E�,1�−

kp

N���3 − ��
t�� , �21�

where E�,��x� is the generalized Mittag-Leffler function
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E�,��x� = �
j=0



xj

��� + �j�
�22�

and �=1 in Eq. �21�. The generalized Mittag-Leffler func-
tion for �=1 gives the regular Mittag-Leffler function �or
just the Mittag-Leffler function�; however, we define the gen-
eralized Mittag-Leffler function for use later in this paper. In
the limit �→1, the correlation function is Cp�t�
= �3kBT /kp�exp�−kpt / �N���, which corresponds to the behav-
ior of the Rouse model in a Newtonian fluid �1�. However, in
a viscoelastic fluid, where 0���1, the correlation function
decays more slowly than an exponential, characteristically as
a stretched exponential at short times and as an inverse
power law at long times �21�.

The p=0 solution is found by noting that X� 0 is the poly-
mer center-of-mass. Since the polymer is free draining �no
hydrodynamic interactions�, the center-of-mass motion is
that of an effective particle with total drag coefficient N�.
Thus, the MSD is given by

��X� 0�t� − X� 0�0��2� =
3kBT

N�

sin����

��1 −
�

2
��1 − ���

t�. �23�

Our analysis facilitates the determination of the MSD of
an individual monomer in the chain, which corresponds to
the experimentally realizable case of tracking an individual
locus on the E. coli chromosome. We define the midpoint
monomer R� mid�t�=r��N /2, t�, which behaves like all other
monomers except the end points, 0�n�N. Using our re-
sults, we find the MSD to be given by

��R� mid�t� − R� mid�0��2�

= ��X� 0�t� − X� 0�0��2� + 2�
p=1




��X� 2p�t� − X� 2p�0��2�

=
3kBT

N�

sin����

��1 −
�

2
��1 − ���

t�

+ �
p=1



12kBT

k2p
�1 − E�,1�−

k2p

N���3 − ��
t��� , �24�

where k2p= �3�2kBT / �Nb2���2p�2.
Figure 2 plots ��R� mid�t�−R� mid�0��2� / �b2N� against the di-

mensionless time �= t / �N2b2� / �kBT��1/� for three values of
the scaling parameter �. Noting that E�,1�−x�→0 as x→
,
the long-time limiting behavior of Eq. �24� is

��R� mid�t� − R� mid�0��2� →
3kBT

N�

sin����

��1 −
�

2
��1 − ���

t�.

�25�

This limiting behavior is shown in Fig. 2 as the dotted curves
for each �-value. The short-time scaling ��R� mid�t�
−R� mid�0��2� / �b2N����/2 is identified in Fig. 2 by the dashed
curves.

The physical justification for the short-time and long-time
behaviors is determined by a scaling analysis of Eq. �24�.
The pth normal mode corresponds to a wavelength �
=bN / p. Each term within the summation in Eq. �24� repre-
sents the contribution of each normal mode to the displace-
ment. The argument of the Mittag-Leffler function �i.e., E�,1�
within the pth term identifies whether the 2pth mode remains
correlated at time t. Thus, we can identify a time scale t� for
the relaxation of a wavelength � by setting the argument to
be order unity. This gives

t� � � �2�

kBT
�1/�

or � � � kBT

�
�1/2

t�
�/2, �26�

which neglects numerical factors from this scaling argument.
At the time scale t�, sections of chain at lengths shorter than
� move in a coordinated fashion, since the corresponding
short wave modes can respond to deformation at these times.
Thus, a monomer feels an effective drag coefficient ��

��� /b at time t�. The resulting MSD at time t� scales as

��R� mid�t�� − R� mid�0��2� �
kBT

��

t�
� � b� kBT

�
�1/2

t�
�/2, �27�

or in dimensionless form, we write

��R� mid�t� − R� mid�0��2�/�b2N� � ��/2. �28�

This regime persists until �→bN, defining the terminal time
scale tR= �N2b2� / �kBT��1/�. The dimensionless time is there-
fore identified as �= t / tR, and the short-time scaling is valid
for ��1. This limiting form is demonstrated in Fig. 2.

