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The classical nucleation theory �CNT� is tested systematically by computer simulations of the two-
dimensional �2D� and three-dimensional �3D� Ising models with a Glauber-type spin flip dynamics. While
previous studies suggested potential problems with CNT, our numerical results show that the fundamental
assumption of CNT is correct. In particular, the Becker-Döring theory accurately predicts the nucleation rate if
the correct droplet free energy function is provided as input. This validates the coarse graining of the system
into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Furthermore, in
the 2D Ising model, the droplet free energy predicted by CNT matches numerical results very well, after a
logarithmic correction term from Langer’s field theory and a constant correction term are added. But significant
discrepancies are found between the numerical results and existing theories on the magnitude of the logarith-
mic correction term in the 3D Ising model. Our analysis underscores the importance of correctly accounting for
the temperature dependence of surface energy when comparing numerical results and nucleation theories.
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I. INTRODUCTION

Nucleations are ubiquitously observed in many different
systems including supercooled fluids �1–3�, nanomaterials
�4�, polymerization processes �5�, and electro-weak phase
transitions �6�. The standard theory used to describe the
nucleation phenomena is the classical nucleation theory
�CNT� �7–10�. CNT considers the droplets of the stable
phase spontaneously formed in the background of the meta-
stable phase. The maximum in the droplet free energy as a
function of droplet size is the free energy barrier of nucle-
ation, and is the dominant factor in the determination of the
nucleation rate. A widely used form of CNT is the Becker-
Döring theory �7� that predicts the nucleation rate from a
steady-state solution of a one-dimensional �1D� Markov
chain model.

While CNT successfully captures many qualitative fea-
tures of nucleation events, the prediction of the nucleation
rate based on CNT cannot be compared quantitatively with
experiments �11�, given the gross approximations made in
the theory. During the past 50 years, many modifications and
extensions of CNT have been developed. For example, Lothe
and Pound �12� considered the contributions from extra de-
grees of freedom of a cluster �in addition to its size� to its
Gibbs free energy of formation. Langer �13,14� developed a
field theory to extend the Becker-Döring steady-state solu-
tion to include the effect of other microscopic degrees of
freedom of a cluster. Zeng and Oxtoby �15� improved the
temperature dependence of the nucleation rate predicted by
CNT by expressing the droplet free energy as a functional of
the radial density profile ��r�. To date, many nucleation theo-
ries have been developed, but it is very difficult to verify
them experimentally, due to the difficulties in measuring
nucleation rates accurately. While for a theory, it is more
convenient to study homogeneous nucleations in a single-
component system, such conditions are difficult to achieve in
experiments �11�. Instead, experimental measurements are
usually influenced by surface structures and impurities that
are difficult to control.

Computer simulations have the opportunity to probe
nucleation processes in great detail and to quantitatively
check the individual components of the nucleation theories.
The increase of computational power and the development of
advanced sampling algorithms allow the calculation of
nucleation rates for model systems over a wide range of con-
ditions �16–19�. A prototypical nucleation problem is the de-
cay of the magnetization in the two-dimensional �2D� or
three-dimensional �3D� Ising model, which has been studied
by computer simulations for several decades �20–30�. Both
agreement �22,28,29� and disagreement �20,21,25,30� be-
tween numerical results and CNT predictions have been
reported.

When the CNT predictions of nucleation rate do not agree
with numerical results, several potential problems of CNT
were usually discussed. For example, a suspect is the appli-
cation of surface tension of macroscopic, flat, interfaces to a
small droplet �21�. The validity of coarse graining the many-
spin system into a one-dimensional Markov chain was also
questioned �21,25�. Nucleation theories usually express the
rate in the Arrhenius form, with a free-energy barrier and a
pre-exponential factor. Usually both terms are not computed
in the same study. Hence, we often cannot conclude which
one causes the discrepancy between CNT and numerical
simulations, and how the theory should be improved. Only
rarely did numerical results lead to clear conclusions on the
validity of the fundamental assumptions made in CNT �27�.

In a recent communication �31�, we presented numerical
results that systematically test the different parts of the
Becker-Döring theory, as applied to 2D and 3D Ising models.
The purpose of this paper is to provide a more in-depth dis-
cussion of these tests, and to present results that were omit-
ted due to space constraints. We compute the nucleation rate
by the forward flux sampling �FFS� method �32�, which al-
lows the rate to be calculated over a much wider range of
external field and temperature conditions than that possible
by brute force Monte Carlo simulations. To test the indi-
vidual components of CNT �Becker-Döring theory�, the free
energy F�n� of the droplet as a function of droplet size n is
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computed using the umbrella sampling method �18�. The ki-
netic prefactor of the critical cluster, fc

+, which is part of the
Becker-Döring theory, is computed independently from
Monte Carlo simulations starting from the ensemble of criti-
cal clusters. The nucleation rate predicted by the Becker-
Döring theory, using the so computed F�n� and fc

+ as inputs,
is compared with the nucleation rate directly computed from
the FFS method.

We find that, provided with the correct droplet free energy
F�n�, the Becker-Döring theory predicts the nucleation rate
very accurately. This confirms that the coarse-graining of the
Ising model as a one-dimensional Markov chain, as invoked
in CNT, is a very good approximation, which was also noted
earlier �24,27�. Discrepancies between the droplet free en-
ergy F�n� predicted by CNT and numerical results have been
reported earlier �24,25�. Here, we show that if a logarithmic
correction term and a constant correction term are added, the
theoretical prediction of droplet free energy agrees very well
with the numerical result. The logarithmic correction term
was first derived from Langer’s field theory, but was custom-
arily put as a correction to the kinetic prefactor. Our analysis
shows that this correction term should be placed in the free
energy function F�n� in order to correctly predict the size of
the critical nucleus. In 2D both the logarithmic correction
term and the constant term can be determined from existing
analytic expressions and hence contain no fitting parameters.
On the other hand, in 3D both the coefficient of the logarith-
mic correction term and the constant term need to be treated
as fitting parameters in this work.

Our analysis resolved some of the previously reported dis-
crepancies between numerical simulations and CNT. For the
2D Ising model, the logarithmic correction term to the drop-
let free energy was often neglected �21,24�. Because the
logarithmic correction term is positive and substantial in 2D,
the omission of this term would cause CNT to grossly over-
estimate the nucleation rate. For the 3D Ising model, the
logarithmic correction term is much smaller relative to the
other terms. However, the temperature dependence of the
surface free energy was sometimes ignored �25,30�. While
the surface free energy can be approximated as a constant at
very low temperatures �28�, it decreases appreciably with
temperature above a quarter of the critical temperature.
Overestimating the surface free energy would lead to an
overestimate of the nucleation barrier and an underestimate
of the nucleation rate.

The paper is organized as follows. Section II summarizes
a number of nucleation theories and their applications to the
2D and 3D Ising model. Section III presents the numerical
methods we employ to test these theories. The numerical
results are compared with the nucleation theories in Sec. IV.
A brief summary is given in Sec. V.

