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A Green’s function method is developed to approach the spatiotemporal equations describing the cAMP
production in Dictyostelium discoideum, markedly reducing numerical calculations times: cAMP concentra-
tions and gradients are calculated just at the amoeba locations. A single set of parameters is capable of
reproducing the different observed behaviors, from cAMP synchronization, spiral waves and reaction-diffusion
patterns to streaming and mound formation. After aggregation, the emergence of a circular motion of amoebas,
breaking the radial cAMP field symmetry, is observed.
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I. INTRODUCTION

Dictyostelium discoideum �D. discoideum� amoebas live
in decaying logs as unicellular beings, feeding on bacteria
and reproducing by binary fission. Under food shortage they
present a different strategy that starts with emission of a
chemical signal, cyclic Adenosine 3� ,5� Monophosphate
�cAMP�. This process begins with a single amoeba inducing
others to produce a similar chemical signal in response. They
then move toward the growing cAMP concentration and
form amoeba streams or spirals, which are oriented to a cen-
ter where they develop a mound. Subsequently, a tip emerges
from this mound which starts to crawl as a multicellular slug.
During the mound stage, the amoebas differentiate in two
groups: prestalk and prespore. After reaching a more hospi-
table location, the cells form a stalk supporting the spore
which will then disseminate the species throughout the new
environment �1�. This interesting behavior of the D. discoi-
deum was first reported in 1940 �2�.

A comprehensive model of these phenomena must con-
template different stages. A first one, related to the cAMP
dynamics by a single cell has been efficiently modeled by
Martiel and Golbeter �3�, which proposed a set of three evo-
lution equations �MG equations� with parameter values taken
from experiments. The second step, cAMP diffusion, neces-
sary to describe cell-cell signaling, was initially dealt with by
considering one or several amoebas on each site of a grid
�4,5�. The third step is to model the collective behavior, in-
tended to assess the coherent movement of amoebas, capable
of forming amoeba streams and in some particular cases,
spirals. As the amoeba movement is induced by cAMP gra-
dients, this system presents two interacting dynamics with
different time scales. The fast one is related to cAMP signal-
ing �3� and diffusion �4,5�. The slow one has to do with cell
movement, which depends on both cAMP gradient and con-
centration �6�. Since cAMP is produced by cells and their
movement is driven by cAMP gradients, these dynamics in-
teract, typically, in a cell size scale. On the other hand, wave-
like cAMP fluctuations formed during aggregation may reach
the order of centimeters, so, an adequate approach should
contemplate the whole time and space extensions. Consider-
ing that interactions happen at different time and space
scales, we expect that treating them separately will compro-
mise the results.

In fact, models considering single cell dynamics as de-
scribed by MG equations, but discretizing space with a grid
length of the order of cell size, are able to describe cell
movement and aggregation. However, they fail to describe
the wealth of observed cAMP patterns in the preaggregation
stage �7–9�. On the other hand, models simplifying the single
cell dynamics but focusing on different aspects of the social
cycle of D. discoideum also fail to describe aggregation cycle
as a whole �10–14�. Although each work has some success in
describing a particular feature, the unification of the results is
troublesome: taking any of these models, there is not a
unique set of parameters capable of describing the whole
phenomenon. Reference �15� offers such multifaceted de-
scription.

In this work we solve MG equations with diffusion con-
sidering all pertinent time and space scales with a unique set
of parameters. The results describe the wealth of observed
cAMP patterns as well as cell aggregation. The computa-
tional cost is greatly reduced by the use of a Green’s function
to describe diffusion of the cAMP produced by each amoeba.
Global cAMP concentration is obtained as the superposition
of individual ones. With this approach, the computing time
scales with the number of amoebas and is independent of the
system size or space dimensions. Each amoeba moves as a
boid �16�, in a formulation that, besides noise and adhesion
�17�, is adapted to additionally describe chemotaxis, with a
movement efficiency derived from experiments �6�. Our ap-
proach aims to show that MG equations �with diffusion� are
a minimal model to successfully describe the physically in-
teresting processes involved in the signaling/aggregation
stages.

The paper is organized as follows. In Sec. II we show the
Green’s functions implementation to solve the MG equations
�3�. Section III deals with results of the cAMP signaling:
synchronization, wave speed, dispersion relation, and
reaction-diffusion patterns. Later, on Sec. IV, we introduce
movement to the amoebas and present examples of aggrega-
tion, streaming and amoeba movement within the mound. In
Sec. V we discuss the results and conclude the paper.