10−4 10−3 10−2 10−1 100 10
1

10
210−2

10−1

100

101

102

τ

<(
R m

id(
t)−
R m

id(
0)
)2 >
/(b

2 N
)

α = 0.4

α = 0.7
α = 1.0

~τ0.20

~τ0.35

~τ0.50

FIG. 2. �Color online� MSD for the midpoint monomer
��R� mid�t�−R� mid�0��2� / �b2N� on an fLm polymer versus the dimen-
sionless time �= t / �N2b2� / �kBT��1/� for �=1.0 �red�, �=0.7
�purple�, and �=0.4 �blue�. Solid curves are solutions to the ana-
lytical result in Eq. �24� for these three � values. The dotted curves
correspond to the long-time asymptotic behavior and the dashed
curves give the short-time scaling of ��/2.
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At times ��1, the entire chain moves in a coordinated
fashion, and the monomer displacement scales identically to
the displacement of the polymer center-of-mass. Since our
model neglects long-range hydrodynamic interactions �i.e.,
free-draining behavior�, the total drag on the chain is �tot
=N�. The long-time limit of Eq. �24�, given by Eq. �25�, is
exactly that of a single particle �Eq. �10�� with an effective
drag coefficient �tot.

We now proceed in our analysis to more directly address
the impact of memory on the monomer trajectory. Toward
this end, we define the velocity autocorrelation function
Cv�t�= �V� �t� ·V� �0��, which gives a direct indicator of how
previous motion impacts current motion. Thus, it can be cal-
culated from experimental data and used as a diagnostic for
fLm. We first consider Cv for a single particle, which is
governed by the single-particle equation of motion �Eq. �7��.
The Laplace transform of Eq. �7� from t to s gives

V�̃ �s� =
1

���3 − ��
s1−�F�̃ �B��s� , �29�

where the tilde is used to indicate Laplace transform of the
function, and V� �t�= dR� �t�

dt is the particle velocity. This is used
to find the average quantity

�V�̃ �s� · V�̃ �s��� =
1

����3 − ���2s1−�s�1−��F�̃ �B��s� · F�̃ �B��s��� .

�30�

Using the fluctuation-dissipation theorem �Eq. �9��, we find

�V�̃ �s� · V�̃ �s��� =
3kBT

���3 − ��
ss�2−� + s2−�s�

ss��s + s��
. �31�

Upon Laplace inversion, we arrive at the solution

Cv�t� = −
3kBT

�

sin����
��2 − ��


t
�−2. �32�

The negative value of Cv arises from the viscoelastic re-
sponse captured within the memory kernel. Particle motion
incurs an elastic component to the response, leading to sub-
sequent motion being pushed back toward the point of ori-
gin, thus a negative-valued Cv. This memory decays in time,
as does Cv�t�.

The value of Cv�t� diverges in the limit of t→0. This
arises due to the fact that the instantaneous velocity is an
ill-defined quantity for a Brownian random walk as defined
by the overdamped Langevin equation �Eq. �7��. Ultimately,
inertial effects are not negligible at sufficiently small times,
and the result must be consistent with that found from the
Maxwell-Boltzmann distribution Cv�0�=

3kBT

m , where m is the
particle mass. The behavior at t=0 cannot be resolved in our
inertia-less treatment; however, the t�0 behavior is cor-
rectly captured provided inertial effects are sufficiently
damped at the time of interest.

