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The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a
self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing
protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria
are used. This generalized foldability criterion is derived using the high temperature cumulant expansion
approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins
is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is
determined with a selective pressure of stability ���G� for the theory designed sequences, which are found to
be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results
show that this foldability criterion selects viable protein sequences more effectively compared to the Monte
Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence
space. These observations may impact de novo sequence design and its applications in protein engineering.
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I. INTRODUCTION

In-silico insights provide invaluable inputs for compre-
hending the mechanism of molecular evolution based on the
requirements of fitness, stability and function. These models,
both on-lattice, off-lattice �1� and spin glass models �2� are
often employed to compute suitable measures of foldability,
explore the nature of folding energy landscape �3� and how
the need to fold can affect the course of molecular evolution
�4,5�. Understanding the evolution of proteins based on some
optimized foldability provides valuable insight about the
mechanism of the selective pressure at the molecular level.
Evolution proceeds via mutations and most often these mu-
tations are found to confer marginal or no functional advan-
tage to the protein. This conforms to the theory of neutral
evolution �6,7� which implies a set of structurally similar
mutated sequences without any significant alteration in their
function.

Different aspects of evolution may be simulated, ranging
from the scale of the protein/gene to the entire genome to
characterize the mapping between sequences and structures.
Such models usually define a set of “viable” mutated se-
quences which is a subset of the larger space of all possible
sequences. This set of sequences are connected by single
point mutations and encode the same native fold, often
termed as neutral network �8,9�. Each mutated sequence in
this network act as a node. For an evolving set of sequences,
the population dynamics may be viewed as random diffusion
�10� over the network. Basic simulation models focus on
understanding the variation of the stability of designed se-
quences only through random point mutations �11� and cor-
relates how the rate of mutations �12–14� affect the protein’s
functionality and stability. The stability of the designed se-
quences toward point mutations have been investigated �15�
which point out that large energy gaps between the native
state and an ensemble of unfolded states makes these se-

quences more robust toward random point mutations �16,17�.
In this work, a self-consistent mean-field theory with bi-

nary patterning of amino acid residues is applied to design
“wild-type” protein sequences consistent with a generalized
foldability criterion �. Selective pressure is explicitly in-
cluded in the model in terms of ��G. The detailed effect of
random cumulative mutations is investigated on wild-type
protein sequences obtained from theory and simulations.
Also the robustness of proteins are assessed in terms of the
cumulative �m�-neutrality, which is the fraction of proteins
which fold to the wild-type structure but differ from the
wild-type sequence exactly at m residues �18,19�. Our theory
is based on a three-dimensional lattice model representation
of protein structure. Despite the approximations involved,
they portray an unique sequence-structure relationship which
is observed in real proteins �20,21�. The theory is compared
with classic Monte Carlo �MC� and mean-field bias Monte
Carlo �MFBMC� results on model lattice proteins. The mu-
tational robustness of the sequences obtained from the theory
depict a similar qualitative trend compared to that of the
sequences obtained from the simulation results. However,
both the results show that foldability ��� of sequences is an
important parameter to govern the viable genotypes at a
given evolutionary selective pressure.

II. THEORY

Foldability criteria provide a suitable measure for the
sequence-structure compatibility in form of a predetermined
energy function. The protein is modeled as a cubic lattice
polymer consisting of 27 residues on a maximally compact
three-dimensional lattice �22–24�. Protein conformations are
represented by self-avoiding walks that occupy all lattice
vertices and a total of 103 346 compact conformations are
possible which are not related by rotational, reflectional, or
translational symmetry �25�. The unique target conformation
is chosen among these conformations depending on the “des-
ignability” �26� of the sequences. The unfolded ensemble
comprises of the remaining 103 345 compact conformations,*pbiswas@chemistry.du.ac.in
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which are likely to compete with the target structure. With a
binary patterning of the amino acid residues, the number of
possible sequences for a 27-mer is large and amounts to
227=134 217 728. Such models have been extensively stud-
ied in the context of protein’s neutrality and evolution
�15,18,27–31�. Although non-compact conformations are im-
portant for understanding the folding phenomenon, these
states are likely to have less effect on the qualitative nature
of the foldability landscape �32�. However, these lattice mod-
els may be limited by the size and topology of the native
conformation and the nature of the stabilizing interactions
for exhibiting a distinct two-state folding regime �33�. The
present study reveals that it is possible to establish the two-
state folding pattern by selecting simple foldability and sta-
bility criterion, which opts viable protein sequences to ex-
plore certain aspects of protein sequence evolution.