II. MODEL EQUATIONS AND METHOD

Martiel and Goldbeter �3� described the cAMP dynamics
trough a system of coupled ordinary differential equations.
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The parameters of these equations were experimentally ac-
quired. Here we follow the formulation proposed by Nagano
�9� to the problem using the MG equations with a diffusion
term for the cAMP,

d��x,t�
dt

=
kt

h
��x,t� − ke��x,t� + D�2��x,t� , �1�

��x,t� = �
j=1

N

� j�t�exp�−
4

�2 �x − x j�2� , �2�

d� j

dt
= ��� j,� j� − �ki + kt�� j , �3�

d� j

dt
= f2�� j��1 − � j� − f1�� j�� j , �4�

where f1, f2, �, and Y j are defined as

f1�� j� =
k1 + k2� j

1 + � j
, f2�� j� =
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1 + �1� j
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��� j,� j� =
�2 + Y j

2

�3 + Y j
2 � 1800, Y j =

� j� j

1 + � j
,

this set of equations consists in a three variable system,
where � is the average amoeba diameter. The dynamics of
the extracellular cAMP concentration, variable � in Eq. �1�,
is regulated, respectively, by terms of source ���x , t��, deg-
radation and diffusion. The coefficient of the source term
kt /h is related to the cAMP amount exported to the extracel-
lular medium, while ke and D are the degradation and diffu-
sion coefficients, respectively. Variables � j and � j, are the
intracellular concentration and the ratio of active cAMP re-
ceptors of the jth amoeba, respectively. These two variables,
with dynamics respectively represented by Eqs. �3� and �4�,
compose the baseline of MG equations, i.e., the dependence
on the ratio of active cAMP receptors on the cellular mem-
brane to initiate or maintain internal cAMP production.
Equation �2� links the internal cAMP produced � j�t� to a
Gaussian spatial distribution of width �. Most of the param-
eters used here, are the same biological parameters used by
Martiel and Goldbeter, as can be seen in Table I.

Since the only information needed to describe the move-
ment is the cAMP concentration close to the amoebas, we
wondered whether numerically solving the diffusion equa-
tion for the whole space was indeed the best approach to this
problem. If we know the form of a solution for the cAMP
diffusion of a single cell, a good approach would be to sum
the cAMP contribution from all amoebas. In fact, the single
cell solution is given by the Green’s function �GF� associated
to the problem. The GF indicates how much cAMP produced
at time s by the jth amoeba located at x j reaches the position
x in space at a time t. Supposing that the cAMP concentra-
tion goes to zero far away from each amoeba, we impose null
Dirichlet boundary conditions at infinite distance from the
origin, we can mathematically define this procedure for a
generic point x in space as

��x,t� = �
j=1

N �
0

t �
−	

	

G�x − x j − y,t − s�f j�y,s�dsdy , �5�

where f j�y ,s� is the cAMP source, x j is the position of the
jth particle and G�x−x j −y , t−s� is the Green’s function for
the diffusion equation with degradation. The solution for the
diffusion equation may be found in Ref. �18� and its exten-
sion to include degradation can be directly verified applying
the corresponding differential operator to the following equa-
tion:

G�x j� − y,t − s� =
1

�4
D�t − s��d/2

�exp�−
�x j� − y�2

4D�t − s�
− ke�t − s�� , �6�

where d is the dimension of the system and x j�=x−x j
Nagano’s work assumed that the cAMP concentration in-

side the amoeba is given by a two-dimensional Gaussian as
can be seen in Eq. �2�. Since the internal cAMP distribution
is irrelevant to the external diffusion, we assume that it is
homogeneous and take its value directly from the Gaussian
center,

f j�y,s� = 	 kt

2h
� j�s� → 
y
 � R�

0 → 
y
 � R�,
� �7�

where R� is the radius of the amoeba �� /2�. Replacing Eqs.
�6� and �7� in Eq. �5� and performing the integration in space,
we find

TABLE I. Table of parameter values used in this work. Most
values are the same as used in Martiel and Goldbeter paper �3�, with
the exception of the diffusion constant and the constant h. See text
for details.