Experimental measurement of Cv generally requires an
approximation to the instantaneous velocity because particle
position is measured at discrete time intervals �	�. To facili-
tate accurate comparison to experiments, we find the average
quantity

Cv
�	��t� =

1

	2 ��R� �t + 	� − R� �t�� · �R� �	� − R� �0���

=	
Cv�t�

�2��1 − ��
�2 − �1 − ��� − �1 + ���� , t � 	

Cv�t�
�2��1 − ��

�2 + �� − 1�� − �� + 1���

+
3kBT

�

sin����

��1 −
�

2
��1 − ���

1

	2 �	 − t��,
t � 	�

�33�

where �=	 / t. This quantity approaches Cv�t� in the limit 	
→0 for t�	. The behavior for t�	 is valid for sufficiently
large values of 	, such that inertial effects remain negligible
for times t�	.

We now turn to the velocity autocorrelation function for
the midpoint monomer of the fLm polymer Cv

�mid��t�
= �V� mid�t� ·V� mid�0��. To determine this correlation function,

we define the mode velocity V� p�t�=
dX� p�t�

dt . In finding Cv
�mid�,

we find �V� p�t� ·V� p�0�� directly from our results for Cp�t�
found in Eq. �21�. With this and similar steps as used to find
Cv, we arrive at

Cv
�mid��t� = �V� 0�t� · V� 0�0�� + 2�

p=1




�V� 2p�t� · V� 2p�0��

= −
3kBT

N�

sin����
��2 − ��


t
�−2

��1 + 2��� − 1��
p=1




E�,�−1�−
k2p

N���3 − ��
t��� .

�34�

Noting that E�,�−1�−x�→0 as x→
, we find the long-time
asymptotic behavior of Eq. �34� to be

Cv
�mid��t� → −

3kBT

N�

sin����
��2 − ��


t
�−2 �35�

for t� tR. The short-time scaling of Eq. �34�, which will be
discussed below, is given by

Cv
�mid��t�/�Nb2/tR

2� � ���/2�−2 �36�

for t� tR.
As in the MSD, we use scaling analyses to understand the

short-time and long-time behaviors. Equation �34� features a
summation over p modes, representing the contribution of
the Rouse modes within the polymer. The argument of the
Mittag-Leffler function E�,�−1 identifies the time scale t� for
relaxation of a Rouse mode of wavelength �=bN / p. As pre-
viously discussed, monomers within the wavelength � re-
spond dynamically at the time scale t�, thus they move co-
herently. As a result, a monomer feels an effective drag
coefficient ����� /b���kBT�1/2t�

�/2 /b at time t�. Using the
result for Cv for a particle �Eq. �32��, the scaling of Cv

�mid� at
time t� scales as

WEBER, THERIOT, AND SPAKOWITZ PHYSICAL REVIEW E 82, 011913 �2010�

011913-6



Cv
�mid��t�� � −

kBT

��

t�
�−2 � − b� kBT

�
�1/2

t�
���/2�−2

. �37�

In dimensionless form, we have Cv�t� / �Nb2 / tR
2������/2�−2

�i.e., Eq. �36��, where �= t / tR, and tR= �N2b2� / �kBT��1/� is the
terminal relaxation time, where all Rouse modes are relaxed
and the entire chain moves coherently. This short-time scal-
ing is valid for ��1.

For times ��1, the monomer motion is coherent with the
motion of the entire chain. Thus, Cv

�mid� tends toward that of
a particle with effective drag �tot=N�. This behavior leads
directly to the long-time asymptotic form of Cv

�mid��t� given
by Eq. �35�.

This section provides the fundamental framework for ana-
lyzing the Rouse modes of a fLm polymer. Theoretical pre-
dictions for the monomer MSD scaling and the velocity au-
tocorrelation function provide diagnostic tools that can be
compared with experimental measurements to determine
whether fLm is the dominant physical mechanism for sub-
diffusion. We show that a negative value of the velocity au-
tocorrelation function is prevalent for both a particle and a
polymer undergoing fLm.

