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We demonstrate with a thought experiment that fitness-based population dynamical approaches to evolution
are not able to make quantitative, falsifiable predictions about the long-term behavior of some evolutionary
systems. A key characteristic of evolutionary systems is the ongoing endogenous production of new species.
These novel entities change the conditions for already existing species. Even Darwin’s Demon, a hypothetical
entity with exact knowledge of the abundance of all species and their fitness functions at a given time, could
not prestate the impact of these novelties on established populations. We argue that fitness is always a poste-
riori knowledge—it measures but does not explain why a species has reproductive success or not. To overcome
these conceptual limitations, a variational principle is proposed in a spin-model-like setup of evolutionary
systems. We derive a functional which is minimized under the most general evolutionary formulation of a
dynamical system, i.e., evolutionary trajectories causally emerge as a minimization of a functional. This
functional allows the derivation of analytic solutions of the asymptotic diversity for stochastic evolutionary
systems within a mean-field approximation. We test these approximations by numerical simulations of the
corresponding model and find good agreement in the position of phase transitions in diversity curves. The
model is further able to reproduce stylized facts of timeseries from several man-made and natural evolutionary
systems. Light will be thrown on how species and their fitness landscapes dynamically coevolve.
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I. INTRODUCTION

Evolutionary dynamics appear in a multitude of different
contexts. Evolution basically describes how sets of elements,
such as biological species, goods and services in an
economy, groups of living beings, or chemical compounds,
change over time. Examples are abundant in various areas.
Chemical compounds react with other compounds to produce
new chemicals. Integrated circuits performing specific com-
putational tasks can be combined to create another circuit for
a different computational task. Prey and predator may co-
evolve by succinctly acquiring new traits and thereby de-
velop into new species. In the following we will use species
for elements in whatever context, chemicals, goods, biologi-
cal species, etc. The removal or addition of a single species
in an evolutionary system may have dramatic consequences.
For example, in starfish removal experiments �e.g., Mukkaw
Bay in Washington �1�� starfish are removed from an eco-
system with the consequences that mussel populations ex-
plode and drive out most other species, while the urchin
population destroys coral reefs. In 1904 English physicist
John Ambrose Fleming accidentally manufactured the first
vacuum tube which triggered a cascade of technological and
economic coevolutions and adaptations; in 2004 the semi-
conductor industry was a market of $213 billion and enabled
the generation of approximately $1200 billion in electronic
system businesses and $5000 billion in turn in services
which amounts to 10% of world GDP �2�. Typically in evo-
lutionary systems species are endogenously added or re-
moved from a large system of mutually influencing species.
Two species influence each other if the existence of one spe-

cies has a positive or negative effect on the change of abun-
dance of the other. The possibilities for interactions in evo-
lutionary systems involve different natural, economic or
social laws on a variety of time or length scales. The collec-
tive result of these �“microscopic”� interactions between el-
ements leads to ubiquitous well-known macro phenomena in
evolutionary systems, such as punctuated equilibria, booms
of diversification, breakdowns and crashes, or seemingly un-
predictable responses to external perturbations. Maybe one
of the most exciting questions in natural sciences today is to
understand if evolutionary dynamics can be understood by a
common underlying principle and—if yes—how such a prin-
ciple might look like. Such a principle must be general
enough to capture the multitude of different phenomena, and
at the same time must be in a form which can be applied
easily to specific problems.

In the present understanding of evolution the concept of
fitness is of central importance. Usually the relative abun-
dance of species �with respect to other species� is described
by replicator equations �first-order differential equations� and
variants such as Lotka-Volterra equations �3–5�. Their mu-
tual influence is quantified by a rate specifying how the
abundance of one species changes upon contact with another.
In biology this rate is called Malthusian fitness, in chemistry
one refers to it as the reaction rate, in economics it is related
to production functions. Similar proliferation rates could also
be introduced for technological, financial or even historical
contexts. In the following we subsume them all under the
term fitness.

A distance between two species can be defined as the
minimal number of evolutionary steps needed for one spe-
cies to evolve into the other one �6� �in biology this distance
is often the number of single-point mutations two species
differ in�. In this way a metric is given on the space of all
possible species. A fitness landscape assigns to each point in*thurner@univie.ac.at
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this space �that is to each species� its reproductive success or
fitness. Evolution is sometimes pictured as an optimization
problem where species evolve and coevolve via adaptations
toward peaks in this landscape �7�. These peaks represent
regions of high reproductive success, whereas valleys corre-
spond to low fitnesses. As these peaks and valleys are spread
over larger regions of species space, the fitness landscape
becomes less rugged. If one species moves toward a peak it
may change the fitness of other species which are then mov-
ing on this fitness landscape too �8�—one speaks of coevo-
lutionary cascades. The higher the degree of “ruggedness”
�i.e., the smaller the average distance between adjacent adap-
tive peaks or valleys�, the higher the probability that these
cascades of coevolution last for long times. With lower rug-
gedness, however, the probability increases that each species
reaches an adaptive peak and the evolutionary dynamics
comes to a halt.

The fitness concept turned out to be of practical use in
specific fields such as viral competition experiments �9,10�
where certain assumptions such as high turnover rates, con-
stant death rates or restricted population sizes are met. Here
fitness functions could be used to quantify the relative repli-
cative capacity of two competing virus variants.