Parameters Values used

�1 10a

�2 0.18a

�3 463.5a

k1 0.036 min−1 a

k−1 0.36 min−1 a

k2 0.666 min−1 a

k−2 0.00333 min−1 a

ki 1.7 min−1 a

kt 0.9 min−1 a

ke 5.4 min−1 a

� 0.01 mmb

D 0.024 mm2 /min b

h 0.025c

aValue used in MG’s work �3�.
bValue used in Nagano’s work �9�.
cValue used in this work.
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t cj�s�
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 lj,k + R�

�4D�t − s�
�

− erf
 lj,k − R�

�4D�t − s�
��exp−ke�t−s� ds , �8�

where cj�s�=
kt

2h� j�s� is the amount of cAMP that the jth
amoeba has created at a time t−s, k represents each of the
Cartesian coordinates and lj,k is the distance between the jth
amoeba and the point where the measure is taken on the
coordinate k.

Equation �8� enables us to calculate the cAMP concentra-
tion using only an integration and the evaluation of an error
function, which are both numerically fast to solve. The
downside is that we must keep the cAMP history from each
cAMP source. However, this is not expensive to retain since
there is an exponential cAMP degradation. This term goes to
zero rapidly and only recent data are relevant. Thus, cAMP
source history is short enough to make the calculation fea-
sible. Other approaches based on space discretization or
spectral methods require grids with resolution much smaller
than the amoebas size. The number of grid points being
hence, much larger than the number of amoebas. These so-
lutions demand a computational time scaling with the grid
size to the power d �system spatial dimension�, much longer
than our approach that scales with the number of amoebas.

III. CAMP DYNAMICS RESULTS

When an inactive amoeba receives a cAMP stimulus, the
receptors bind to cAMP molecules and trigger an internal
cycle leading to its own pulse �3�. Once the pulse is emitted
the receptors go through a refractory stage with a defined
time gap and, until an appropriate fraction of receptors are
active again, the amoeba cannot emit a new cAMP pulse.
Typically, cAMP pulses happen in a time interval close to ten
minutes �19–22�.

In this work we assume amoebas with identical biological
parameters, so if we start a simulation with all in the same
biological initial conditions, they present identical dynamics.
In order to describe a set of amoebas with random initial
phases, we recorded the biological variables values of a
single cell over a whole cycle—we call this the default
cycle—and randomly distributed these values as initial con-
ditions to the whole set.

It is important to notice that we used the same values as
Martiel and Goldbeter for most parameters, the exception
being the parameter h, which, in conjunction with parameter
kt, regulates the cAMP source term in MG equations. Nagano
used h as a numerical parameter to fit the frequency of pulses
to experimental values. Table I presents the full parameter
list. With the value used for h, single amoebas cannot signal
on their own, but, in a group, they present the experimentally
observed oscillation period.

In this part of the work, in order to investigate the cAMP
signaling features, the amoebas are kept still and distributed
on a regular grid. Spatially close amoebas are known to syn-
chronize their pulses. Such behavior can be seen in Fig. 1
where we present the phase space projection: the intracellular

cAMP concentration of the jth amoeba, � j versus the fraction
of its active receptors, � j, for 4 amoebas �each represented by
a different line type� distributed in two squares with lateral
sizes 3� and 5�, respectively. Four distinct parts of the de-
fault cycle were chosen as initial conditions. As can be seen
in Fig. 1, synchronization occurs in less than one pulse. As
may also be observed in the same figure, the cycle has
shrunk in size in the case of the smaller square and the fre-
quency of the pulses has accelerated, both changes are con-
sequence of the higher amoeba density, which saturates
cAMP receptors.

In Fig. 1 it can be seen that the dynamics of the amoeba
with its initial condition indicated by a square, is forced to
shorten its cycle due to the coupling. To better understand the
coupling effect among amoebas at long distances we per-
formed numerical experiments with amoebas equally spaced
in a rectangular grid �9�80�. As we are interested in a two-
dimensional system, we have chosen to use 9 columns and,
to minimize border effects, only the central amoebas are ana-
lyzed. With this setting we performed wave propagation nu-
merical experiments throughout the grid.

The first experiment consists in placing the first row of 9
amoebas in a pulsing state �values from the default cycle�
and the rest of them in an inactive but susceptible state �� j
=0.9 and � j =0�. This pulse will induce similar pulses in the
neighboring sites producing a cAMP wave. The purpose of
this numerical experiment is to determine the effect of the
grid density on the cAMP wave propagation speed.