Most foldability criteria are based on the energy of differ-
ent conformations of proteins. Ef denotes the energy of the
folded state of the protein and �Eu� denotes the average en-
ergy of the unfolded ensemble of states. These energy terms
are commonly expressed in terms of site-specific monomer
probabilities for each sequence position. The energy of the
sequence in a particular target conformation, Ef may be ex-
pressed as

Ef � Ef = �
i=1

N

�
�=1

2

�
k

�ik
�1��ik

�1�����i��� . �1�

The fluctuations in Ef about its mean value due to variation
of sequences is assumed to be small. The propensity of the
ith monomer to reside in the kth structural context is denoted
by �k

1���. Such contexts indicate whether the ith site is bur-
ied in the interior or accessible to the solvent or the particular
type of secondary structures associated with it. The term �ik

�1�

contains the structural information of the ith monomer to
reside in the kth structural context, as given by

�ik
�1� = 	1 if site i is in structural context k ,

0 if not.

 �2�

The sequence averaged energy of an ensemble of the un-
folded conformations may be similarly expressed as

�Eu� = �
i=1

N

�
�=1

2

�
k

��ik
�1��u�ik

�1�����i��� . �3�

The difference in the folded state energy �Ef� and average
energy of the ensemble of unfolded states ��Eu�� denotes the
stability gap �, given by

� � Ef − �Eu� � Ef − �Eu�

= �
i=1

N

�
�i=1

2

�i����
k

��ik
�1� − ��ik

�1��u��ik
�1���� . �4�

For each sequence, the variance of the energy of the un-
folded ensemble of states is given by

�2 = �Eu
2� − �Eu�2

= �
i,j

�
�,�

�
k,k�

�k
�1�����k�

�1�������ik
�1�� jk�

�1��

− ��ik
�1���� jk�

�1����ij��,�� , �5�

where the pairwise monomer probability �ij�� ,�� is given
by

�ij��,�� = 	�i���� j��� if i � j ,

�i���	�,� if i = j ,

 �6�

where 	�,� is the Kronecker delta function.
A generalized foldability criterion � is derived using a

high temperature cumulant expansion �34� up to the second
order for approximating the free energy of folding �35,36�.
The truncation at second order is exact assuming the energy
fluctuations in the unfolded state ensemble are Gaussian.
This foldability criterion is evaluated as a linear combination
of the mean and variance of the energy of the unfolded en-
semble.

� = � +
1

2
�2, �7�

where �, �, and �2 are dimensionless quantities scaled by
appropriate units of thermal energy. The theory relies on the
maximization of the sequence entropy S subject to the nor-
malization of the site-specific monomer probabilities

�
�=1

m

�i��� = 1 ∀ i �8�

and the energy constraint given by Eq. �7�

S = − �
i=1

N

�
�=1

m

�i���ln �i��� . �9�

Solving the simultaneous equations that define the maxi-
mum of the variational functional of the set of monomer
probabilities and the constraint equations, a set of coupled
nonlinear transcendental equations are obtained.

�i��� =
1

qi
�exp�− 
����� ,

� = � +
1

2
�2, �10�

where qi=��=1
m exp�−
����, ��=�� /��i���, and 
� is the

Lagrange multiplier for Eq. �7�. This set of equations are
solved numerically to yield the site-specific monomer prob-
abilities and Lagrange multipliers for a given value of �. The
individual contribution of � and �2 are determined self-
consistently from the equations Eqs. �4�, �5�, and �10�, re-
spectively, and thus cannot have any arbitrary values.