The concept of fitness is limited however. To see this
consider the following thought experiment. Suppose one—
say a demon—would have exact knowledge about the abun-
dance and fitness of each biological species in the universe.
“Knowing the fitness of a species” means knowledge of the
functional dependence of its proliferation rate on the entire
current environment �i.e., all other species�. The omniscient
hypothetical entity in possession of this knowledge could be
called Darwin’s Demon for obvious reasons. The demon may
be pictured as a superbiologist, able to measure each species’
abundance as well as the dependence of its proliferation rate
on each other species in each habitat. That is, he knows the
set of all existing species and can measure their associated
fitness landscape to an arbitrary degree of exactness. What
can the demon predict about the future course of evolution-
ary events, such as biodiversity in 100 million years or the
time to the next mass extinction event? Surprisingly little, for
the following reasons. A key characteristic of evolutionary
systems is its potential to generate innovations, i.e., new spe-
cies. In biological systems this can happen through muta-
tions, in technological or economical ones through spontane-
ous ideas of an inventor, etc. Once a new species is created it
becomes part of the environment and thereby potentially
changes the conditions for all already existing species and
for those yet to arrive. To now assess the fitness of a new
species one has to measure how it spreads in an environment
it is now part of. The demon has information related to a
different environment, one which only existed before arrival
of the new species. Thus the demon may have an exact de-
scription of the current biosphere, but with the advent of
each new species this description loses accuracy. Fitness thus
always encodes a posteriori knowledge, and cannot be used
to make falsifiable predictions. It is not fruitful to predict
future fitness of species from their present fitness. Instead
one has to understand how species and their fitness land-
scapes coconstruct each other, how they coevolve.

To make headway in understanding the phenomenology
of evolution, i.e., in identifying principles which guide evo-

lutionary dynamics, a series of quantitative models have
been suggested �8,11–18�. Here explicit assumptions are
made about how new species come into being, how they
interact with each other and under which conditions or under
which selective forces they vanish. Each of these models
focuses on particular aspects of evolution. For example in
Kauffman NK models �8� species are bit-strings with ran-
domly assigned fitness values. Arthur �11� focuses on tech-
nological evolution with integrated circuits as species whose
fitness is examined by how well they execute certain com-
putational tasks. Jain and Krishna �12� consider ecological
systems and elucidate the interplay between interaction to-
pology and survival of species. In most of these models some
ad hoc assumptions about the mechanisms have to be made.
In the model by Jain and Krishna, for example, species are
actively removed and added to the system, innovations are
externally enforced and not endogenously produced. In �11�
the output of randomly assembled circuits is compared to a
prespecified list of desired computational tasks �such as bit-
wise addition�. In the NK model evolutionary interactions are
constrained to actions on bit-strings. Although these assump-
tions are certainly reasonable in the specific contexts of their
models, it is not at all clear whether conclusions derived on
the basis of these assumptions are universally valid in differ-
ent contexts.

To arrive at a general evolutionary description �without ad
hoc specifications� one has to identify principles which are
abstract enough to be applicable in each evolutionary context
but which must be specific enough to make useful quantita-
tive predictions. To meet these requirements, evolution can
be pictured as a three-step production/destruction process.
Step 1: New species come into being through recombination
of already present species. That is, each species arises only
under the condition that a given �and maybe not unique� set
of other species or environmental factors exists. For ex-
ample, to assemble an MP3-player all parts—including
software—are needed. Sodium chloride can be produced by
sodium hydroxide in solution with hydrochloric acid. With a
substantial degree of oversimplification one can say that apes
in combination steppe formation give rise to mankind. Step
2: The new species becomes part of the system and can now
be combined with other, already existing species. One can
legally download music for the MP3-player and listen to it,
sodium chloride reacts with e.g., calcium carbonate in the
Solvay process, mankind burns forests to create fields for
agriculture. Step 3: As a consequence, through this recombi-
nation yet new species may come into being and other al-
ready existing ones may vanish or be destroyed. To be more
precise, the abundance of the new species has now to be
included in the already existing species’ fitness function, i.e.,
their proliferation rates have to be remeasured or calculated.
In this way—as a secondary effect—the extinction or expan-
sion of other species may depend on the advent of new ones.
For example, MP3 currently drives CDs out of the market
but can be combined with cell phones to give smartphones.
Soda ash can be used to remove sulfur dioxide from flue
gases in power stations which might help to reduce the on-
going Holocene extinction event of biological species �19�
possibly influenced by the advent of mankind. In previous
work models incorporating these types of production and
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destruction processes have been shown to reproduce a wide
range of evolutionary phenomena, including booms of diver-
sification �20�, breakdowns of diversity �21� or punctuated
equilibria �22�. Such processes further allow to understand
stylized facts in time-series data on evolutionary systems,
such as scale-free distributions of species lifetimes, the num-
ber of species per genus or the size of extinction events in
fossil data �23�, or GDP and business failures in economic
markets �24�.

In this work we propose a variational principle from
which dynamics—identical to the dynamics of the
production/destruction processes described above—can be
derived. To this end we define the evolutionary potential of a
species. This function measures in how many productions
and destructions a species would �no longer� take part if it
would enter �be removed from� the system. With this poten-
tial one obtains two formal representations of the system’s
dynamic: �i� The potential can be used to explicitly deduce a
set of dynamical update equations of system diversity for
production/destruction processes. �ii� Using this evolutionary
potential and a measure for ongoing productions and destruc-
tions one can derive a balance function. The evolutionary
process solving the dynamical update equations �i� always
minimizes the balance function �ii�. The balance function
further allows asymptotic solutions for the system diversity
�mean-field approximation�. These analytic solutions are in
good agreement with numerical simulations of the full model
of productions and destructions. This is to a certain degree
unexpected since the dynamics is dominated by strong and
nonlinear interactions.