The speed was measured considering the delay it took for
the cAMP concentration maximum of a row to reach the next
one. Results from the last three rows were omitted due to
border effects. In Fig. 2 we present the speed in mm/s for
each of the system rows. Simulations were made with amoe-
bas spacings of 8, 24, 27, and 28 �units in ��.

For amoebas spacings lower than 27� we can also see that
the speed, at some time, diverges. This happens due the sys-
tem density being high enough so that it will eventually
present a spontaneous pulse, synchronizing all remaining
rows. In systems with amoebas spacings from 28 to 32�, the

0 100 200 300

0.2

0.4

0.6

0.8

0 100 200 300

ρ

βj (10
-7
M) βj (10

-7M)

FIG. 1. �Color online� Phase space projection on � j�10−7 M�
�� j plane for 4 amoebas �each represented by a different line type�
distributed in two squares of lateral sizes of 3� and 5�, respec-
tively. Symbols indicate the initial conditions for each trajectory.
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development of the initial pulse into a wave is still observed,
but the amoeba density is not high enough to produce spon-
taneous pulses. That is, it only propagates pulses when im-
posed as initial condition. For densities lower than that, the
pulse degrades before reaching the next row of amoebas and
there is no wave front.

It is worth noting that when the system is below the syn-
chronization threshold �i.e., amoebas spacings 
27�� a wave
front imposed to the first row propagates to subsequent rows,
farther from the first one. It eventually stabilizes in the
middle of the system, generating a wave propagating for
both directions.

In Fig. 3 we present the average speed for this experiment
�before synchronization�, in mm/s, for simulations with
amoebas spacings from 1.5 to 32 �units in ��. We can see
that speed decreases very fast for low densities probably re-
flecting the interplay among cAMP diffusion, degradation by
phosphodiesterase and the amoeba internal cycle adaptation
to the external cAMP concentration. Speeds measured here
are within the same order of magnitude of experiments,
which vary from 0.26 to 0.5 mm/min �23�.

In the second experiment, we studied wave front propa-
gation through the system, using the default cycle to distrib-
ute the pulses among the rows. Again we used a 9�80 grid
and simulated cases with 20, 16, and 10 pulses inserted as
initial conditions.

This setting enabled us to analyze the dependence of av-
erage cAMP amplitude on the wave number at different den-
sities. For example, for a spacing of 24� we can simulate
wave numbers of values 2
 /96, 2
 /120, 2
 /192 �in 1 /�
units�. In Fig. 4 we show the simulation of 10 pulses in a
spacing of 24�, which results in a wave number of

2
�−1 /192 We displayed vertically the cAMP concentration
of the grid central column, the brightness reflects concentra-
tion and the time evolves from left to right.

As our boundary conditions are not periodic, we cannot
impose that any pulse reaching one side restarts on the other,
so eventually the initial pulses fades away and is replaced by
a spontaneous pulse, when the system density allows.

As seen in Fig. 1, depending on the quantity of cAMP in
the system, the cycle may shrink, and, under certain condi-
tions, may contract so much that new pulses will be delayed
while the cAMP degrades, leaving the system in a quiescent
state. Such delay will synchronize most amoebas limiting the
maximum density values we may use for a specific quantity
of pulses in the system, i.e., wave number. A minimum den-
sity value is found when the system is so sparse that the
pulses fade away before reaching the next row.

In Fig. 5 we show the average concentration of cAMP
amplitude for three sets of pulses at different wave numbers
from the previous setting. There is a clear tendency of sup-
pression of the oscillations at high wave numbers. Such be-
havior is typical of excitable continuous media near an os-
cillatory instability. This result could be compared to the
dispersion relation found for the prototypical complex
Ginzburg-Landau �24� equation but the limits imposed by the
cAMP dynamics prevent a quantitative comparison.