II. NUCLEATION THEORIES

A. Brief review of nucleation theories

In 1926, Volmer and Weber �33� first introduced the con-
cept of critical droplet and estimated the nucleation rate in a
supersaturated vapor by the following equation,

I � fc
+ exp�−

Fc

kBT
� , �1�

where Fc is the formation free energy of the critical droplet,
and fc

+ is the attachment rate of molecules to the critical
droplet. Fc is the maximum of the droplet free energy as a
function of droplet size n. The Volmer-Weber theory also
gives the droplet free energy function in the following form,

F�n� = �S − ��n , �2�

where � is the effective surface tension and S is surface area.
�� is the bulk chemical potential difference per molecule
between the liquid and the vapor phases. n is the total num-
ber of molecules in the droplet. The concepts of critical drop-
let, its free energy, and the attachment rate of molecules, still
remain important to date for our understanding of the nucle-
ation process. Other dynamical factors, such as multiple re-
crossing of the free-energy barrier, originally ignored in the
Volmer-Weber theory, were recognized later.

In 1935, Becker and Döring �7� modeled the time evolu-
tion of the droplet population using a one-dimensional Mar-
kov chain model �10�, and obtained a steady-state solution
for the nucleation rate. This solution finally pinpoints the
kinetic prefactor �51� in the nucleation rate, which is
expressed as

I = fc
+� exp�−

Fc

kBT
� , �3�

where � is known as the Zeldovich factor �8,9� defined by

� � � �

2�kBT
�1/2

, � = −	 �2F�n�
�n2 	

n=nc

. �4�

The flatter is the free-energy curve near the critical size nc,
the smaller is the Zeldovich factor. For two systems having
the same free-energy barriers, the system with the flatter free
energy landscape near the barrier has more diffusive nucle-
ation dynamics and its nucleation rate is lower. Hence, the
Zeldovich factor captures the multiple recrossing of the free
energy barrier. A systematic investigation of the relation be-
tween the Zeldovich factor and recrossing can be found in
Pan and Chandler �25�.

There are two fundamental assumptions in CNT that are
independent of each other. First, the time evolution of the
droplet population can be described by a 1D Markov chain
model. Second, the free energy of a droplet can be written as
Eq. �2�, where � is the surface tension of macroscopic inter-
faces. We can test the first assumption if we can compute the
nucleation rate using a numerical method that does not rely
on the Markovian assumption. We can test the second as-
sumption by computing the free energy function by umbrella
sampling.

In 1967, Langer �14� developed a field theoretical ap-
proach to take into account all degrees of freedom of a drop-
let when calculating the steady-state solution for the nucle-
ation rate. This is a generalization of the Becker-Döring
theory to incorporate microscopic �fluctuation� degrees of
freedom of the droplet. Langer’s field theory was later used
to derive a correction term to the nucleation rate in the drop-
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let model �34–37�. In the literature, the field theory correc-
tion is usually expressed as an extra term in the pre-
exponential factor in Eq. �3�. But it can also be expressed as
a modification to the free energy function in Eq. �2�, chang-
ing it to

F�n� = �S − ��n + 	kBT ln n . �5�

While both approaches can give rise to similar predictions to
the nucleation rate, we will show later that it is more self-
consistent to include the correction term in the free energy.

The field theory predicts that, for an isotropic medium,
the coefficient of logarithmic correction term is 	= 5

4 in 2D
�38� and 	=− 1

9 in 3D �39�. However, it was later predicted
that the shape fluctuation of a 3D droplet should be sup-
pressed below the roughening temperature �37�, which leads
to 	=− 2

3 . Our numerical results confirm the 	= 5
4 prediction

for the 2D Ising model, under a wide range of temperatures.
This contradicts an earlier numerical study �21� which sug-
gests that 	 is close to zero at low temperatures and only rise
to 5

4 at high temperatures. On the other hand, our numerical
results are not consistent with any of the above theoretical
predictions of 	 for the 3D Ising model. This problem may
be related to the finding by Zia and Wallace �40�, that the
excitation spectrum around a 3D droplet is affected by the
anisotropy of the medium, but that around a 2D droplet is not
affected by anisotropy. Because the Ising model is funda-
mentally anisotropic �e.g., with cubic symmetry�, the field
theoretic prediction based on isotropic medium may not ap-
ply to the 3D Ising model.

All the nucleation theories mentioned above share several
fundamental assumptions: �1� only isolated droplets are con-
sidered and the interaction between droplets is neglected; �2�
a droplet is assumed to be compact with a well-defined sur-
face; �3� the surface energy expression derived from a mac-
roscopically planar surface can be applied to the surface of a
very small droplet. The first two assumptions are valid at
temperatures much lower than the critical temperature and at
small magnetic field. Under these conditions, the density of
droplets is very small and each droplet tends to be compact
�52�. We will not test these two assumptions in this study. In
other words, our numerical simulations will be limited to the
low temperature and small field conditions where these as-
sumptions should be valid. Models that account for droplet
interactions exist in the literature �41� but will not be dis-
cussed in this paper.

Even with the logarithmic correction term, Eq. �5� still
deviates from the numerically computed droplet free energy
�from umbrella sampling� by a constant. This constant term
is likely to be caused by the third assumption listed above.
We found that in the 2D Ising model this discrepancy can be
removed by adding a constant term to the droplet free energy

F�n� = �S − ��n + 	kBT ln n + d�T� . �6�

In 2D, the constant term d can be determined without any
fitting to the numerical results. At each temperature T, d can
be obtained by matching F�n� with analytic expressions of
droplet free energy that are available for very small droplets
�21� �Appendix D�. Unfortunately, in 3D even Eq. �6� does

not describe the free energy well enough for small droplets.
This prevents the use of the analytic expressions of small
droplet free energies to determine d. Hence in 3D we need to
treat d as a fitting parameter.

B. Nucleation theories applied to the Ising model

The Ising model is described by the following Hamil-
tonian:

H = − J

�i,j�

sisj − h

i

si, �7�

where J
0 is the coupling constant and h is the external
magnetic field. The spin variable si at site i can be either +1
�up� or −1 �down�, and the sum 
�i,j� is over nearest neigh-
bors of the spin lattice. For convenience, we set J=1 in the
following discussions. In our simulations, we study the re-
laxation of the magnetization starting from an initial state
magnetized opposite to the applied field h. To be specific, we
let h
0 and the initial state has si=−1 for most of the spins.
The dynamics follows the Metropolis single-spin-flip Monte
Carlo �MC� algorithm with random choice of trial spin. The
simulation time step is measured in units of MC step per site
�MCSS�. The 2D model consists of a 100�100 square lat-
tice and the 3D model consists of a 32�32�32 simple cu-
bic lattice, with periodic boundary conditions �PBC� applied
to all directions. To avoid artifacts from finite simulation cell
size, we consider �T ,h� conditions such that the size of the
critical droplet is much smaller than simulation cell size. We
obtain nucleation rate per site and define free energy F such
that exp�−F /kBT� is proportional to the cluster population
per site to present results that are invariant when the simula-
tion cell size changes.