V. POLYMER SUBJECT TO RANDOM WAITING

In this section, we address random waiting in a polymer
as an alternative model for subdiffusive motion. In a continu-
ous time random walk �CTRW� �22�, a diffusing particle
experiences random pause events where it waits a time t
before re-engaging in its motion. If the waiting-time distri-
bution has long tails, such that the ensemble-average waiting
time �t�wait diverges, then the overall motion becomes sub-
diffusive. Though this model is consistent with some aspects
of particle motion in a cell �14�, it remains to be established
whether a polymer that is composed of monomers that un-
dergo transient waiting is a suitable model for the anomalous
motion of a monomer within a polymer. Our goal in this
section is to develop the framework for analyzing the motion
of a polymer that is subject to random waiting �i.e., CTRW�
in order to interpret the feasibility of this model.

We first consider a single, isolated particle that undergoes
Brownian motion in a Newtonian fluid while vascillating be-
tween diffusing and waiting states. Our adopted model for
the distribution of time spent in the diffusing state is gov-
erned by

Sdiff�t�dt =
1

tdiff
exp�−

t

tdiff
�dt , �38�

which gives the probability that if the particle transitions
from the waiting state to the diffusing state at time zero that
it will transition from the diffusing state to the waiting state
between time t and t+dt. The parameter tdiff is equal to the
ensemble-average time spent in the diffusing state �i.e.,
�t�diff= tdiff, where the subscript diff is an average w.r.t. Eq.
�38��. In this section, the angle brackets � . . . � imply an en-
semble average, which is frequently not equal to the time
average.

The analogous distribution that we adopt for the waiting
state is

Swait�t�dt = 	
�

� + 1

1

twait
dt , t � twait

�

� + 1

1

twait
� twait

t
��+1

dt , t � twait,� �39�

where the power-law tail in the transition time is governed
by the scaling constant �. For ��1, the parameter twait re-
sults in the ensemble-average time spent in the waiting state
�t�wait= twait� / �2��−1��, where the subscript wait is an aver-
age w.r.t. Eq. �39�. For 0���1, the ensemble-average time
spent in the waiting state is infinity; therefore, �=1 is a
critical point in the behavior of this model.

The motion of the particle position R� �t� is governed by
the equation of motion

�
dR� �t�

dt
= ��diff��t�F� �B��t� , �40�

where ��diff��t�=1 if the particle is in the diffusing state at
time t, and ��diff��t�=0 if the particle is in the waiting state at
time t. The times spent in the diffusing and waiting states are
selected from Sdiff�t� and Swait�t�, respectively. The Brownian
force F� �B��t� satisfies the fluctuation-dissipation theorem for
diffusion in a Newtonian fluid

�F� �B��t�F� �B��t��� = 2�kBT	�t − t��I . �41�

The particle motion is analyzed using methods that we
develop for the behavior of a two-state reaction-diffusion
model; we refer the reader to Ref. �23� for details. Using
these methods, the Brownian motion of our model gives a
MSD of the particle

��R� �t� − R� �0��2�

=	
6kBT

�

1

1 +
�

2�� − 1�
twait

tdiff

t ,
� � 1

6kBTtdiff

�

�1 + ��sin����
��

� t

twait
��

, 0 � � � 1.�
�42�

We note that this functional form approaches zero for �
→1 from both the negative ��→1−� and positive ��→1+�
directions. This notable idiosyncrasy is reconciled by the fact
that the time required to achieve this limiting behavior also
diverges for �→1. The overall observation is that the par-
ticle behaves diffusively for ��1 and subdiffusively for 0
���1 with a MSD that scales as t�.

The behavior for ��1 is justified by noting that the
ensemble-averaged probability of being in the diffusing state
for ��1 is ���diff��t→
��= tdiff / �tdiff+ twait� / �2��−1���.
Thus, the ��1 behavior is exactly the free diffusion behav-
ior �6kBT /��t times the fraction of time spent in the diffusing
state.