III. SIMULATION METHODS

Sequence optimization methods like Monte Carlo �MC�
employ an effective temperature to scan the sequence space.
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MC methods with simulated annealing are used to identify
wild-type sequences for a specified target structure without
getting trapped at any local minima. It also provides an en-
semble of solutions at a finite temperature following a Bolt-
zmann distribution. A modified form of MC, known as mean-
field biased Monte Carlo �MFBMC� often shows a better
convergence to a low energy minimum. To identify specific
sequences, it would be useful to combine the sampling
power of MC methods with the convergence efficacy of the
mean-field methods. In MC simulation the site-identity
monomer probabilities are predicted by choosing an initial
random monomer probability profile ����1���¯�N��� at
each site i according to a uniform distribution. At each MC
step, a random site i is chosen where the new monomer
probability is predicted randomly and the trial sequence ��
will be generated according to the Metropolis acceptance
probability �37,38�,

a = min„1,exp�− 
������ − �����… �11�


=1 /T, where T is the temperature at each MC step. � for
each probability profile is calculated from Eq. �7�.

In MFBMC simulation, the trial sequences are opted ac-
cording to a self-consistent theory generated probability pro-
file which greatly reduces the computational time associated
with each simulation step. The sequence corresponding to a
specified target structure would be accepted according to the
acceptance probability a, which is given by �38�,

a = min�1,
P���
P����

exp�− 
������ − ������ �12�

where P���=�i�i��� In both simulation methods suitable
sequences are sampled for the same target structure the only
difference is, unlike MC where the sequences are sampled
randomly, the search for sequences in MFBMC is predeter-
mined from the self-consistent mean-field theory.

For both MC and MFBMC, the system is cooled at each
simulation step where the temperature decays exponentially
T�t�=T0 exp�−t /��. T0 is the initial temperature set to a very
high value �5000� at t=0 so that all sequences would be
thermally accessible �38�. The decay constant � can be tuned
to yield different cooling rates and t is the number of MC
steps. The system may be equilibrated to a desired tempera-
ture to search for optimal sequences at a specified T. Simu-
lations are performed at different � to yield the probability
profile for the target structure at a given T for various values
of �. Minimization runs were terminated at T=10−4 to en-
sure that the calculations were stopped well after the system
was effectively frozen.

The generated wild-type sequences resemble the naturally
occurring protein sequences corresponding to a given
structure/phenotype �20,21�. These sequences are randomly
mutated at single site at a time and the viable mutated se-
quences are selected if they retain the same native fold as of
“wild-type” sequence and if the free energy change
���Gmut� due to mutations is below some critical cut-off
values ���Gcut�. The cut-off values for ��Gcut are 0, −1,

−1.2, and −1.5, respectively. The free energy of a sequence
in the target state can be calculated with respect to the en-
semble of unfolded states �39,18�,

�G = Ef + kBT ln�Z − exp�− Ef/kBT�� , �13�

where kBT is the Boltzmann constant times temperature, Z is
the partition function and Ef is the energy of the target state.
All 103 345 unfolded conformations are used to calculate the
partition function Z. The change in free energy due to muta-
tion is measured by

��Gmut = �Gmutated − �Gwild, �14�

where ��Gmut0 implies a thermodynamically favorable
mutation.

IV. RESULTS AND DISCUSSIONS

Figure 1 illustrates the applicability of the self-consistent
theory in designing protein sequences compatible with a
given target structure. Here four different sequences corre-
sponding to �=−2, �=−1, �=1, �=4 are selected. For each
sequence the target state energy Ef and the energy of the
unfolded ensemble �Eu� for all 103 346 conformations are
calculated and plotted along the y axis. The x axis represents
the range of � values. The plot depicts that for �0, the
target conformation is the most stable state as represents the
minimum energy conformation. The energies of all unfolded
states are higher than the target state. The protein sequences
in this region choose the target structure as the unique native
state among all conformations. The situation exactly reverses
for ��0. The target state is destabilized compared to the
ensemble of the unfolded conformations and the designed
protein sequences are not foldable in spite of the presence of
a unique native state. In this regime, a substantial percentage
of all possible sequences may not fold to the “proteinlike”
target structure, though they have distinct � values. The in-
dividual contributions of � and �2 are also determined for
each value of �. For negative values of �, �0 which im-

FIG. 1. �Color online� Contribution of � and �2 values in de-
termining protein’s foldability. The target state is denoted by circles
and the other unfolded conformations are represented by squares.