1. Becker-Döring theory

To compute the nucleation rate using Eq. �2� and �3�, the
surface free energy � and bulk chemical potential difference
�� must be known for the Ising model. The chemical poten-
tial difference is simply ��=2h, which is a good approxima-
tion not only at low temperature but also near the critical
temperature �42�. On the other hand, the surface free energy
� is more difficult to obtain. This is because the Ising model
is anisotropic at the microscopic scale and the free energy of
a surface depends on its orientation. Therefore, the input to
the Becker-Döring theory should be an effective surface free
energy �eff, which is an average over all possible orientations
given the equilibrium shape of the droplet. �eff is a function
of temperature T not only because the surface free energy of
a given orientation depends on temperature, but also because
the equilibrium shape of the droplet changes with tempera-
ture �43�.

We follow the definition of Shneidman �21�, which gives
the analytic expression of �eff�T� for the 2D Ising model, as
shown in Fig. 1. �eff�T� is defined in such a way that the
interfacial free energy of a nucleus can be written as

F��n� = 2
�n�eff�T� �8�

regardless of whether its equilibrium shape determined by
Wulff construction is circular or not �53�. The free energy of
a droplet can be written as,
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F2D�n� = 2
�n�eff�T� − 2hn �9�

where n is the total number of up-spins in the droplet. From
the maximum of F2D�n�, we obtain the critical droplet size of
the 2D Ising model,

nc
2D =

��eff
2 �T�

4h2 �10�

as well as the free-energy barrier

Fc
2D =

��eff
2 �T�
2h

. �11�

We also obtain the Zeldovich factor defined in Eq. �4�

�2D =
 2

kBT

h3/2

��eff�T�
. �12�

Assuming the critical droplet has a circular shape, the attach-
ment rate can be written as

fc
+2D

= 2�0�T�
�nc
2D �13�

where �0�T� is the average spin-flip frequency at the bound-
ary of the droplet. As an approximation,

�0 � exp�− �eff�T�/kBT� . �14�

In the temperature and field conditions considered in this
paper, the attachment rate predicted by Eqs. �13� and �14� is
within a factor of 2 of the value computed by Monte Carlo
simulations as shown in Appendix A. Combining all, we
obtain the nucleation rate predicted by the Becker-Döring
theory

IBD
2D �h,T� = �0�T�
 2h

kBT
exp�−

��eff
2 �T�

2hkBT
� . �15�

Given the analytic expressions for �eff�T� in 2D, the pre-
dictions of the Becker-Döring theory can be computed ex-
plicitly. For example, at kBT=1.5 and h=0.05, we have nc

2D

=463, Fc
2D=46.3, �2D=0.0034, fc

+2D
=34.0, and IBD

2D =4.5
�10−15 MCSS−1. The numerical results �in Sec. III B�
under the same condition are nc=496, Fc=61.3, �=0.0033,

fc
+=39.2, and I=2.37�10−19 MCSS−1. As discussed further

below, the four orders of magnitude discrepancy in the nucle-
ation rate mainly comes from the underestimate of Fc

2D by
Eq. �9�. The logarithmic and constant terms in Eq. �6� are
needed to remove this discrepancy.

For the 3D Ising model in a simple cubic lattice, there is
no analytic expression for surface free energy for arbitrary
surface orientations. A parametric expression exists only for
the �100� surface �44�. Therefore, the equilibrium shape and
the equivalent surface free energy of the 3D droplet are not
known. Similar to Eq. �9�, the free energy of a 3D droplet
can be written as,

F3D�n� = �eff�T�
n2/3 − 2hn , �16�

where 
= �36��1/3 is a geometric factor expressing the sur-
face area of a sphere with unit volume. Contrary to the case
of 2D Ising model, the analytic expression of �eff�T� is not
known in the 3D Ising model, and it will be used as a fitting
parameter in our study.

Following the same procedures as above, we obtain the
critical nucleus, free energy barrier and Zeldovich factor for
the 3D Ising model,

nc
3D =


3�eff
3 �T�

27h3 , �17�

Fc
3D =


3�eff
3 �T�

27h2 , �18�

�3D =
 9

�kBT

h2



3�eff
3 �T�

, �19�

fc
+3D

= �0�T�
nc
2/3. �20�

Finally, the nucleation rate predicted by the Becker-Döring
theory is

IBD
3D �h,T� = �0�T�

3�eff�T�

9�kBT
exp�−


3�eff
3 �T�

27h2kBT
� . �21�

Given that �eff�T� is yet unknown and has to be treated as a
fitting parameter, it is more difficult to test Eq. �21� quanti-
tatively.

2. Langer’s field theory

Langer’s field theory predicts a logarithmic correction
term to the droplet free energy, as in Eq. �5�. In 2D Ising
model, 	= 5

4 , and this correction term not only increases the
free energy barrier, but also increases the size of the critical
droplet. The critical droplet size predicted by the field theory
is,

nc
2D/FT = �
��eff + 
��eff

2 + 8	kBTh

4h
�2

. �22�

This equation is to be compared with Eq. �10� predicted by
the Becker-Döring theory. We will see �in Fig. 5� that Eq.
�22� agrees much better with numerical results than Eq. �10�,

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
σ

eff

σ
(10)

k
B

T

σ ef
f

FIG. 1. �Color online� Effective surface free energy �eff as a
function of temperature for the 2D Ising model from analytic ex-
pression �21�. The free energy of the surface parallel to the sides of
the squares, ��10�, is also plotted for comparison.
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indicating that the field theory correction should be put in the
free energy function instead of the kinetic prefactor.

The 	kBT ln n correction term also modifies the critical
nucleus size in the 3D Ising model. The analytic expression
for nc

3D given by the field theory can be obtained by solving
a third order polynomial equation. The expression is omitted
here to save space. In the 3D Ising model, there have been
predictions that 	 depends on temperature: 	=− 1

9 above the
roughening temperature TR �39� and 	=− 2

3 below TR �37�.
But our numerical results do not support these predictions.

III. NUMERICAL METHODS

A. Forward flux sampling

Here we give a brief overview of the FFS method used in
this study. The full mathematical details can be found in the
literature �32�. To compute the transition rate from the initial
state A to the final state B, FFS uses a series of interfaces in
the phase space defined through an order parameter �. State
A is defined as the phase space region in which ���A, while
state B corresponds to �
�n. The interfaces between A and
B are defined as hyperplanes in the phase space where �
=�i, i=0,1 ,2 , ¯ ,n−1, �A��0� ¯ ��n. In principle, the
choice of the order parameter � should not affect the calcu-
lated rate constant, which means � need not be the true re-
action coordinate.