We can now simulate more complex behavior of cAMP
signaling, such as reaction-diffusion patterns. It is known
�22� that these patterns are present in early aggregation
stages of D. discoideum. The model we use allows to simu-
late such stages without any modification of the default bio-
logical parameters. We consider a square grid with equally
spaced amoebas. To impose a spatially distributed phase to
the system, these amoebas are separated in groups with the
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FIG. 2. Wave speed in mm/s versus system rows in a regular
grid. The speed was measured considering the delay it takes for
cAMP concentration maximum of the previous row to reach the
measured one, results from the last rows were omitted due to border
effects. Each line represents a simulation with a different amoebas
spacings, 8, 24, 27, and 28 all in units of �.
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FIG. 3. Average wave speed in mm/s of the previous experiment
�as seen in on Fig. 2� which consists in a wave propagating through
a regular grid, each simulation with a different spacing. The average
was taken before synchronization.

FIG. 4. cAMP concentration of the grid central column is displayed vertically, the brightness reflects concentration and time evolves from
left to right. Simulation was made with a spacing of 24� and with an initial condition of 10 pulses
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same initial conditions. Each group contains 9 amoebas, so
that the system is composed by B=N /9 boxes. A random
initial phase of the default cycle is attributed to each box.

Figures 6 and 7 show examples of reaction-diffusion pat-
terns for grids of size 18 and 30, with spacings of 13� and
20�, respectively. To study the limit where the system goes
from circular waves �target� synchronization to spirals or
more complex reaction-diffusion patterns, simulations were
made with different random initial conditions and densities.
We have found that for spacings of 12�, or lower, the system
always converges to a target wave, its size regulates the tran-
sient duration. Spacings of 13� or higher may still evolve to
a target wave, but with this density the system may also
maintain other structures indefinitely. In fact, spirals and
other complex behavior are observed to be more probable for
larger and sparser systems in our simulations.

IV. MOVEMENT

To simulate amoeba movement we use a self-propelled
particle model with adhesive forces, chemotaxis and noise.
Vicsek et al. �16� proposed a simple model with self-
propelled entities moving in a continuous space with fixed
speed and direction dynamically aligned with their neigh-
bors, which have been used as verisimilitude tests in several
biologically motivated works �17,25,26�.

The work by Vicsek and collaborators in flocking behav-
ior was extended by Gregoire et al. �25� to include volume;
Belmonte et al. �17� extended it further to simulate interac-
tions of different cell types to study the influence of differ-
ential adhesion in cellular segregation. In our study Bel-
monte and collaborators version of the model has been
modified to include chemotaxis but with a single adhesive
interaction type.

When considering movement, the solution, Eq. �8�, of Eq.
�1�, requires the knowledge of the emission position and in-
tensity history. However, as the cAMP wave propagation is
about 25 times faster than the mean amoeba speed �23,27�,
so the effects of sources displacement may be neglected.

In our simulations amoebas are supposed to a have fixed
speed, v0=2 �m /min, a value taken from previous experi-
ments �27�. The kinetic state of the ith amoeba at a time t is
described by its location, xi

t, and by the direction of its ve-
locity, �i

t �in two dimensions�. This orientation angle is ob-
tained as in Ref. �17�, but with a chemotaxis term added,
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10 pulses
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7 M
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FIG. 5. Average concentration of cAMP amplitude for different
wavenumbers �in 10−7 M��−1 units�. Sets of 20, 16, and 10 pulses
where chosen as initial conditions on rectangular grids �9�80�, i.e.,
sets of 4, 5, and 8 values sampled on the default cycle. For each set
of pulses, simulations were made with different spacings, resulting
in multiple values for some of the wave numbers.
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FIG. 6. �Color online� cAMP concentration color map �in
10−7 M units� for a square grid �with a spacing of 13� between
amoebas� containing 18�18 amoebas. �a� Initial condition with 36
states randomly obtained from the default cycle. These states were
distributed among an equal number of boxes, each containing 9
amoebas. �b� Evolution to a spiral of that initial condition after 110
min of simulation. See Ref. �38� for a movie on the pattern
evolution.
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FIG. 7. �Color online� cAMP concentration color map �in
10−7 M units� for a square grid �with a spacing of 20� between
amoebas� containing 30�30 amoebas. The image shows the evo-
lution of the 100 states randomly obtained from the default cycle,
distributed among an equal number of boxes, each containing 9
amoebas. After 20 min of simulation, we can observe a complex
reaction-diffusion pattern. See Ref. �38� for a movie on the pattern
evolution.
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�i
t+1 = arg��j=1

j�i

n

�f ij
t eij

t + �ui
t + �gi��t�

��t

���t� � . �9�

The first term is responsible for the interaction between
amoebas; it is a radial force, f ij