NEUTRALITY AND EVOLVABILITY OF DESIGNED … PHYSICAL REVIEW E 82, 011906 �2010�

011906-3



plies that the target structure is stabilized with respect to the
energy of the unfolded conformations. The variance in en-
ergy of the unfolded states �2 also differs in the chosen range
of � values. Thus sequences sampled from different range of
� values differ in terms of their designability in opting the
unique native structure.

The effect of cumulative random point mutations is ex-
plored by calculating the number distribution of acceptable
mutated sequences as a function of the generalized foldabil-
ity criterion �. The “wild-type” sequences are generated for
the theory, MC and MFBMC, respectively, for the � value
corresponding to maximum sequence entropy. This ensures
that these sequences have a certain degree of similarity in
their target structures and fold back to the corresponding
native structures. The similarity between different simulated
sequences in the maximum entropy region is compared to
that of the mean-field theory generated sequences. For a bi-
nary representation of the residue identities, a sequence simi-
larity measure qseq�� ,��� of two different sequences �
=�1 , . . . ,�N and ��=�1� , . . . ,�N� may be defined by

qseq��,��� = �
i=1

N

���i����i�� , �15�

where the spin-equivalent variables are

���� = 	 1 for � = P

− 1 for � = H .



The results show that the homology between theory de-
signed sequence and the simulation generated sequences are
low.

A total of 5�106 cumulative random point mutations are
performed on the simulated and theory generated sequences.
The viable sequences are selected if they fold back to the
desired target structure as their native state and ��Gmut0
compared to the respective wild-type sequences. The number
of viable sequences are binned at different � values, where
	�=0.2 is the width of each bin. Figure 2 represents the
number distributions of accepted mutated sequences vs � for
random point mutations. The distributions are similar except

the shift in maxima which corresponds to the slightly differ-
ent � values at the entropy maximum region. This suggests
that the number distribution of mutated sequences associated
with a specific � values has some degree of universality and
does not depend on the sequence composition. This also im-
plies that there may be sequences with minimal homology
which may adopt the same fold. In course of evolution, mu-
tations of specific amino acids govern the foldability of a
particular sequence and this foldability in turn influences the
degree of selective pressure in choosing suitable genotypes.

Figure 3 shows protein’s neutrality which is defined by
the fraction of the single amino acid substitutions that retain
the similar native structure as the wild-type sequence. For
the specified target structure corresponding to �=−1.2,
theory, MC and MFBMC generated wild-type sequences are
randomly mutated 1000 times and the resultant monomer
probabilities are generated randomly. In the next generation,
each sequence from this set of 1000 single point mutated
sequences is further mutated randomly. All mutations are car-
ried out cumulatively and the mutation rate is kept constant
to allow only single mutation at each sequence per genera-
tion. The mutations are performed for 15 successive genera-
tions. After each generation of mutation, the sequences are
considered “viable” if they fold back to the same native
structure and if the free energy change due to mutations
��Gmut are lower than the chosen ��Gcut values. To verify
whether the mutated sequences fold back to the same target
structure, the energies of all possible 103 346 conformations
are calculated for each mutated sequence after each genera-
tion of mutation. For each generation of mutation, if the
target structure is found to possess the lowest energy, then
the mutated sequence is able to choose the specified target
structure as its unique native state. The fraction of viable
sequences �Pf�m�� after mth generation of mutations is cal-
culated and plotted against m. The same procedure is fol-
lowed for MC and MFBMC generated sequences respec-
tively corresponding to the same specified target structure at
�=−1.2. For large values of m, Pf�m� decays exponentially

FIG. 2. �Color online� Distribution of number of acceptable se-
quences at various � after random site mutations.