In the FFS method, the nucleation rate I from A to B is
expressed as a multiplication of two terms

I = I0P��n��0� , �23�

where I0 is the average flux across the interface �=�0 �i.e.,
leaving state A�, and P��n ��0� is the probability that a tra-
jectory leaving state A will reach state B before returning to
state A again. Because it is impossible to reach interface �
=�i+1 without reaching interface �=�i first, the probability
P��n ��0� can be decomposed into a series multiplication,

P��n��0� = �
i=0

n−1

P��i+1��i� , �24�

where P��i+1 ��i� is the probability that a trajectory reaching
�i, having come from A, will reach �i+1 before returning to A
again.

In this work, we set � to the size of the largest droplet n in
the simulation cell. The rate I0 is obtained by running a brute
force Monte Carlo simulation, during which we count how
frequently droplets with size larger than �0 are formed. An
ensemble of configurations at interface �=�0 �for trajectories
coming from A� is stored from this MC simulation. We set �0
to be several times bigger than the average largest droplet
size from the MC simulation at the given �T ,h�, to collect
configurations that are uncorrelated with each other.

The next step is to run MC simulations with initial con-
figurations taken from the ensemble at interface �=�0. A
fraction of the trajectories reaches interface �=�1 before re-
turning to state A. From these simulations the probability
P��1 ��0� is computed and an ensemble of configurations at
interface �=�1 is created. The process is repeated to com-

pute the probability P��i+1 ��i� for each i=1, ¯ ,n−1. For
each �T ,h� condition, the interfaces are chosen manually
such that the spacing ��i+1−�i� between interfaces increases
linearly with �i, with the first spacing ��1−�0� large enough
to have P��1 ��0��10−1. The nucleation rate constant turns
out to be the same within statistical error when computed
with different sets of interfaces having larger spacings than
above. The last interface �n is chosen to be 3 to 4 times
bigger than the critical nucleus size to ensure that the stable
state is reached.

As an example, Fig. 2 plots the probability P��i ��0�
� P��1 ��0�P��2 ��1�¯P��i ��i−1� for the 2D Ising model at
kBT=1.5 and h=0.05. In this test case, we find I0=1.45
�10−8 MCSS−1 with �0=24 from a brute force Monte Carlo
simulation with 107 MCSS. 15 000 configurations are then
collected at each interface, which allows the nucleation rate
to be determined within 5%. The probability of reaching in-
terface �=�n from interface �=�0 is P��n ��0�=1.92
�10−11 with �n=1200. Following Eq. �23�, the nucleation
rate under this condition is IFFS=2.78�10−19 MCSS−1.

It is important to note that FFS does not require the tran-
sitions between different interfaces to be Markovian. Neither
does it require the transitions to satisfy detailed balance, un-
like other sampling methods �19,45,47�. Therefore, it can be
used to test the fundamental assumption of the Becker-
Döring theory, which states that the nucleation process can
be coarse-grained into a one-dimensional Markov chain. FFS
would fail if there is no separation of time scale, i.e., if the
time spent on a reaction path is comparable to �instead of
much shorter than� the dwell time in state A or state B. In
order to test the applicability of FFS to Ising models, we
benchmark it against brute-force MC simulations of the 3D
Ising model at kBT=0.59Tc and h=0.589. The nucleation rate
computed by FFS, IFFS=4.10�10−10 MCSS−1, is in good
agreement with the brute-force MC result �29,30�, IMC

=5.81�10−10 MCSS−1, confirming the applicability of FFS.

B. Computing rate from Becker-Döring theory

Having computed the nucleation rate from FFS, we will
use it as a benchmark and compare it with the nucleation rate
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1010
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λi

P(
λ i
|λ 0
)
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PB(495) = 0.5 P B
(λ
i)--

FIG. 2. The probability P��i ��0� �solid line� of reaching inter-
face �i from �0 and average committor probability PB��i� �circles�
over interface �i at �kBT ,h�= �1.5,0.05� for the 2D Ising model. The
50% committor point is marked by �.
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predicted by the Becker-Döring theory. To gain more insight
from this comparison, we will split the Becker-Döring theory
into two parts and test them separately. Part I is summarized
in Eq. �3�, which expresses the nucleation rate in terms of the
attachment rate fc

+, Zeldovich factor �, and the free energy
barrier Fc. Part II is the prediction of the droplet free energy
F�n�, which was discussed in Sec. II B.

We will compute the droplet free energy F�n� numerically
by umbrella sampling �U.S.� �18�. The result then allows us
to specifically test Part II of the Becker-Döring theory. To
test Part I of the Becker-Döring theory, we will compute Fc
and � from the free energy function F�n� obtained by U.S.,
and plug them into Eq. �3�. The attachment rate fc

+ can also
be computed separately, as explained below.

As an example, Fig. 3�a� shows the droplet free energy
F�n� computed from U.S. at kBT=1.5 and h=0.05. The order
parameter is the size of the largest droplet, n. A parabolic
bias function 0.1kBT�n− n̄�2 is used, where n̄ is the center of
each sampling window, following Auer and Frenkel �18�.
The maximum of this curve indicates that the critical droplet
size is nc=496 and the free-energy barrier is Fc=61.3. The
Zeldovich factor can be calculated from the second deriva-
tive of this curve at nc, which gives �=0.0033.

We then collect many configurations from the U.S.
simulation, when the bias potential is centered at the critical

droplet size. Using each configuration as an initial condition,
we run Monte Carlo simulations and obtain the effective at-
tachment rate from the following equation,

fc
+ =

��n2�t��
2t

, �25�

where ��n2�t�� is the mean square fluctuation of the droplet
size. �n�t��n�t�−n�t=0�, n�t� is the droplet size at time t,
and � � represents ensemble average from these Monte Carlo
simulations. The Monte Carlo simulations are stopped when
��n�t�� exceeds 4. The result for the means square fluctuation
��n2�t�� at kBT=1.5 and h=0.05 is plotted in Fig. 3�b�,
which shows a linear function of time. From the slope of this
curve, we obtain fc

+=39.1 MCSS−1. A similar approach was
used by Brendel et al. �24� to compute the interface diffusion
coefficient.

Combining the values of fc
+, �, Fc and plug them into Eq.

�3�, we find that the Becker-Döring theory would predict the
nucleation rate to be IBD=2.37�10−19 MCSS−1, if the cor-
rect free energy function F�n� is used. This is very close to
the FFS result IFFS=2.78�10−19 MCSS−1 given in the pre-
vious section. The agreement confirms the validity of Part I
of the Becker-Döring theory. Comparisons over a wider
range of conditions are presented in the following section.
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FIG. 4. �Color online� The nucleation rate I
computed by FFS �open symbols� and Becker-
Döring theory with U.S. free energies �filled sym-
bols� in the �a� 2D and �c� 3D Ising models. The
ratio between nucleation rates obtained by FFS
and Becker-Döring theory at different tempera-
tures in the �b� 2D and �d� 3D Ising models. The
symbols in �b� and �d� match those defined in �a�
and �c�, respectively.
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IV. RESULT

A. Nucleation rate

We have computed the nucleation rates using two differ-
ent methods over a wide range of conditions: h=0.01–0.13,
T=0.5–0.8Tc for 2D and h=0.30–0.60, T=0.4–0.7Tc for
3D, where Tc is the critical temperature at zero field �kBTc
=2.269 in 2D and 4.512 in 3D�. In the first method, the
nucleation rate is directly computed by FFS. In the second
method, the nucleation rate is computed from the Becker-
Döring Eq. �3�, but using the free energy curve obtained
from U.S., as described in Sec. III B. The pre-exponential
factor, fc

+�, is found to have a weak dependence on T and h
�see Appendix A�, and varies by about a factor of 2 in the
entire range of T and h considered in this study. The calcu-
lations are performed on a 3 GHz Linux cluster. Each FFS
calculation for a given �T ,h� condition takes about 50 CPU-
hours for the 2D Ising model and 200 CPU-hours for the 3D
Ising model. Each U.S. calculation takes a similar amount of
time as an FFS calculation.