This description of evolutionary systems allows to under-
stand how the set of existing species and their fitness land-
scapes coconstruct each other from first principles, as op-
posed to research strategies portrayed by Darwin’s Demon,
where snapshots of regions of fitness landscapes are empiri-
cally explored. Accordingly the focus shifts from predicting
microscopic properties such as individual proliferation rates
to estimating the occurrence of global, macroscopic events.
Here we develop a formalism capable of showing �i� macro-
evolutionary phase transitions �booms of diversification, ex-
tinction events or punctuated equilibria�, �ii� fat-tailed statis-
tics of many evolutionary observables as found in real-world
systems �such as species lifetimes, metabolic reaction fre-
quencies or economic productivity� and �iii� how to derive
these evolutionary dynamic equations from a variational
principle given �statistical� knowledge of the topology of
production/destruction rules only.

This work is structured as follows. In Sec. II we develop
a general framework for evolutionary systems via a varia-
tional principle. We discuss deterministic and stochastic
implementations and obtain asymptotic diversity solutions in
a mean-field approximation. In Sec. III we motivate and de-
fine the choice of evolutionary interactions as production and
destruction rules as in �24�. We treat the special cases of
systems with only productive interactions in Sec. IV and the
pure destructive case in Sec. V. Then we discuss the full
model of productions and destructions in Sec. VI. We discuss
empirical relevance of this work in Sec. VII and turn to a
conclude in Sec. VIII.

II. GENERAL FORMULATION OF DIVERSITY
DYNAMICS

A. Dynamical systems

The abundance of species i is given by a binary state
variable �i�t�� �0,1�. If species i exists at time t, �i�t�=1,
otherwise �i�t�=0. The system can be populated by N spe-
cies �N arbitrarily large, even infinite�. A particular configu-
ration of the system is characterized by the N-dimensional
vector in phase space �� �t�= ��i�t����= �0,1�N. The system’s
diversity D�t� is given by D�t�= 1

N�i�i�t�.
At each time, species i may experience three scenarios, �i�

annihilation �i�t�=1→�i�t+1�=0, �ii� nothing �i�t�=�i�t
+1� or �iii� creation �i�t�=0→�i�t+1�=1. Suppose that
there exists a function f i��� �t�� : �0,1�N→R indicating which
of the transitions �i�–�iii� takes place. Specifically, let f i��� �t��
indicate the following transitions

�i�f i��� �t�� � 0 ⇒ �i�t + 1� = 0,

�ii�f i��� �t�� = 0 ⇒ �i�t + 1� = �i�t� ,

�iii�f i��� �t�� � 0 ⇒ �i�t + 1� = 1, �1�

For �i� or �iii� a transition occurs if �i�t�=1 or 0, respectively.
That is, if f i��� �t���0 the system evolves according to

�i�t + 1� = �i�t� + ��i�t� with

��i�t� = sgn��1 − �i�t��f i��� �t��� . �2�

��i�t� can only be nonzero if �i�t�=0 and fi��� �t���0. Simi-
larly, for f i��� �t���0 ��i�t�=sgn�−�i�t�f i��� �t���. Let us de-
fine the ramp function R�x� by R�x��x iff x�0 and R�x�
�0 iff x�0. Using these definitions we can generically map
the indicator function f i from Eq. �1� onto the update equa-
tion

�i�t + 1� = �i�t� + ��i�t� ,

��i�t� = sgn�1 − �i�t��R�f i��� �t��� − �i�t�R�− f i��� �t��� .

�3�

B. Variational principle for deterministic diversity
dynamics

We introduce a distance function to quantify the number
of state changes in the system. Consider a virtual displace-
ment of �i�t�, �i��t�=�i�t�+	�i�t�. A quadratic distance func-
tion is given by

Ki��i��t�,�i�t�� �



2
��i��t� − �i�t��2, �4�

where 
�0.1 Analogously a potential Vi is defined by

1Note the similarity to kinetic energy in classical mechanics.
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Vi��i��t�,�� �t�� � 	�1 − �i��t��R�f i��� �t��� − �i��t�R�− f i��� �t���	 ,
�5�

which “counts” the number of possible interactions for the
displaced state �i��t�. Depending on �i��t�, Eq. �5� will reduce
to Vi��i��t� ,�� �t��= 	R��f i��� �t���	. A possible intuition behind
Eq. �5� is that f i acts as a “field” on �i�t� which is “probed”
by �i��t�. We occasionally drop the �-dependence for a
clearer notation. Finally we define the balance function, Bi
�Ki+Vi.

Ki measures the actual activity in the system—it counts
all state changes. The potential Vi counts the potential activ-
ity in the newly obtained states. Bi therefore contains the full
dynamical information of Eq. �1� which can now be ex-
pressed through a variational principle.

Given �� �t�, the solution �i�t+1� of Eq. �3� is identical to
the value of �i��t� for which Bi assumes its minimum, i.e.,

�i�t + 1� = arg min
�i��t�

�Bi��i��t�,�� �t��� , �6�

with arg minx�f�x�� denoting the value of x for which f�x�
takes its minimum.

This is proved by exhaustive insertion. First, consider the
case f i��� �t��=0. From Eq. �3� it follows that ��i�t�=0 and
Vi=0. The only possible term contributing to Bi is Ki; Ki

=0 if �i��t�=�i�t� and Ki=


2 �0 otherwise. The balance func-

tion Bi takes its minimum, Bi=0 at �i��t�=�i�t�=�i�t+1�.
Similar reasoning can be applied to the cases of nonzero
f i��� �t��, see Table I. This now clarifies the role of the param-
eter 
. It can be seen as an inertial threshold; the dynamics
of Eq. �3� only takes place if the “field” f i��� �t�� describing a
certain state-change exceeds the barrier set by 
. There is
always a choice for 
 such that Eq. �3� holds.