t , that is exerted by particle j
on the particle i along the direction eij

t that goes from particle
j to the particle i; parameter � controls its weight. Parameter
� controls the intensity of the noise which is an unitary vec-
tor with random uniformly distributed orientation, ui

t. The
last term represents the chemotaxis, described here as an
unitary vector pointing in the cAMP concentration direction
multiplied by a density dependent scalar function gi��t� and
relative weight controlled by parameter �. Experiments �6�
show that the movement efficiency toward the cAMP gradi-
ent is highly influenced by the cAMP concentration. We lin-
early interpolated the data points extracted from Fig. 5 of
Ref. �6� to construct the function gi��t� in the above equa-
tion.

The radial force used contains a hard core repulsion for
interactions within a radius dc and a linear term for interac-
tions in the interval dc
r
d0, the latter being defined using
the equilibrium distance de,

f ij = 	
	 if rij 
 dc,

1 −
rij

de
if dc 
 rij 
 d0,

0 if rij � d0,
� �10�

where dc=0.75�, d0=1.125�, and de=�.
It can be inferred from Eq. �9� that when amoebas are

close to each other, the values of �, �, and � must be ad-
equately chosen. Preliminary simulations have shown that, at
the moment of a pulse, chemotaxis may overcome the radial
force. For the parameter settings for which this happens, the
aggregate size oscillates along with the cAMP pulses. As far
as we know, this is not seen in experiments. So, the param-
eters controlling the amoebas movement should be chosen to
avoid this behavior.

In Figs. 8 and 9 we show a group of 500 amoebas ran-
domly distributed on squares of sides 0.45 and 1 mm, respec-
tively. The initial conditions for each amoeba were randomly
sampled from the default cycle. Each image presents snap-
shots at different system evolution stages. Figure 9�b� shows
indications of streaming after 5 min of evolution. After 30
min �Fig. 9�c�� we have five different aggregates, contrasting
with Fig. 8�c� which presents a single aggregate. Both simu-

FIG. 9. Aggregation states of 500 amoebas randomly distributed on a square of side 0.45 mm. The initial state for each amoeba was
randomly chosen from the default cycle. Image shows three different states of the simulation: �a� T=0, �b� T=5 min, �c� T=25 min. See
Ref. �38� for a movie on amoebas aggregation.

FIG. 8. Aggregation states of 500 amoebas randomly distributed on a square of side 0.45 mm. The initial state for each amoeba was
randomly chosen from the default cycle. The image shows three different simulation states: �a� T=0, �b� T=5 min, �c� T=15 min. See Ref.
�38� for a movie on amoebas aggregation.
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lations were performed with the following movement param-
eters: �=8, �=4, and �=1.

To obtain finer details about the internal structure of the
aggregate presented in Fig. 8�c�, we studied the effect of the
movement parameters on the aggregate asymptotic behavior.
Fixing the noise value to �=1, the parameters, � and �, re-
main free. There are two clear limits where parameters � or �
dominate the system: �i� in the case where chemotaxis is
more relevant, the system, once aggregated, contracts up to
the core limit, reacting like rigid disks under compression;
�ii� if radial force dominates, each amoeba moves around a
central equilibrium point, as particles vibrating in a spring
lattice.

In the intermediary parameter range, we find an interest-
ing collective internal movement. This behavior is shown on
Fig. 10 which represents the amoebas trajectories over a 40
min simulation window. It shows a collective circular motion
that reflects internal streaming and suggests that the helicoi-
dal order of amoebas streams found in the slug may emerge
in a similar way.

V. DISCUSSION AND CONCLUSIONS

We present here a model based on the Martiel and Gold-
beter equations with a diffusion term solved using Green’s
functions, which determine cAMP concentration and gradi-
ent directly on each amoeba, avoiding cAMP calculation at
all points in space. As a consequence, simulation times scale
with the number of amoebas and not with system size or
space dimension. This is a great advantage when comparing
to simulations with discrete space, since in the latter the sys-
tem size or space dimension will impact on the numerical
cost to solve it.

Several D. discoideum properties, from initial aggregation
stages up to mound formation, were reproduced. The values
of almost all cAMP signaling parameters are taken from
Martiel and Goldbeter work �3� which were based on experi-
ments, with exception of the diffusion coefficient value,
taken from Naganos paper �9�, and parameter h, that controls
the intensity of cAMP production by the amoebas, used as a
free parameter to tune the system.