The subdiffusive behavior that arises for 0���1 occurs
due to the ergodicity breaking that arises from the waiting-
time distribution. For large time, the ensemble-averaged
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probability of being in the diffusing state for 0���1 ap-
proaches

���diff��t�� →
�1 + ��sin����

�

tdiff

twait
�

1

t1−� . �43�

The power-law tail in Swait leads to the ensemble-averaged
diffusing-state probability approaching zero at large time,
thus indicating an inequality between the ensemble average
and time average indicative of an ergodicity breaking. This
nonergodic behavior has significant consequences for the
material exchange between a reactive surface and the bulk,
as may be the case for a DNA-binding protein �24,25�. While
a particle is in the diffusing state, the time rate-of-change of
the MSD is d���R� �t�−R� �0��2�� /dt= �6kBT /��, which is the re-
sult for a freely diffusing particle without waiting. The time
rate-of-change of the MSD for the CTRW particle with 0
���1 is given by the diffusing-state rate-of-change in the
previous sentence times the probability of being in the dif-
fusing state; thus,

d��R� �t� − R� �0��2�
dt

=
6kBT

�
���diff��t��

=
6kBT

�

�1 + ��sin����
�

tdiff

twait
�

1

t1−� , �44�

which is in exact agreement with Eq. �42� for 0���1.
We now consider the motion of a large linear polymer that

is subject to random waiting, moving as a CTRW. In this
treatment, we address the Rouse modes within a CTRW
polymer, neglecting self-interaction and hydrodynamic inter-
action. The equation of motion is given by

g�
dR� m�t�

dt
= �m

�diff��t��F� m
�E��t� + F� m

�B��t�� , �45�

where �m
�diff��t�=1 if the mth monomer in the chain is in the

diffusing state at time t, and �m
�diff��t�=0 if the mth monomer

is in the waiting state at time t �m=0,1 ,2 , . . . ,M�. In this
model, there are two contributions to subdiffusive motion.
The first contribution is the ergodicity breaking inherent in
the CTRW model when 0���1, and the second contribu-
tion is associated with the relaxation of the internal Rouse
modes of the polymer.

Equation �45� permits the evaluation of trajectories of a
CTRW polymer in time. Our approach to solving this equa-
tion of motion is to perform a numerical time integration of
the equation of motion �as in a Brownian dynamics simula-
tion�, determining the transitions between diffusing and wait-
ing states based on the governing statistical distributions
�Eqs. �38� and �39��. We verify this algorithm by comparison
with our exact results for particle diffusion �Eq. �42�� by
performing a series of particle simulations �M =1, data not
shown�.

In the case 0���1, each individual monomer within the
polymer chain exhibits ergodicity breaking with a long-time
probability of being in the diffusing state given by Eq. �43�.
The polymer is capable of moving via two distinct mecha-
nisms. If all of the monomers are in the diffusing state, the
polymer moves according to a free-diffusion mechanism,

where the motion is diffusive with an effective drag coeffi-
cient g�M +1��. If at least one monomer is in the waiting
state, the polymer must move according to a pin-and-pivot
mechanism, where the unfrozen segments crawl while frozen
segments pin parts of the polymer in space. These two
mechanisms contribute to the mid-point monomer MSD,
which we define as MSDmid= ��R� mid�t�−R� mid�0��2�.

The probability that all monomers are in the diffusing
state is ���diff��t��M+1, which tends to zero as 1 / t�M+1��1−��.
The free-diffusion mechanism results in a time rate-of-
change for the midpoint-monomer MSD that scales as

d��R� mid�t� − R� mid�0��2�
dt

�
kBT

g�M + 1��
���diff��t��M+1

�
kBT

g�M + 1��
tdiff
M+1

twait
�M+1��

1

t�M+1��1−�� .

�46�

From this analysis, we find the long-time scaling behavior of
MSDmid to be

��R� mid�t� − R� mid�0��2� �
kBT

g�M + 1��
tdiff
M+1

twait
�M+1�� t�FD, �47�

where �FD is the free-diffusion scaling parameter

�FD = �1 − �M + 1��1 − �� , M � Mc

0, M � Mc
� �48�

with Mc=1+1 / �1−�� being the critical monomer number.
This result suggests that the scaling behavior depends on the
number of monomers �or length of chain�. Furthermore, for
any appreciable length of chain �M �Mc�, this is not a viable
transport mechanism, since ergodicity breaking leads to a
cessation in the motion.