C. Stochastic diversity dynamics

There exists a natural stochastic variant of diversity dy-
namics. In Eq. �3� a state transition �i�t�→�i�t+1� is deter-
mined by ��i�t�� �−1,0 ,1�. For the stochastic case we
specify transition probabilities for this evolution.

From the variational principle Eq. �6� it follows that Eq.
�3� always minimizes the balance function Bi. In the stochas-
tic variant we assume that the lower Bi, the higher is the
probability to find the system in the respective configuration
�i�t�. In analogy to spin systems this probability is a Boltz-
mann factor

p��i�t�� � e−Bi��� �t��, �7�

with �1 /T the inverse temperature. To obtain transition
probabilities we demand detailed balance

p��i�t� → �̂i�t��
p��̂i�t� → �i�t��

=
p��̂i�t��
p��i�t��

= e−�B̂i−Bi�, �8�

with B̂i�Bi��̂i�t� ,��t� j�i�. There are several ways to choose
transition probability such that Eq. �8� is satisfied, here we
use Metropolis transition probabilities p��i�t�→ �̂i�t��=1 if

B̂i−Bi�0 and p��i�t�→ �̂i�t��=exp�−�B̂i−Bi�� otherwise.
The stochastic diversity dynamics is fully specified by
setting2 �i�t+1�= �̂i�t�.

Whereas in the deterministic case the balance function Bi
is minimized, the stochastic diversity dynamics shows “dis-
ordering effects” due to nonzero temperature T as given in
Eq. �7�. We quantify this with Boltzmann-Gibbs entropy.

D. Mean-field approximation

Denote the expectation value of �i�t� by qi�t�= 
�i�t�� and
assume that the probability distribution factorizes, i.e.,
p��� �t��=�ipi��i�t�� with pi��i�t��= �1−qi�t��	�i�t�,0
+qi�t�	�i�t�,1

. In this mean-field approximation the
Boltzmann-Gibbs entropy s for species i is

s��i�t�� = − 
ln pi��i�t��� � s�qi�t�� ,

s�qi�t�� = − �1 − qi�t��ln�1 − qi�t�� − qi�t�ln qi�t� . �9�

The ‘free energy’ functional ���i�t�� for the system turns for
this approximation into

��qi�t�� = 
Bi�p��� �t�� −
s�qi�t��


. �10�

The asymptotic state of species i, qi�t→���qi, is identified
by a minimum in free energy. The necessary condition for
this, ���qi� /�qi=0, is

�
Bi�
�qi

+ 1
 ln�

qi

1−qi
�=0, and

qi =
1

2
tanh�−



2

�
Bi�
�qi

� + 1� . �11�

The self-consistent solution of Eq. �11� yields the asymptotic
configuration.

2One can also define dynamics “backward” by the transition prob-
ability p��̂i�t�→�i�t�� which can be interpreted as inferring �� �t�
from the knowledge of �� �t+1�.

TABLE I. We exhaustively insert all possible values for �i�t�
and �i��t� in Eq. �3� and Bi for nonzero values of f i��� �t��. For
convenience we choose 	f i��� �t��	=1 and confine the threshold to
0�
�2. We mark the values of �i��t� for which Bi is a minimum
by an underscore. For these marked values �i��t� is always equal to
�i�t+1�.

�i�t� f i��� �t�� �i��t� Ki Vi Bi �i�t+1�

0 −1 0� 0 0 0 0

0 −1 1 

2 1 1+ 


2 0

0 1 0 0 1 1 1

0 1 1� 

2 0 


2 1

1 −1 0� 

2 0 


2 0

1 −1 1 0 1 1 0

1 1 0 

2 1 1+ 


2 1

1 1 1� 0 0 0 1
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III. GENERAL FORMULATION OF EVOLUTIONARY
INTERACTIONS

Traditionally in the master equations framework3 interac-
tions are classified by transfer rates for abundances of spe-
cies. The transfer rates measure how the change in abun-
dance of a given species i is related to the abundance of other
species j1 , j2 , . . .. Depending on how i and j1 , j2 , . . . are cho-
sen, one obtains different systems of differential equations
which can be related to a specific form of evolutionary inter-
actions. If species i with abundance xi replicates with rate f i,
the interaction is of type replication and is represented as

xi→
f i

2xi, �replicator or Crow-Kimura equation �4��. Competi-
tion is a mechanism where the replication rate of species i
also depends on other species j through a transfer rate pij,

xi+xj→
pij

xi. This type of interactions is used in the game dy-
namical equation �25�, which is a special case of the fre-
quency dependent replicator equation �5,26�. The mechanism
mutation assigns a mutation or transfer rate qij between two

species according to xi→
qij

xj, together with replication and
competition we obtain the replicator-mutator Eq �27�, of
which the quasispecies equation �28�. is a special case. Rep-
lication can take place without replicators, species are then
produced by recombination processes. In the case of three
species i, j, and k with a recombination rate �ijk, this mecha-

nism is xj +xk→
�ijk

xi. The corresponding dynamical system is
called catalytic network see e.g., �29�. It is formally possible
to express replication, mutation and competition as special
cases of the recombination mechanism in the sense that the
replicator and replicator-mutator equation can be derived as
special cases from the catalytic network equation �30,31�.
Thus recombination mechanisms provide a unifying descrip-
tion of the other evolutionary interactions above–an observa-
tion we use as a starting point for our model.