FIG. 3. �Color online� Comparison of neutrality of simulation
and theory designed protein sequences at different ��Gcut cut-off
values.
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�19� with ���m where ��� is the protein’s neutrality. A linear
regression of ln Pf�m� vs m yields the neutrality ���=es

where s is the slope of the regression line.
In Table I the comparison of neutrality of theory, MC and

MFBMC designed sequences are provided. The neutrality
also decreases as the cut-off free energy values are more
negative laterally along Table I. As the cut-off value becomes
more negative, the number of correctly folded sequences at a
given mutational distance m decreases reducing the value of
Pf�m�. This reflects that the foldability of different sequences
for a common target structure varies with degrees of evolu-
tionary selective pressure and hence shape the evolutionary
sequence space accordingly. This is also evident from the
fact that protein’s neutrality decreases with increasing num-
ber of cumulative point mutations. With increasing genera-
tion of mutations the foldability of protein sequences de-
crease and thus it becomes difficult to fold back to the
specified target structure. Results show that at any cut-off
free energy value, the theoretically designed sequence is
more neutral compared to the simulation designed sequences
in terms of tolerating multiple single point mutations. This
may be rationalized by the fact that the theoretically de-
signed sequences are optimized for a particular � value.

The present study highlights the relation between pro-
tein’s evolvability and foldability. The effect of cumulative
mutations on � and �2 are separately analyzed. A set of
seven theory designed protein sequences are chosen at dif-
ferent � values ranging from −2.5 to 0.5 at an interval of 0.5.
Outside this range of � the designed sequences are not opti-
mized to allow for mutations without disrupting the protein’s
target structure. Each of these wild-type sequences are mu-
tated randomly 1000 times at each generation. The mutated
sequences are considered viable if they fold back to the same
native structure and have ��Gmut0 values. This procedure
is repeated up to eighth generation of successive mutations.
For the total number of viable sequences the average value of
� denoted by ��� and average �2 denoted by ��2� are calcu-
lated. At each generation of mutations the sequences are suc-
cessively substituted. Figures 4�a� and 4�b� show how ���
and ��2�, respectively, affect the choice of total number of
viable sequences until eight generation of mutations.

The graph shows that for each generation of mutation at a
certain value of ��� and ��2� the total number of acceptable
mutated sequences are maximum and are denoted as �m and
�m

2 . Results show that with increasing generation of muta-
tions the �m and �m

2 shift. �m shifts toward more negative �
whereas �m

2 shifts toward more positive values. At lower
generation of mutations this shift is large and decreases with
increasing number of generations. These results indicate that
with accumulation of mutations in protein sequences, the sta-

bility of native fold increases. Also with increasing genera-
tion of mutations ��m

2 � increases, which signifies that the
width of the energy of unfolded ensemble increases. The
asymptotic variation of both ��� and ��2� is justified by the
increasing stability of the native state which attains a maxi-
mum value for a certain generation of mutations. With in-
creasing generations of mutations, the possibility of obtain-
ing viable mutated sequences with high ��� and low ��2�
decreases. Therefore, with accumulation of mutations under
neutral conditions, the evolutionary dynamics simulta-
neously stabilizes the native state and destabilizes the other
competing structures to maintain the protein’s native struc-
ture.

V. CONCLUSIONS

The present results show that at various degrees of selec-
tive pressure, foldability parameter decides which mutated

TABLE I. Comparison of neutrality of simulation and theory designed protein sequences at different
��Gcut cut-off values.

Wild-type sequence ��Gcut=0 ��Gcut=−1 ��Gcut=−1.2 ��Gcut=−1.5

Theory 0.8754 0.8640 0.8527 0.8190

MFBMC 0.7489 0.7137 0.6761 0.5908

MC 0.6911 0.6506 0.5787 0.5449

FIG. 4. �Color online� Variation of ��� �a� and ��2� �b� with
generation of mutations.
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sequence passes the fitness criteria �selective pressure�. The
theoretically designed sequences are optimally foldable,
hence more robust toward random point mutations. The fold-
ability of sequences thus effectively shapes up the evolution-
ary neutral sequence space by selecting the suitable geno-
types for a target structure/phenotype. Also the effect of
random point mutations is found to be similar for compara-
bly foldable sequences even if they have low sequence ho-

mology. This may account for reinterpreting neutrality and
evolvability to design “functionally fit” protein sequences.
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