The pin-and-pivot mechanism permits motion to occur
under conditions where multiple monomers are frozen in the
waiting state. The net scaling of the MSD for this mechanism
is not easily reconciled through a scaling analysis due to the
complexity associated with the ergodicity breaking and the
coordinated dynamics. For this paper, we demonstrate these
mechanisms through numerical simulations. In Fig. 3, we
show the results for the midpoint-monomer MSD from an
ensemble average over 1000 simulations for several lengths
of chain. Parameters for these simulations are kBT=1, g=1,
b=0.5477, �=1, tdiff=1, twait=1, and �=0.7, and we perform
experiments for 1 monomer �M =0�, 2 monomers �M =1�, 3
monomers �M =2�, 4 monomers �M =3�, and 100 monomers
�M =99�. Included in Fig. 3 are our predictions for the free-
diffusion mechanisms, governed by the scaling parameter
�FD for 1 monomer ��FD=0.7�, 2 monomers ��FD=0.4�, and
3 monomers ��FD=0.1�. The short-time behavior is diffusive
�i.e., MSDmid� t� for all simulations due to the discrete na-
ture of the model setting a short-time cutoff for the Rouse
modes.

The results shown in Fig. 3 demonstrate the chain-length
dependence of the scaling behavior of MSDmid. Our simple
analysis of the free-diffusion mechanism is accurate for
chains with 2 monomers. However, we predict the dominant
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mechanism of motion for chains with more than 3 monomers
is the pin-and-pivot mechanism. These results assume that
monomer waiting is entirely uncorrelated and force indepen-
dent. While these assumptions may not hold at short length
scales, many experiments of interest involve polymers that
are sufficiently large such that uncorrelated waiting times
would occur for many segments of the chain. Our results in
Fig. 3 demonstrate that a chromosome with only four seg-
ments that wait independently moves by the pin-and-pivot
mechanism with similar behavior for its MSD as if it had 100
independent waiting segments. Therefore, our results have a
wide range of applicability in chromosome-length phenom-
ena. It may also be interesting to explore the effect of corre-
lated waiting times, as recently addressed for particle motion
�26�.

In the previous section, we identify the velocity autocor-
relation function Cv as a suitable metric to determine the
impact of memory on the monomer motion. There is no in-
herent memory for a CTRW particle whose motion is gov-
erned by Eq. �40�; thus, the resulting velocity autocorrelation
function Cv�t� is zero for all t�0.

In the case of the CTRW polymer, the elasticity of the
polymer results in Rouse relaxation modes, contributing
memory to the motion. However, it is unclear how random
waiting will impact the memory �or Cv�. As a comparison,
we note that the midpoint-monomer velocity autocorrelation
function for polymer in the absence of random waiting is
given by

Cv
�mid� = −

6kBT

N2�2 �
p=1




k2p exp�−
k2p

N�
t� , �49�

where k2p= �3�2kBT / �Nb2���2p�2. This behavior is found by
taking the limit of Eq. �34� as �→1. We adapt this to the
approximate form Cv

�mid,	�= 1
	2 ��R� mid�t+	�−R� mid�t�� · �R� mid�	�

−R� mid�0��� using similar steps as used to find Eq. �33�.
In Fig. 4, we show ensemble-average determination of the

approximate velocity autocorrelation function Cv
�mid,	� �with

	=20� from simulations of a free polymer chain �i.e., no
random waiting� and a CTRW polymer. In both simulations,
we use kBT=1, �=1, b=0.5477, g=1, and M =99, and the
CTRW polymer is subjected to random waiting with tdiff=1
and twait=1. Figure 4 clearly demonstrates that the introduc-
tion of random waiting into the polymer dramatically sup-
presses the elastic memory within the polymer chain. The
free polymer exhibits a large negative Cv

�mid,	�; whereas, the
CTRW polymer has a peak negative value at t=20 that is less
than one tenth that of the free polymer. We find similar re-
sults for a CTRW polymer under confinement, with
Cv

�mid,	��t=20� only 1.5-fold more negative than the uncon-
fined CTRW polymer and still approximately tenfold smaller
than the free polymer.