In the general form of a recombination process an arbi-
trary number of species j1 , j2 , . . . , jn influences a given spe-
cies i. We distinguish two types of interactions of this form,
�i� constructive interactions or productions where species i
benefits from species j1 , j2 , . . . , jn and �ii� destructive inter-
actions or destructions where the j’s are causing harm to i. In
the master equation framework constructive interactions cor-
respond to positive transfer rates, destructions to negative
ones. We denote the set of species j1 , j2 , . . . , jn= j. If the set
of all species is N, j is an element of the set of all subsets of
N, i.e., j is an element of the power set of N, P�N�. A
recombination always maps an element from P�N� to an
element from N via a transfer rate �i,j, i.e., by a map
� :P�N�→N. From now on italic indices refer to elements
of N, e.g., i�N, while bold-face indices refer to elements of
the power set, j�P�N�. Transfer rates are represented by
their sign. For convenience define binary state variables for
sets of nodes, let �j�t�=�i�j�i�t�. The most general form of
evolutionary interactions can then be written as

�j→
�i,j

�i. �12�

We summarize in Table II how the evolutionary interaction
mechanisms of replication, competition, mutation and re-
combination are contained in Eq. �12� for special choices of
j. If there is a constructive interaction between j and i, i.e., j
is a constructive set, we capture it in the production rule
table �+ :P�N�→N with �i,j

+ =1, otherwise �i,j
+ =0. Similarly,

if the interaction in Eq. �12� is destructive, i.e., j is a destruc-
tive set, we record this in the destruction rule table
�− :P�N�→N with �i,j

− =1, otherwise �i,j
− =0. At some points

in this work we will assume that the rule tables �� are ran-
dom tensors. In this case they are given by two parameters
n� and r�. n+ is the cardinality of constructive sets, 	j	=n+ in
Eq. �12� and for random �+ each species i has on average the
same number r+ of constructive sets, 
�j�i,j

+ �i=r+. Similarly
�− is given by n− and r−.

In a biological setting one can identify with our species �i
an individual gene, RNA mutants or proteins. A set of spe-
cies �j can be identified with a combination of chemical
elements or proteins building a complex. The interactions
could also include a �-quant acting on a gene and producing
a mutation. How to translate this model into an economic
setting is explained in great detail in �24�. In this model a
mutation is any kind of process by which the existence of a
certain species j alone leads to a proliferation of another,
different species i. Consequently a recombination is any kind
of process through which the simultaneous existence of a set
of species leads to the proliferation of another one. We do
not make any further assumptions or specifications about the
details of the recombination mechanisms involved, of which
a number of variants have been studied in the literature
�32–35�. In the setting of binary state variables for species
abundances used here, these variants of recombination
mechanisms are mimicked through their topological struc-
ture encoded in ��. This phenomenologic description level
comes with the benefit of leading to a general and analyti-
cally tractable model of evolution.

Note that our formalism possesses structural similarities
with other work where population genetic equations have
been mapped onto spin-Hamiltonians, see e.g., �36� which in
turn builds on �37�. In �36� a species is represented as a spin
and collected into genomes which are chains of spins of3As is typical for traditional evolutionary biology.

TABLE II. Summary of the traditional evolutionary interaction
mechanisms: replication, competition, mutation and recombination.
We indicate how the constructive/destructive set j has to be speci-
fied in Eq. �12� in order to recover the various mechanisms in our
model.

Mechanism Power set notation

Replication xi →
f i

2xi j= �i�

Competition xi+xj →
pij

xi j= �i , j�

Mutation xj →
qij

xi j= �j�

Recombination xj +xk →
�ijk

xi j= �j ,k�
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length N. The evolution of the relative frequencies of these
genomes is then studied using Crow-Kimura �4� or quasispe-
cies �28� models for the underlying dynamics. These models
are mapped onto Hamilton-Jacobi equations admitting ana-
lytic solutions for the steady state distribution of genome
frequencies for a certain class of fitness functions. In contrast
to this work our dynamical principle Eq. �6� does not require
any further assumptions about the dynamics other than the
existence of an indicator function as given in Eq. �1�. We are
interested in the specific interaction structure as given in
Table II, our dynamical equations Eq. �3� therefore lack the
constant renormalization as present in the Crow-Kimura or
quasispecies model �i.e., the comparison of individual
growth rates versus population average of fitness�. This
means the dynamics studied here is rather different.

IV. CONSTRUCTIVE INTERACTIONS

A. Constructive dynamical system

We first consider a system with constructive interactions
only. We read Eq. �12� as “from �j�t�=1 follows that �i�t
+1�=1.” In a chemical setting the chemical compounds con-
tained in j react to give compound i, in an economic setting
the goods j can be assembled to produce good i, see Fig.
1�a�. The constructive dynamical system characterized by
Eq. �12� is given by

��i�t� = sgn�1 − �i�t�� �
j�P�N�

�i,j
+ �j�t�� , �13�

i.e., f i��� �t�� from Eq. �1� becomes f i
+��� �t��=�j�i,j

+ �j�t�.

B. Deterministic constructive diversity dynamics

In the limiting case of T=0 i.e., →� the system deter-
ministically obeys the dynamics of Eq. �13�. The behavior of
D�t→�� is well understood; this case is identical to the
model studied in �20,21� for random interaction topologies
�+ given by n+ ,r+ here. D��� was computed as a function of
n+ ,r+ and D�0�. It was shown that this system has a phase
transitions formally equivalent to the phase transition of a
van der Waals Gas. There exists a critical diversity of initial
species Dc�0� above which the system is driven toward an

almost fully populated state; below this threshold the dynam-
ics freezes. All these findings are identical what we find here
in the T=0 case.