To determine the basic properties of cAMP diffusion, we
considered a set of simulations using amoebas fixed in space.
Depending on amoebas density, three different regimes were
found: no wave front propagation, cAMP wave propagation
under stimulus, and synchronization. Moreover the measured
speeds were compatible with experimental values �23�. Also,
an equally spaced group of fixed amoebas was set, sequen-
tially, to different phases of their default cycle to study the
dispersion relation between wave number and cAMP oscilla-
tion amplitude. We find the same qualitative behavior as in
solutions of complex Ginzburg-Landau equation �24� with an
amplitude decay at large wave numbers. A quantitative fit
was not possible, since it would require data sets larger than
the limits imposed by amoebas density.

Reaction-diffusion patterns naturally appear in the model,
although at a lower density than the experimentally observed
�28�. Here, spacings smaller than 12� always converge to a
target wave pattern. The reasons for these discrepancies may
be many. We point out that while this model uses fixed pa-
rameters, certain biological properties may adapt to different
stimuli on experiments. Also, the role of phosphodiesterase
may be underestimated �7�. In fact, larger values of the deg-
radation parameter ke are expected to yield reaction diffusion
patterns at higher densities.

Amoeba movement was simulated using a boids model
�16,17,25�. The amoebas aggregated as expected, showing
stream formation in the early stages. In Fig. 9 we have seen
that depending on the density, the amoebas might form more
than a single aggregate. The formation of multiple aggre-
gates at lower densities was expected due to the nature of the
MG’s equations. As seen in Fig. 1, when the system density
becomes extremely high �aggregation�, the oscillatory cycle
shrinks to a point in the phase space projection � j �� j. De-
spite an average cAMP concentration of 2�10−7 M on these
aggregates, we can see if Fig. 5 that, at low densities, pulses
do reach higher amplitudes, and in doing so, they attract
much farther amoebas.

Also, as discussed in the beginning of Sec. II, using the
free parameter h, we may control the necessary cAMP quan-
tity produced by the amoebas in order to keep the system
oscillating and attracting distant amoebas, until a given
amount of amoebas reach the aggregate. Further investiga-
tion is required to establish whether there is a value for
which this oscillation period is similar to experiments and a
greater number of amoebas aggregates before the cAMP pro-
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FIG. 10. Amoebas trajectories from Fig. 8 over a 40 min
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 t
90 min� simulation window, where a collective rota-
tional behavior can be seen.

FIG. 11. �Color online� Aggregate formed by 500 amoebas
which were initially distributed in a 45 mm square. Different shades
are used to make visualization easier.
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duction reaches a constant plateau, or whether it would be
necessary to implement an adaptable parameter h so that the
features of D. discoideum could be more accurately simu-
lated.

Circular and helicoidal motion are observed at different
stages of the D. discoideum social cycle �29,30�. Interest-
ingly, after aggregation is complete in our simulations, inter-
nal circular motion emerges �Fig. 10�. This behavior has
been found in previous D. discoideum simulations �31� and
also in models of self-propelled elements where some kind
of confinement is imposed by considering either repulsive
walls �32� or forces acting toward the cluster gravitational
center �33�. Here confinement is a consequence of the radial
cAMP field pattern installed after aggregation and, conse-
quently, the circular motion solution implies a spontaneous
symmetry breaking. This is an alternative to the current hy-
pothesis of a circular/helicoidal cAMP field �34�.

This numerical solution may be readily implemented in
three dimensions. Preliminary tests produced the three di-

mensional mound with 500 amoebas shown in Fig. 11. At the
beginning of this simulation, the amoebas were randomly
placed on a square plane with 45 mm side.

To conclude, alternative models could have been consid-
ered to describe cAMP production. For example, Refs.
�35,36� considered a different, simpler biochemical approach
but the parameters used are not experimentally obtained. In
Ref. �37�, on the other hand, a more detailed description of
cAMP production is proposed. However, for the D. discoi-
deum life stages treated here, this increased complexity is not
necessary. Our approach has shown that MG equations �with
diffusion� are an excellent minimal model to describe the
whole processes involved in the signaling and aggregation
stages of D. discoideum.
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