As shown in Fig. 4, the nucleation rate over these condi-
tions spans more than 20 orders of magnitude. Yet, most of
the rates predicted by the two methods are within 50% of
each other. This is a strong confirmation of Part I of the
Becker-Döring theory, i.e., Equation �3�. It confirms that for
the purpose of computing nucleation rate, it is valid to coarse
grain the Ising model to a one-dimensional Markov chain,
with the size of the largest droplet being the reaction coordi-
nate. Detailed balance between neighboring states along the
Markov chain, as is assumed by the Becker-Döring theory,
has been shown by a recent study �27� and our confirmation
of Eq. �3� provides another evidence for it. This means that
the Becker-Döring theory can predict the nucleation rate of
the 2D and 3D Ising models accurately, provided that the
correct free energy function F�n� is used. This is consistent
with an earlier report by Brendel et al. �24�.

B. Critical droplet size

There are two common definitions of the critical droplets.
In the first definition, a droplet is of critical size if its prob-
ability to grow and cover the entire system is 50%. In other
words, a critical droplet has a committor probability of 50%.
In the second definition, a droplet is of critical size if it
corresponds to the maximum of the free energy curve F�n�.
It is of interest to verify whether these two definitions are
equivalent.

After each FFS simulation under a given �T ,h� condition,
an ensemble of 15,000 spin configurations are saved at each
interface �i. The average values of PB��i� for a given inter-
face can be estimated using the following recursive relation,

PB��i� = PB��i+1�P��i+1��i� �26�

for i=n−1,n−2, . . .1 with the boundary condition PB��n�
=1 �46�. By fitting the data of PB to a smooth curve with
spline interpolation, we can extract the critical value nc for
which PB=0.5, as shown in Fig. 2. Some of the critical
nucleus size obtained this way are shown in Fig. 5 as filled
symbols.

The droplet sizes that correspond to the maximum of the
free energy curve obtained by U.S. are listed in Fig. 5as open
symbols. For both 2D and 3D Ising models, critical size from
two different methods agree with each other within 2%. This
confirms that the two definitions for the critical nucleus are
equivalent, provided that the correct free energy curves F�n�
are used. It also proves that the size of the largest droplet is
a good reaction coordinate.

Figure 6�a� plots the histogram of the committor probabil-
ity for an ensemble of spin configurations with n=496 for
the 2D Ising model at kBT=1.5 and h=0.05. The average
committor probability of this ensemble is 49.4%. About 94%
of the spin configurations in this ensemble have committor
probabilities within the range of 49�5%. This further con-
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FIG. 5. �Color online� �a� For 2D Ising model,
the critical droplet size n obtained from FFS
�filled symbols� and umbrella sampling �open
symbols�. nc predicted by Becker-Döring theory
�dotted line� and by field theoretic equation �solid
line� are plotted for comparison. �b� For 3D Ising
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FIG. 6. �Color online� �a� Histogram of com-
mittor probability in an ensemble of spin configu-
rations with n=496 for the 2D Ising model at
kBT=1.5 and h=0.05. Representative droplets are
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3D Ising model at kBT=2.20 and h=0.40.
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firms that the size of the largest cluster, n, is a very good
reaction coordinate of the nucleation process. Figure 6�b�
plots the histogram of the committor probability within an
ensemble of spin configurations with n=524 for the 3D Ising
model at kBT=2.20 and h=0.40. The average committor
probability of this ensemble is 50%. About 80% of the spin
configurations in this ensemble have committor probabilities
within the range of 50�5%. The spread of the committor
probability distribution is wider than the 2D case, and is
consistent with an earlier report �25�.

C. Droplet free energy of 2D Ising model

The previous sections show that the Becker-Döring theory
performs well as long as the correct droplet free energy F�n�
is provided. We now compare the theoretical predictions of
F�n� with numerical results by U.S. We will focus on 2D
Ising model in this section and will discuss F�n� in the 3D
Ising model in the next section.

Figure 7 plots the F�n� curves for kBT=1.5 and h=0.05.
Numerical results from U.S. and predictions from the
Becker-Döring theory, Eq. �9�, and Langer’s field theory, Eq.
�6�, are plotted together. It is clear that the logarithmic cor-
rection term 	kBT ln n from the field theory is substantial.
The field theory prediction, which contains this correction
term, agrees very well with numerical U.S. results �after the
constant term is added, see Appendix D�. The free energy
used in CNT, Eq. �9�, which lacks this correction term, is
significantly lower. Obviously, if this free energy curve is
used, the Becker-Döring theory will overestimate the nucle-
ation rate by several orders of magnitude. Our result also
shows that, the field theory predictions, though derived under
the assumption of infinitesimal h, are still valid at finite h in
the range of field considered in this study.

Our results shows that the macroscopic surface free en-
ergy �at zero h� can be safely applied to a droplet �at finite h�
�29�, provided that the constant correction term is added �see
Appendix D�. Brendel et al. �24� reported that the effective
surface free energy exceeds that of the macroscopic surface
free energy by 20%. But this was caused by the neglect of
the logarithmic correction term in that study.

Our results contradict the previous report �21� that 	 is
close to zero at low temperatures �T=0.59Tc and 0.71Tc� and
only goes to 5

4 near T=0.84Tc. In the previous study �21�,
only small clusters �n�60� are sampled, but not using the
umbrella sampling technique. We suspect this approach is
susceptible to the error caused by the lack of statistics at low
temperatures �especially for clusters with n
30�. Because

the field theoretic correction term 	kBT ln n becomes smaller
at low T, it could be masked by the statistical error. To sup-
port our finding, the free energy curves for cluster sizes up to
n=1950 at a wide temperature range �from 0.53Tc to 0.84Tc�
are attached in a supplementary document �48�. 	= 5

4 is nec-
essary in the entire temperature range to accurately describe
the droplet free energy.