C. Stochastic constructive diversity dynamics

We next turn to nonzero temperature T. The crucial fea-
ture distinguishing deterministic and stochastic diversity dy-
namics is the dependence on the initial conditions. In the
presence of stochastic perturbations the final diversity is not
a function of the initial diversity D�0�. We employ a mean-
field approach by assuming that the expectation value of a
product equals the product of expectation values,

g1���g2����= 
g1����
g2����. The expectation value of the
constructive potential 
Vi

+�p��� �t�� of species i is


Vi
+�p��� �t�� = �1 − qi�t�� �

j�P�N�
�i,j

+ �
j�j

qj�t� , �14�

quantifying what could be produced given the actual con-
figuration of the system.4

As mentioned above, 
 plays the role of a threshold. For
0�
�2 a species gets activated by one constructive set, for
2�
�4 at least two constructive sets are needed and etc.
From now on we fix the threshold 
=1. The contribution to
free energy is Ki

+�t�= 1
2 ���i�t��2. We can estimate the expec-

tation value 
Ki�t��p��� �t�� by making use of the dynamical
relation Eq. �13�, and get for the mean-field assumption


Ki
+�p��� �t�� =

1

2�1 − qi�t�� �
j�P�N�

�i,j
+ �

j�j
qj�t��2

. �15�

Using this in Eq. �11� gives us the mean-field solution for
arbitrary interaction topologies �+. To compute it explicitly
we assume random interaction topologies. The aim is to de-
rive an expression for

�
Bi�
�qi

in the limit t→�. Note that
�
Vi�
�qi

=−�j�P�N��i,j
+ � j�jqj. Due to the randomness in �+ the

same average ‘field’ is exerted on each species. With q

�
qi�i we get
�
Vi�
�qi

=−r+qn+
. We apply the same reasoning to

the distance-contribution 
Ki
+�p���t��. By first carrying out the

derivation and then putting in the assumptions about �+, we
get

�
Bi�
�qi

= − r+qn+
− �1 − q��r+qn+

�2, �16�

and the self-consistent solution for the asymptotic abundance
q,

q =
1

2
tanh

2
�r+qn+

+ �1 − q��r+qn+
�2�� + 1� , �17�

from which the diversity follows as D�t→��=Nq. We com-
pare predictions of Eq. �17� with simulations results from a

4Note that the structure of Vi
+ has a strong similarity to the poten-

tial of the paradigmatic Ising model. Our model diverges in the
following ways: �i� interactions are defined not between nodes but
between constructive sets and nodes and �ii� interactions are not
symmetric, the action of j on i does not equal the action of i on j.

FIG. 1. �Color online� A graphical representation of construc-
tive, destructive and combined interactions. �a� The constructive set
j �shaded area� contains three species �circles� j= �l ,m ,n�. They
produce species i, i.e., �i,j

+ =1. The constructive set is active �indi-
cated by the filled circles� we have �j�t�=1 and �i�t�=0, by Eq.
�13� �i�t+1�=1. �b� The destructive set j� �striped area� of cardi-
nality two is active since each of its contained species m� ,n� is
active and interacting with species i� through �i�,j�

− =1. Following
Eq. �18�, �i��t�=1 will be deactivated, �i��t+1�=0. �c� A pictorial
description of a network with both constructive and destructive in-
teractions at a point in time.

KLIMEK, THURNER, AND HANEL PHYSICAL REVIEW E 82, 011901 �2010�

011901-6



Metropolis algorithm. The latter was implemented in the fol-
lowing way: We constructed a random �+ and initialized the
system with a random initial condition �� �0�. After initializa-
tion the algorithm applies the following procedure to each
species once within one timestep �random sequential up-
date�:

�i� Pick a species i randomly.
�ii� Calculate Bi=Ki+Vi, according to Eqs. �4� and �5�

with �i��t�=�i�t�.
�iii� Calculate Bi=Ki+Vi with �i��t�=1−�i�t�.
�iv� Calculate �B=Bi��i��t�=1−�i�t��−Bi��i��t�=�i�t��
�v� If �B�0 set �i�t+1�=1−�i�t�.
�vi� If �B�0 set �i�t+1�=1−�i�t� with probability

e−�B.
We executed the algorithm for one particular realization

of �+ for 103 timesteps and averaged over this time-span
after discarding transient behavior �typically about 50 itera-
tions�. We performed simulations for system sizes of N
=102–104 without noticing size effects on the results. How-
ever, the time-to-converge depends on N. We show the de-
gree of agreement of simulations and Eq. �17� in Fig. 2�a�.

V. DESTRUCTIVE DYNAMICS

A. Destructive dynamical systems

Assume now that only destructive interactions take place,
e.g., two chemicals catalyzing the consumption of another
chemical species, or biological species gaining �in symbio-
sis� an evolutionary advantage over another species. Equa-
tion �12� is now read as “from �j�t�=1 follows �i�t+1�=0,”
see Fig. 1�b�. To formulate this as a dynamical system as in
Eq. �3� set f i��� �t��→ f i

−��� �t��=−�j�i,j
− �j�t� to get

��i�t� = sgn�− �i�t� �
j�P�N�

�i,j
− �j�t�� . �18�

We discuss the deterministic �T=0� and stochastic �T�0�
scenario.