The physical justification for the suppression of Cv
�mid,	�

for the CTRW polymer lies in the impact of waiting on the
internal relaxation times. The free polymer undergoes Rouse-
mode relaxation with longer wavelengths requiring longer
time to relax. However, the waiting associated with the
CTRW polymer eliminates the long wave modes from the
relaxation dynamics by pinning sections of the chain in
space. The distance between pinned monomers dictates the
local relaxation dynamics rather than the natural Rouse mode
at any given time scale. Since this pinned length scale is
always much less than the chain length, particularly under
conditions of ergodicity breaking �0���1�, this relaxation
time is effectively instantaneous, and the memory effects
within the polymer are almost entirely suppressed.

As the velocity autocorrelation function is easily mea-
sured experimentally, we propose that the behavior of this
property could be generally used as a diagnostic to distin-
guish underlying CTRW versus fLm mechanisms leading to
subdiffusion of biological polymers in living cells.
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FIG. 3. Ensemble-averaged MSD of the midpoint monomer on a
CTRW polymer versus time t. Data are from a series of simulations
with an increasing number of monomers: M =0, M =1, M =2, M
=3, and M =99 �see text for parameter values�. Dotted lines corre-
spond to the free-diffusion scaling MSDmid� t�FD; deviations from
this prediction are indicative of the pin-and-pivot mechanism. The
dashed line gives the short-time scaling of MSDmid� t1 that is com-
mon to all simulations.
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FIG. 4. �Color online� Velocity autocorrelation function of the
midpoint monomer Cv

�mid,	� versus time t. Data are from simulations
of a free polymer chain �black filled circels� and a CTRW polymer
�blue open circles�, where 	=20. The red dashed curve corresponds
to the analytical result in Eq. �49� for a free polymer chain, with the
dip at t=20 indicative of the Rouse elasticity.
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VI. CONCLUSIONS

This manuscript explores the consequences of confine-
ment, viscoelasticity, and binding interactions on the motion
of monomers in a polymer. These three physical contribu-
tions are relevant to the behavior of a wide range of biologi-
cal macromolecules, including the bacterial chromosome.
Our goal is to incorporate these physical effects into the clas-
sical description of polymer dynamics to better understand
their role in biological phenomena.

In Sec. III, we use numerical simulations to investigate
how confinement and self-interaction affect the motion of
monomers on a single polymer. The Rouse, Zimm, and rep-
tation models address various aspects of polymer motion un-
der dilute, semi-dilute, and concentrated conditions; it is not
immediately obvious what role these dynamic models play in
our current problem. Our simulation results suggest the
Rouse model adequately captures the monomer MSD for in-
termediate time scales, up to the terminal time where the
monomer MSD reaches the confinement length scale. Al-
though reptation seems to be a likely model for the self-
slithering motion of a single polymer chain, we conclude that
the correlated motion of the confined chain annihilates its
own reptation tube, eliminating this dynamic mechanism.
Therefore, the monomer MSD for a single confined polymer
in a Newtonian fluid is expected to scale as t0.5 for interme-
diate time scales.

In Sec. IV, we study the role of environment viscoelastic-
ity on the dynamics of a single polymer by introducing a
fLm memory function into the monomer drag force. Given
the dominant role that the Rouse model plays in the confined
polymer, we focus our analysis on the Rouse modes of a fLm
polymer. The model introduces the parameter � as the MSD
scaling for an individual fLm particle �i.e., MSD� t��. A
polymer chain that is composed of such fLm monomers ex-
hibits a monomer MSD with a short-time scaling of �

2 �for
times up to the longest relaxation time tR= �N2b2� / �kBT��1/��.