In the literature, the field theory correction is usually ex-
pressed as an extra pre-exponential factor inserted into the
Becker-Döring formula of the nucleation rate. Both a pre-
exponential factor and a change to the free-energy curve can
modify the nucleation rate. So it may appear impossible �or
irrelevant� to decide which approach is more “correct.” How-
ever, a closer inspection shows that it is indeed possible to
tell whether the correction should be interpreted as a free
energy change, or a kinetic prefactor. This is because self-
consistency requires that the maximum of the free-energy
curve F�n� should match the droplet size nc whose commit-
tor probability is 50%, as discussed in Sec. IV B.

Figure 5 shows the critical droplet sizes nc
F/BD �dotted

lines�, which correspond to the maximum of the free energy
curves F�n� predicted by the Becker-Döring theory, Eq. �9�.
They are significantly smaller than the critical droplet sizes
nc

comm �filled symbols� that corresponds to a 50% committor
probability. With the field theory correction term in the free
energy, the critical droplet sizes nc

F/FT �solid lines� agree
much better with nc

comm. This result clearly shows that the
field theory correction should be placed in the free energy
function F�n�, instead of being a kinetic prefactor.

It is of interest to compare the various free energy expres-
sions discussed so far with the analytic �exact� expressions
�49� for F�n� that are available for 0�n�17. It is somewhat
surprising that the field theory prediction of F�n� �after cor-
rected by a constant term, see Appendix D� agrees very well
with both the numerical data from U.S. and the analytic ex-
pressions, for such small values of n. This is another confir-
mation for the field theory prediction of the free-energy
curve, Eq. �6�.

Shneidman et al. �21� also observed the effect of the loga-
rithmic correction term, but expressed it in terms of “size-
dependent prefactor,” and suspected that it is caused by co-
agulation of droplets. Our results show that this is not a
coagulation �many-droplet� effect, because the logarithmic
correction term is derived by considering the shape fluctua-
tion of a single droplet.

In summary, the free-energy expression from CNT must
be modified by two terms, i.e., a logarithmic correction term
	kBT ln n from field theory and a constant term to match the
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FIG. 7. �Color online� �a� Droplet free energy
curve F�n� of the 2D Ising model at kBT=1.5 and
h=0.05 obtained by U.S. �circles� is compared
with Eq. �6� �solid line� and Eq. �9� �dashed line�.
Logarithmic correction term 5

4kBT ln n �dot-
dashed line� and the constant term d �dotted line�
are also drawn for comparison. �b� Magnified
view of �a� near n=0, together with the results
from analytic expressions �squares� available for
n�17 �see Appendix D�.
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free energy of very small droplets. In 2D, both terms can be
determined completely from existing theories and contain no
fitting parameters.

D. Droplet free energy of 3D Ising model

In the following, we will examine the functional form of
the droplet free energy F�n� in the 3D Ising model. Because
there is no analytic solution to the effective surface free en-
ergy in 3D, �eff�T� must be treated as a fitting parameter in
our analysis, which creates more uncertainty in our conclu-
sions. For example, we cannot unambiguously determine the
coefficient 	 in the logarithmic correction term �in Eq. �6��
from the numerical results. Another difficulty in determining
	 is that in 3D the logarithmic correction term is much
smaller compared with the first two terms in Eq. �6�.

To reduce the complexity from finite h, we computed
droplet free energy at zero field for a range of temperature
kBT=2.0, . . . ,2.8 by U.S. Figure 8 plots the results at kBT
=2.40 and h=0. We have examined a number of functional
forms to see which one best describes the numerical data of
the droplet free energy.

First, we fit the data to the original Becker-Döring form,
Eq. �16�, plus a constant correction term, i.e.,

F�n� = �eff�T�
n2/3 − 2hn + d�T� , �27�

where �eff�T� is a free fitting parameter at each tempera-
ture. We find that Eq. �27� cannot describe the droplet free
energy well in the entire range of n. Since we expect it to
be more accurate in the continuum limit of large n, we fit
the U.S. data to Eq. �27� only in the range of n
50. The
resulting term d�T� is in the range of −1.1 �at kBT=2.0� to
−2.4 �at kBT=2.8�. The error in the fit is defined as R
�� 1

700
i=50
750 �F�i�−Ffit�i��2�1/2, where F�i� is the numerical

data from U.S., and Ffit�i� is the value given by Eq. �27�. The
resulting R is in the range of 0.01–0.13 and increases with
increasing temperature. Significant discrepancy between the
U.S. data and the fit is observed in the range of n�50, which
will be further discussed below.

The next function to be considered for the fit includes the
logarithmic correction term,

F�n� = �eff�T�
n2/3 + 	�T�kBT ln n − 2hn + d�T� �28�

in which 	 is a free parameter for each temperature T. The
error of the fit is now reduced to about R�0.01 for all tem-
peratures and is now independent of temperature. This means
that the logarithmic term improves the description of the
temperature dependence of the free energy of large droplets
�n
50�. But the discrepancy in the range of n�50 still re-
mains. This is different from the 2D Ising model, where Eq.
�6� describes the droplet free energy very well even without
any fitting parameters.

Perini et al. �39� used the following functional form to fit
their free-energy data,

F�n� = �eff�T�
n2/3 + K�T�n1/3 + 	kBT ln n − 2hn + d�T�
�29�

where 	=− 1
9 is constrained to be a constant �54�. The param-

eter K corresponds to the extra energy of “ledges” that ap-
pear on 3D droplets. We find that the quality of the fit using
Eq. �29� is similar to that using Eq. �28� �55�. However, the
resulting K�T� is an increasing function of temperature. This
is counter-intuitive because the continuum droplet approxi-
mation is expected to be better at higher temperatures where
equilibrium droplet shape become more spherical. Hence, we
would expect K�T� to decrease with increasing temperature.
Therefore, we believe Eq. �28� is a more appropriate func-
tional form than Eq. �29�.

Hence, we do not include the “ledge” energy term, and
will treat 	 as a function of temperature during the fitting. We
also find that the fit in the range of n�50 can be significantly
improved by adding an exponential term. The data at all T
and in the entire range of 0�n�750 considered in this study
turns out to be well fitted by the following function.
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FIG. 8. �Color online� �a� Droplet free energy F�n� of the 3D Ising model at kBT=2.40 and h=0 obtained by U.S. �circles� is compared
with Eq. �30� �solid line� and Eq. �16� �dots�. Logarithmic term 	kBT ln n is also plotted �dot-dashed line�. The difference in predictions by
classical expression Eq. �16� and field theory Eq. �30� are very small compared to F�n� itself and cannot be observed at this scale. �b�
Magnified view of �a� near n=0, together with the analytic solution of small droplets �squares, see Appendix D� and the exponential
correction term �dashed line�.
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F�n� = �eff�T�
n2/3 + 	�T�kBT ln n − 2hn + A

+ B�T�exp�−
Cn

B�T�� , �30�

where A and C are constants independent of T, and B�T�,
�eff�T�, and 	�T� are functions of T �56�. The fitted param-
eters are: A=0.06 and C=0.59. It turns out that B�T� can be
well described by a linear function: B�T�=9.12kBT−16.08.
The contribution of the exponential term is plotted in Fig.
8�b�. In the range of T and h considered in this study, the size
of the critical nucleus is larger than 100. Hence the nucle-
ation rate predicted by CNT under these conditions is only
affected by F�n� in the range of n
100. When Eq. �30� is
used, the numerical values of the logarithmic term is in the
range of −5 to 0, for 2.0�kBT�2.8 and 100�n�750. It is
the major correction term to the classical expression of the
droplet free energy, Eq. �16�, for n
100. In comparison, the
constant term is A=0.06 and the magnitude of the exponen-
tial term is less than 10−7 for n
100.