B. Deterministic destructive diversity dynamics

In the deterministic case the asymptotic diversity D�t
→�� is a function of the initial diversity. Let us discuss the
case of a completely random destructive rule table �−. By
denoting q�t�=D�t� /N we can derive an update equation for
q�t� following the same reasoning as in �20�, q�t+1�=q�t�
−�−q�t� with �−q�t�=r−q�t��qn−

�t�−qn−
�t−1��. In the limit of

sparse rule densities r− this leads to q�t→��=q�0�
−n−r−qn−+1. In contrast to constructive dynamics, destructive
dynamics do not exhibit a phase transition. With more spe-
cies being destroyed the number of deactivated destructive
sets increases even faster, thus the process comes to a halt
without reaching a strongly unpopulated state. Note that
other kinds of destructive dynamics may exhibit phase tran-
sitions. For example, if one requires for each species to be
abundant at least one productive set to be abundant, that is
species become extinct once they are not actively produced,
the removal of a small number of species may trigger a cas-
cade of extinction events which erases the entire population
�21�.

Stochastic destructive diversity dynamics

For a stochastic variant of the destructive dynamical sys-
tem of Eq. �18� we repeat the analysis of the constructive
case. We start with the corresponding destructive potential
and distance terms,


Vi
−�p��� �t�� = qi�t� �

j�P�N�
�i,j

− �
j�j

qj�t� ,


Ki
−�p��� �t�� =

1

2�qi�t� �
j�P�N�

�i,j
− �

j�j
qj�t��2

. �19�

We proceed with the derivation of the destructive balance
function Bi and get

�
Bi�
�qi

= r−qn−
+ q�r−qn−

�2, �20�

and the self-consistent solution for the asymptotic abundance
q,

q =
1

2
tanh−



2
�r−qn−

+ q�r−qn−
�2�� + 1� . �21�

We compare this prediction to results of a Metropolis simu-
lation in Fig. 2�b�. As is seen in the n−=1 case, the deviation
between Eq. �21� and simulations increases with . For
higher n− and r− the same extent of deviation occurs for a
higher value of . The mean-field approximation starts to
significantly differ from simulations once entropic effects be-
come negligible and the system’s evolution approaches the
deterministic scenario, that is e−�Bi �1 /N ∀i �on average
less than one random state flip per iteration�. To approximate
Vi

−�t�=�i�t��j�i,j
− � j�j� j�t� at any time t we have to consider

the species which have not been deactivated at t−1—the
system possesses memory. This is not captured in the mean-
field approximation 
Vi

−�=r−qn−
where we assume the popu-

lated species to be randomly distributed over N possible spe-
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FIG. 2. �Color online� Diversity as a function of inverse tem-
perature  for various dynamical systems obtained from a mean-
field approach �MF, lines� and Metropolis simulations �symbols�.
�a� Constructive dynamics with r+=2. �b� Destructive dynamics
with r−=2. �c� Combined dynamics with r+=3, r−=1 and n−=2.
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cies at each time t. In the destructive case the mean-field
approach thus works best whenever the random fluctuations
are large enough to “smear out” this memory effect, other-
wise the system is better approximated by the deterministic
description.

VI. COMBINED DYNAMICS

A. Combined dynamical systems

We now study the interplay of both constructive and de-
structive dynamics �22,24�; the situation is sketched in Fig.
1�c�. Destructive interactions represent an implicit selection
mechanism �24�. Each species may be targeted �influenced�
by constructive and destructive interactions. Assume that
each interaction has equal influence. If the constructive
forces outweigh the destructive ones the species prefers to be
active and vice versa. For some systems other choices of
weighting could be more appropriate �e.g., assuming that one
destructive interaction outweighs any number of constructive
ones—“it is easier to destroy than to build”�. It is straight-
forward to incorporate alternative weighting schemes in the
present framework.

To combine constructive and destructive interactions we
add their indicator functions,

f i��� �t�� = f i
+��� �t�� + f i

−��� �t�� = �
j

�i,j
+ �j�t� − �

j
�i,j

− �j�t� ,

�22�

and get for the dynamical equation

��i�t� = sgn��1 − �i�t��R�f i��� �t��� − �i�t�R�− f i��� �t���� .

�23�

The purely destructive or constructive dynamical systems are
recovered by setting ��=0.

B. Deterministic combined diversity dynamics

To obtain an estimate for the asymptotic diversity, we
again use an update equation and combine the finding for the
constructive and destructive cases. If we denote the average
in-�de�crements in the constructive �destructive� scenario by
�q+�t� ��q−�t��, we study the update equation q�t+1�=q�t�
+�q+�t�−�q−�t�. This equation is solved by using the same
Ansatz as in �20�, yielding q�t→��=q�0�−n−r−qn−+1

+n+r+�1−q�q.n
+
.

C. Stochastic combined diversity dynamics

Let us calculate 
Bi� for the stochastic scenario. The ex-
pectation value of the distance contribution, 
Ki�p��� �t��, is
more involved now. Constructive �destructive� dynamics
take place under the condition that f i��� �t���0��0�. Start
with an expression for the probability that f i��� �t�� is positive
�negative�, p�. Consider random interaction topologies
specified by r� and n�. Define p�k ,r+� as the probability that
there are exactly k active constructive interactions, that is
p�k ,r+��� r+

k �qn+k�1−qn+
�r+−k. Analogously, q�l ,r−� is the

probability that exactly l out of r− destructive interactions are
active. Then

p+ = �
k=1

r+

p�k,r+� �
l=0

min�k−1,r−�

q�l,r−� ,

p− = �
l=1

r−

q�l,r−� �
k=0

min�l−1,r+�

p�k,r+� . �24�

The average distance follows as


Ki�p��� =
1

2
��1 − qi�p+ + qip

−�2, �25�

and, abbreviating f i��� �t��� f i, the potential is


Vi�p��� = 	�1 − qi�R�f i� − qiR�− f i�	 . �26�

Taking the derivative with respect to qi the mean-field result
is

�
Bi�
�qi

= − r+qn+
+ r−qn−

− ��1 − q�p+ + qp−��p+ − p−� ,

�27�

with the self-consistent solution for the asymptotic abun-
dance q

q =
1

2
tanh�

2
�r+qn+

− r−qn−

+ ��1 − q�p+ + qp−��p+ − p−��� + 1� . �28�

Again we compare the mean-field prediction to results of a
Metropolis simulation of the full model in Fig. 2�c�.