As a further test of our predictions, we introduce the ve-
locity autocorrelation function Cv as a metric for the envi-
ronmental memory. A hallmark feature of memory in a vis-
coelastic fluid is a negative-valued Cv at intermediate time
scales. Our results in Sec. IV conclude that a fLm particle
exhibits the scaling Cv�−t�−2 and the midpoint monomer in
a fLm polymer has the scaling Cv�−t��/2�−2.

Our final analysis in Sec. V addresses the role of transient
waiting in the motion of a monomer in the polymer chain.
We draw two primary conclusions for a polymer subjected to
random waiting �CTRW polymer�. The first conclusion is
that a polymer chain that experiences random waiting exhib-
its considerable arrest in the motion of an individual mono-
mer. Waiting in a long polymer chain hinders motion due to
a need to coordinate motion between multiple monomers for
a monomer to move. Ergodicity breaking leads to the prob-
ability of coordinated motion approaching zero at long times,
thus dramatically suppressing the monomer motion. The sec-
ond conclusion is that random waiting within a polymer
chain suppresses the memory effects associated with the
elastic relaxation processes of the polymer chain. This is due
to the arrest of long wave mode relaxations when multiple
points on the chain are pinned.

Our results in this paper conclude that subdiffusive mono-
mer motion leads to widely varying behavior for a polymer
depending on the root cause of the monomer subdiffusion.
Particle motion leads to ensemble-averaged MSD that is the
same for fLm and CTRW models, and one needs to turn to
other average properties to determine whether an ensemble
of trajectories are governed by fLm or CTRW models
�12,14–16�. However, these models are easily distinguish-
able for a polymer composed of subdiffusive monomers. The
connectivity of a polymer results in new dynamic mecha-
nisms that are dramatically influenced by the nature of the
monomer motion, leading to different scaling behaviors for
monomer MSD and Cv.

Our results can be compared directly to experimental ob-
servations. By tracking fluorescently labeled chromosomal
loci in live cells, we and others have found an MSD scaling
of �0.32–0.40 �2–5�. These � values are less than expected
from the Rouse-like behavior of a polymer under confine-
ment, as demonstrated by our simulations in Sec. III. There-
fore, additional physical effects must be responsible for the
observed subdiffusion. Our theoretical predictions in Secs.
IV and V allow us to identify fLm as the dominant physical
mechanism underlying the anomalous motion of chromo-
somal loci in E. coli �3�. The MSD scaling of chromosomal
loci is approximately one-half that of an RNA-protein par-
ticle, which scales as �0.70–0.77 �3,9�, i.e., particle scaling
of � leads to polymer scaling � �

2 , as predicted for a fLm
polymer. Furthermore, the ensemble-average and time-
average MSD for both chromosomal loci and RNA-protein
particles exhibit the same scaling, consistent with an ergodic
process like fLm. Finally, Cv�0 at short-time lags �3�, indi-
cating memory, which is characteristic of a fLm polymer
�Eq. �34�� but suppressed in a CTRW polymer. Thus, by
incorporating two relatively simple models into the Rouse
framework, we can distinguish among the prominent mecha-
nisms for anomalous diffusion, as well as resolve the scaling
discrepancy between particles �9,10� and polymers �2–5�.

The agreement between our theory and experimental mea-
surements �3� suggests that the Rouse model modified by the
viscoelastic environment is the dominant dynamic mecha-
nism for chromosome reorganization within E. coli, at least
on time scales of the experimental measurements. This ob-
servation is critical in guiding the development of theories of
the dynamics within a complex cellular environment. In this
case, classic polymer models, when properly modified, ren-
der results that can clearly distinguish between candidate
molecular processes for chromosome reorganization. These
results represent an important example where we can lever-
age existing physical understanding of polymer dynamics to
render quantitative predictions of in vivo phenomena.
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