Figure 9�a� shows the fitted values of �eff in the tempera-
ture range of 0.4–0.65Tc. �eff decreases with T, as expected.
In the limit of large T, the difference between the free ener-
gies of �100� and �110� surfaces diminishes, the droplet be-
comes spherical, and �eff converges to the free energy of
�100� surfaces. In the limit of T→0, we expect �eff to con-
verge to �6 /��1/3 times the surface tension of the �100� sur-
face. This is because as T→0, the shape of the droplet be-
comes cubical �28�, and �6 /��1/3 is the surface area ratio
between a sphere and a cube, both having unit volume. The
expected shape of �eff�T� over this temperature range is plot-
ted as a dashed line, which is similar to the case of 2D Ising
model shown in Fig. 1. In summary, we expect �eff to de-
crease from 2.481 to 0 as temperature increases. For ex-
ample, at kBT=2.71, �eff=1.6. This may explain the discrep-
ancy reported by Pan et al. �25�, in which �eff=2 is assumed
at kBT=2.71. In Vehkamaki et al. �30�, the nucleation rate
predicted by CNT was reported to have a weaker tempera-
ture dependence than the numerical results. This is probably
caused by the use of the same surface free energy �at

T=0.59Tc� in the entire temperature range �0.54Tc to 0.70Tc�.
The decrease of surface energy with temperature leads to a
significant reduction of nucleation free energy barrier with
temperature. This corresponds to an anomalously large “ef-
fective entropy” of nucleation �see Appendix B�, which
would be difficult to explain if the variation of surface en-
ergy were ignored.

Figure 9�b� shows the fitted values of 	 as a function
of temperature. Over the range of temperature considered
here, 	 can be approximated by a linear function of T,
	=−0.26kBT+0.44. The fact that 	�0 in 3D is consistent
with theoretical predictions. But 	 is found to decrease with
temperature, and no discontinuity at the roughening tempera-
ture is observed. This is consistent with the observation that
no significant change of droplet shape occurs near the rough-
ening temperature �see Appendix C�. This is contrary to the
theoretical predictions of 	=− 2

3 at T�TR and 	=− 1
9 at T


TR. The change of 	 with T may be the consequence of a
gradual change of anisotropy effects as temperature changes
�40�. More investigation is needed to resolve the controversy
of 	 in the 3D Ising model. The difference between 2D
�where 	=5 /4 remains a constant� and 3D Ising models on
the behavior of 	 remains intriguing.

V. SUMMARY

In this paper, we have used two independent methods to
calculate the nucleation rate of Ising model in 2D and 3D, in
order to check independently the different assumptions of the
nucleation theories. The Markov chain assumption with the
largest droplet size as the reaction coordinate is found to be
accurate enough to predict nucleation rate spanning more
than 20 orders of magnitude, provided that the correct drop-
let free energy function is used. The logarithmic correction
term is found to be essential to droplet free energy in 2D.
Our numerical results verified the field theory prediction that
	=5 /4 in 2D. However, for the 3D Ising model, our numeri-
cal results are not consistent with existing theories on the
coefficient 	 of the logarithmic correction term, suggesting
that some important physics may still be missing in the ex-
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FIG. 9. �Color online� �a� Surface free energies of the 3D Ising model as functions of temperature. Circles are fitted values of �eff from
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isting theories, such as the anistropy effect on the droplet
free energy. An exponential function seems to be necessary
to describe the free energy of small 3D droplets, but it is not
needed for the 2D droplets. A promising direction for future
research is to numerically compute the surface free energy of
different orientations in 3D and to build the effective surface
free energy �eff from the Wulff construction. This would
eliminate �eff as a fitting parameter and would enable a more
stringent test of CNT for the 3D Ising model. In addition, 3D
simulations at smaller h values will allow a more direct com-
parison with existing nucleation theories, most of which as-
sume an infinitesimal h.

APPENDIX A: ATTACHMENT RATE

In this appendix, we examine the dependence of the pre-
exponential factor, fc

+�, in the nucleation rate predicted by
the Becker-Döring theory, Eq. �3�, on T and h. In the �T ,h�
conditions considered in this study, both the attachment rate
fc

+ and the Zeldovich factor � vary by several orders of mag-
nitude. However, their variations largely cancel each other
and the product fc

+� only varies within a factor of 2, as
shown in Figs. 10�a� and 10�c�.

Equation �4� defines the Zeldovich factor � in terms of the
second derivative of the droplet free energy function F�n�
which is discussed in more detail in the following appendi-
ces. Here we focus on the attachment rate fc

+ and evaluate the
quality of the approximations in Eqs. �13�, �14�, and �20�.
Figures 10�b� and 10�d� plots the ratio of the attachment rate
fc

+ computed from Monte Carlo and that predicted by the
classical theories, in 2D and 3D respectively. The predictions
from classical theories are within a factor of 2 of the numeri-
cal results for the entire �T ,h� conditions considered in this
work. The discrepancy between theoretical and numerical
results observed here can be partly attributed to the approxi-
mation that the droplet is circular in 2D, as in Eq. �13� or
spherical in 3D, as in Eq. �20�. Due to the discreteness of the

Ising model, this is obviously not the case, as shown in
Appendix C.

APPENDIX B: EFFECTIVE ENTROPY OF NUCLEATION

The purpose of this appendix is to examine the tempera-
ture dependence of droplet free energy at a given h, for both
2D and 3D Ising models. Figure 11�a� plots the droplet free
energy as a function of droplet size n for the 2D Ising model
at h=0.1 and different temperatures. The maxima of these
curves, i.e., the free-energy barrier Fc, are plotted in Fig.
11�b�. The data can be fitted to a straight line, whose slope
gives an effective entropy of S=43.5kB. An entropy of this
magnitude seems anomalously large and will be difficult to
attribute to the shape fluctuation of the critical droplet. We
believe that this entropy is a consequence of the temperature
dependence of the effective surface free energy �eff�T�. In
CNT, the free-energy barrier is linked to �eff�T� through Eq.
�11�. As a comparison, Fig. 11�b� also plots the prediction of
Eq. �11� as a dashed line, which gives an effective entropy of
53.4kB. This confirms that the anomalously large entropy is a
result of the temperature dependent surface tension. The
large difference between the solid line and dashed line indi-
cates the importance of the logarithmic correction term in
2D.