VII. DISCUSSION ON EMPIRICAL RELEVANCE

A. Economical setting

We interpret the model in different evolutionary contexts
and compare its behavior to measured data. In an economic
setting one can identify the number of active interactions as
a measure for the productive output of an economy—for
example the GDP �24�. An interaction is defined to be active
iff �i�t�=�j�t�=�i,j

� =1. We show in Fig. 3�a� a comparison
between the actual distribution of percent increments of the
GDP of the U.K. and the number of active productions from
the combined stochastic model for two different parameter
settings. In one setting =15, r�=5, n�=2 is used, the other
has a denser interaction topology, =15, r+=8, r−=12, n�

=2. Both model and real-world GDP timeseries produce fat-
tailed distributions, with power exponents in the range be-
tween −2 and −4. These features are also found in GDP
timeseries of other countries and for a wide range of model
parameters, see e.g., �24�.

B. Chemical setting

Another possible interpretation of the combined stochastic
system is a chemical reaction network. In this case chemical
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species j= �j1 , j2 , . . .� are producing or degrading chemical i.
There are N�r++r−� reactions. A reaction rate is defined as
the frequency with which a certain reaction is active and a
reaction is active if �i,j

� =1, �i�t�=1 and �j�t�=1. This is
compared to reaction rates in the metabolic network of E.
coli �38� in Fig. 3�b�. Distributions of reaction rates in both
cases, model and living organism, are fat-tailed. Least-
squares fits to model power-laws yield exponents in the
range of −1 to −3, depending on parameters. This compares
well to the value of −1 found for E. coli.

C. Biological evolution setting

Translated into a macroecological setting, one can com-
pare the distribution of lifetimes of species in the combined
stochastic model �number of iterations a given species is un-
intermitted abundant� with the distribution of species life-
times in fossil data �39� in Fig. 3�c�. Again one finds power
laws in the model with exponents between −2 and −4, which
matches well with the paleontologic data, which suggest
slopes between −2 and −3. Note that there is a strong depen-
dence on the values used for the fit. We work with an inter-
mediate choice in Fig. 3�c�.

VIII. DISCUSSION

We propose a general framework to systematically study a
large class of dynamical evolutionary systems defined on an

arbitrary large number of species. The trajectory of existence
of each species is governed by a function incorporating in-
formation of the surroundings—the existence of other spe-
cies. We show how to express the resulting system dynamics
via a variational principle. We discuss deterministic and sto-
chastic variants. For the latter we derive a closed expression
for the asymptotic diversity of evolutionary systems within a
mean-field approximation. We discuss the quality of this ap-
proximation with respect to Metropolis simulations of the
full model. Although the model explicitly introduces strong
correlations between species’ abundances, the mean-field ap-
proximation for asymptotic diversities match the simulation
data surprisingly well. The model can be seen as a generali-
zation of several previous models, which are contained as
special cases. The deterministic constructive case is identical
to the random catalytic networks studied in �20�. In the
model of Solé and Manrubia �14� only linear interactions are
allowed �i.e., 	j	=1 in Eq. �12�� and new species are created
not through endogenous recombinations, but by an explicit
mutation mechanism. As discussed in �24�, f i��� �t�� in our
combined stochastic model plays the identical role as the
randomly assigned fitness values in the Bak-Sneppen model
�13�. To recover the NK-model �8� as a special case associate
each species with a bit-string. A random fitness value is then
assigned to each species’ bit-string, in some variants of the
model also in dependence of a given number of bits of other
species’ strings. However, fitness in our framework is a to-
pological property of the entire system plus the set of abun-
dant species, whereas in NK-models fitness is basically a
mapping of random numbers to bit-strings.

We find that the model of constructive and destructive
interactions reproduces stylized facts of man-made �econo-
mies� and natural evolutionary systems �metabolic networks,
macroecology� across different orders of magnitude. We be-
lief this adds empirical substance to our claim that we have
identified a crucial and ubiquitous building block of evolu-
tionary systems with recombinatory, nonlinear interactions
within a simple binary framework. The model systematically
expands on the idea that the concept of fitness is an a poste-
riori concept. Fitness in the traditional sense can of course be
reconstructed for every timestep in our model. It is nothing
but the coevolving network of rates of the actually active
�productive� processes at a given time, see �24� for more
details. It becomes clear that fitness cannot be used as con-
cept with much predictive value, even if “Darwin’s Demon”
knowing all mutual influences at a given time would exist.
The proposed model is free of Darwin’s Demon.
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FIG. 3. �Color online� We compare the distribution of systemic
observables �squares and fit as solid line� of evolutionary systems
with those of the combined stochastic model for two different pa-
rameter settings: Simulation 1 with =15, r�=5, n�=2 �circles and
fit as dashed line� and Simulation 2 with =15, r+=8, r−=12, n�

=2 �diamonds and fit as dotted line�. Each distribution has been
normalized �sum over all data points equals one�. �a� The percent
change of GDP of the U.K. since 1950 is compared to the model.
�b� The reaction rate distribution in the model and in the metabolic
network of E. coli is shown. �c� Species lifetime distributions as
found in fossil data are well reproduced with the model.
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