Figure 11�c� plots the droplet free energy as a function of
droplet size n for the 3D Ising model at h=0.45 and different
temperatures. The maxima of these curves, i.e., the free en-
ergy barrier Fc, are plotted in Fig. 11�d�. The data can be
fitted to a straight line, whose slope gives an effective en-
tropy of S=143kB. As a comparison, Fig. 11�b� also plots the
prediction of CNT, Eq. �18�, as a dashed line, which gives an
effective entropy of 152kB. Again, the anomalously large en-
tropy is a result of the temperature dependent surface
tension.

APPENDIX C: DROPLET SHAPES

The purpose of this appendix is to examine the shape
change of the droplets as temperature changes. As
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FIG. 10. �a� The pre-exponential factor fc
+� in

2D computed from Monte Carlo and U.S. �b� The
ratio between the attachment rate fc

+ in 2D com-
puted by Monte Carlo and that predicted by Eq.
�13�. �a� The pre-exponential factor fc

+� in 3D
computed from Monte Carlo and U.S. �b� The
ratio between the attachment rate fc

+ in 3D com-
puted by Monte Carlo and that predicted by Eq.
�20�.
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temperature increases, we reduce the magnitude of the
field h, so that the size of the critical nucleus stays
roughly the same. The droplets plotted here are close
to the critical size and are randomly chosen from FFS simu-
lations.

Figure 12�a� shows three droplets in 2D at kBT=1.0, 1.5
and 1.9. At kBT=1.0, the droplet has long facets on the
boundary and a solid interior. At kBT=1.5, the droplet shape
becomes more circular than rectangular. At kBT=1.9, signifi-
cant fluctuation can be observed on the droplet surface. The
inside of the droplet also becomes more porous containing a
number of −1 spins.

Figure 12�b� shows three droplets in 3D at kBT=2.2, 2.5
and 2.71. At kBT=2.0 �below the roughening temperature�,
small facets can be found on the droplet surface. At
kBT=2.5 �near the roughening temperature�, the droplet
shape does not seem to be substantially different from that at
kBT=2.0. At kBT=2.71 �above the roughening temperature�,
the surface shape becomes more irregular. The droplet shape
seems to change gradually with increasing temperature,
without any sharp transition �resembling a phase transition�
at the roughening temperature TR. This may be caused by the
small size the critical droplet in this study, which prevents a
true roughening transition of its surface morphology due to
its small area.

APPENDIX D: THE CONSTANT TERM
IN DROPLET FREE ENERGY

In this appendix, we discuss how to obtain the constant
correction term in the droplet free energy function, Eq. �6�,
for the 2D Ising model by considering the exact free energy
expressions of small clusters. Shneidman et al. �21� used a
similar approach to improve the predictions of droplet distri-
butions. A related problem was discussed by Wilemski �50�.
We will also list the free energy expressions of small 3D
clusters. Even though they cannot be used to determine the
constant correction term, they are useful for comparison pur-
poses, as in Fig. 8�b�.

Because the free-energy expression, Eq. �5�, is based on a
continuum droplet model, we expect it to be inaccurate for
very small droplets, where the discreteness of the lattice be-
comes appreciable. On the other hand, the continuum ap-
proximation should work better for large clusters, i.e., in the
continuum limit. Therefore, we expect that Eq. �5� can be
used to accurately predict the free energy difference between
two large droplets, F�m�−F�n�, if both m�1 and n�1. This
justifies the addition of a constant term in Eq. �6�. The value
of the constant term can be determined by matching Eq. �6�
with the exact values of F�n� for small n.

Fortunately, for small enough n, the exact expression of
the droplet free energy can be written down by enumerating
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FIG. 11. �Color online� �a� Droplet free energy as a function of droplet size n at h=0.1 and different kBT for the 2D Ising model. The
critical droplet free energy is marked by circles. �b� Critical droplet free energy �circles� from �a� as a function of kBT for the 2D Ising model.
The solid line is a linear fit of the data, and the dashed line is the prediction of Eq. �11�. �c� Droplet free energy as a function of droplet size
n at h=0.45 and different kBT for the 3D Ising model. �d� Critical droplet free energy from �c� as a function of kBT for the 3D Ising model.
The solid line is a linear fit of the data, and the dashed line is the prediction of Eq. �18�.
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all possible shapes of the droplet with size n and summing up
their contributions to the partition function. For simplicity,
we will consider the case of h=0. For example, a droplet of
n=1 is simply an isolated spin +1 surrounded by spins −1.
The partition function of this droplet in the 2D Ising model
is,

�1
2D = e−8�J, �D1�

where ��1 / �kBT�. Similarly, the partition function of drop-
lets of size 2, 3, and 4 are,

�2
2D = 2e−12�J, �D2�

�3
2D = 6e−16�J, �D3�

�4
2D = e−16�J + 18e−20�J. �D4�

The number in front of the exponential term corresponds to
the multiplicity of clusters of a given shape. Analytic expres-
sions for the partition functions of 2D droplets have been
obtained up to n=17 with computer assistance �49�.

We have obtained similar expressions for the droplet par-
tition functions in the 3D Ising model for n from 1 to 7.

�1
3D = e−12�J, �D5�

�2
3D = 3e−20�J, �D6�

�3
3D = 15e−28�J, �D7�

�4
3D = 3e−32�J + 83e−36�J, �D8�

�5
3D = 48e−40�J + 486e−44�J, �D9�

�6
3D = 18e−44�J + 496e−48�J + 2967e−52�J, �D10�

�7
3D = 8e−48�J + 378e−52�J + 4368e−56�J + 18748e−60�J.

�D11�

Given the droplet partition functions, the droplet free en-
ergy F�n� defined in this paper can be obtained from the
following equation,

e−�F�n� =
�n

1 + 

i=1

�

�i

. �D12�

Numerically, the summation in the denominator converges
very quickly after summing over 2 to 3 terms. As an approxi-
mation, we may write F�n��−kBT ln �n. But this approxi-
mation is not invoked in Sec. IV.

The droplet free energy computed from Eq. �D12� is used
to determine the constant term d in Eq. �6�, by requiring that
F�n� from the two equations matches at a given n=n0. In this
work, we have always used n0=1. Setting n0 to larger values
�as long as the analytic expression exists� does not change
the numerical results appreciably. For example, consider the
2D Ising model at kBT=1.5, h=0 and J=1. The free energy
of a droplet of n=1 is F�1��8, whereas Eq. �9� predicts that
F�1�=2
��eff�4.3. This means that a constant correction
term d�3.7 is needed.

kBT = 1.0 h = 0.07
n = 525

kBT = 1.5 h = 0.05
n = 499

kBT = 1.9 h = 0.03
n = 409

kBT = 2.2 h = 0.45
n = 362

kBT = 2.5 h = 0.40
n = 396

kBT = 2.71 h = 0.35
n = 419

(a)

(b)

FIG. 12. Droplets in �a� 2D
and �b� 3D Ising models randomly
chosen from FFS simulations at
different �T ,h� conditions. n is the
size of the droplet.
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