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Thermally induced resonances in a three-body system including a solid surface
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Dispersion energy of a system out of equilibrium containing two molecules and substrate in different
thermostats is calculated taking into account nonlocal optical effects. A resonance increase of energy due to
three-body interaction in a system out of equilibrium is shown. In particular, dispersion energy of a two-body
subsystem of the three-body system out of equilibrium may be essentially larger than the energy of the same
subsystem in equilibrium. A necessary condition of the resonance increase is a closeness of eigenfrequencies of
the subsystems composing the whole system. It is shown that different nonlocal reflectivities of surface
corresponding to different additional boundary conditions lead to similar results in resonance magnification of
dispersion interaction of subsystems in a system out of equilibrium.
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I. INTRODUCTION

Properties of many-body systems may be found using
Green’s functions or density matrices. But, starting with a
two-body problem, conventional direct methods of solution
of many-body problems allow to determine conditions of
appearance of new principal phenomena due to adding a par-
ticle to the system of interest. An exact solution of a two-
body problem is very well known. History of searching for a
three-body problem includes a few hundreds years and con-
nected with outstanding scientists. For instance, five exact
solutions of a classical problem of celestial mechanics were
found by Euler and Lagrange in case of fixed distance ratios
between bodies. Asymptotes and periodicity of a general so-
lution were investigated by Poincare. Related references can
be found in encyclopedias and textbooks.

An exact solution of quantum three-body problem was
derived in the twenty century at the condition R/a—0,
where R is the hyperspherical radius determining a deviation
of each particle from the center of mass of the whole system,
a is the two-body scattering length. This condition may be
satisfied in case when R — 0 and «a is the finite value, and in
another case when a — % and R is the finite value. A solution
for the first case was obtained by Thomas in 30s years of the
last century. The second one as corresponding to the physical
reality was discovered by Efimov in 70th [1,2]. So-called
Efimov states were found experimentally [3] in a system of
Cs atoms at very low temperatures (7=10-250 nK). Now,
the Efimov state of a three-body system is regarded as by
right as a new type of material bond side by side with a
covalent, ionic, metallic or dispersion bond. That is why an
enormous interests in new many-body systems to be ob-
served in modern physics.

It should be emphasized that above described states mani-
fest itself at low relative energies of particles. Moreover, cor-
responding resonances disappear with a temperature in-
crease. But, however, there are three-body resonances
connecting with a specific character of thermodynamic con-
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ditions. Namely, if separate subsystems of many-body sys-
tem are situated in thermostats kept at different temperatures,
then it is possible a resonance increase of the dispersion en-
ergy of “cold” subsystems due to an interaction with “hot”
subsystems. The resonance amplification occurs at coincid-
ing of eigenfrequencies of these subsystems. A physical rea-
son of this phenomenon is that the most effective energy
exchange among the subsystems occurs at the closeness of
their eigenfrequencies [4,5].

The van der Waals interaction of bodies in thermody-
namic equilibrium has been studied in details. The fluctua-
tional and many-body nature of such an interaction were
convincingly demonstrated in past. Various theoretical meth-
ods to calculate the dispersion forces acting between micro-
scopic or macroscopic bodies were developed by different
authors. A lot of monographs and reviews are known in this
field, see, for example [6-9]. Theoretical predictions were
verified experimentally on the basis of diverse experimental
techniques including the novel subtle probe proximal tools.
But, very often the dispersion interaction occurs in condi-
tions out of equilibrium. These conditions may be found in
the molecular-beam experiments, in the gas-phase deposition
onto substrates, in the photochemical reactions, in the probe
microscopy and so on. General expressions for the van der
Waals interaction between two molecules having different
temperatures were found by Linder and co-workers [10-12].
It was shown that the dispersion potential become repulsive
when the temperature difference is large enough. A change of
the adsorption potential between a molecule and a nonequi-
librium semiconductor has been demonstrated by Bass and
Lozovski [13]. Dispersion forces between two molecules that
are in relative motion were calculated by Cohen and Muka-
mel [14]. They found that the nonequilibrium forces may be
attractive or repulsive and may be nonconservative. It should
be noticed that the works [10-14] were devoted to the equi-
librium two- and three-particle and nonequilibrium two-
particle systems. The dispersion interaction of two macro-
scopic bodies kept at different temperatures was considered
in [15,16]. The problem was solved for materials described
by arbitrary dielectric functions and magnetic permeabilities.

Recently, some important nonlocal effects are discussed
in relation to the van der Waals forces and radiative heat
transfer in Refs. [17-21]. Optical properties of systems are
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determined in general by the spatial and temporal disper-
sions. Spatial dispersion or nonlocality manifests itself as a
dependence of the response function on the wave vector side
by side with the dependence on the frequency. Importance of
nonlocal effects for semiconductors or poor conductors was
discussed for the equilibrium case in [22-24].

In this paper we show that a substantial increase of the
dispersion interaction occurs between two particles near a
hot surface compare with a case when these particles in a
free space. In other words, energy of interaction between two
molecules near a heating surface U,,(T;,Ts) may be much
larger than the energy of interaction U,(T;) of the same
molecules in free space, where T, Ts are the temperatures of
two thermostats containing molecules and a substrate, corre-
spondingly. A magnitude of the resonance depends on tem-
peratures of the subsystems, mutual geometry and properties
of molecules and a substrate. Besides, we demonstrate that
the three-body interactions in a system out of equilibrium
may be larger than the two-body interactions in equilibrium
system at some conditions. The necessary condition of this
effect is a closeness of their eigenfrequencies w;, with
eigenfrequency of surface wgyp. An eigenfrequency of the
third body is the frequency wgp (QP-quasistatic polariton) of
the surface Coulomb polariton. This frequency is a solution
of equation Re{e(w)}+1=0, where e(w) is the dielectric
function of substrate. In other words, the Coulomb polariton
is the quasistatic limit of the surface plasmon- or phonon-
polariton (which are eigenmodes of a flat surface). Besides,
we demonstrate the resonance amplification of dispersion in-
teraction of subsystems in a system out of equilibrium taking
into account the nonlocal response function.

The paper is organized as follows. In Sec. II we provide
theoretical basis to calculate the dispersion energy of a sys-
tem out of equilibrium containing two molecules and sub-
strate in different thermostats. Analytical formulas for the
energy are given in Secs. II A and II B, both in general and
local cases. Numerical results demonstrating the resonance
energy increase and discussion are presented in Sec. III. Our
conclusions are given in Sec. IV.

II. FORMALISM

Side by side with a three-body system involving, for in-
stance, three molecules, it is possible to consider two mol-
ecules with eigenfrequencies w; and w, near a surface of
solids, characterized by eigenfrequency wyp. We consider a
situation when two molecules are placed in thermostat at the
temperature T; and a solid sample is placed in thermostat at
T¢+# T;. The geometry of the problem is depicted in Fig. 1.

The selected particle 1 is located at the distance d nearby
a substrate and the second particle 2 is situated at some dis-
tance R from the first one and at the distance z from the
substrate. The image of the first particle is shown beneath of
a surface at the distance d.

Consider two particles nearby a half-space in the system
of coordinates depicted in Fig. 1 where the first particle at
point 7;={0,0,d} and the second particle at point 7,
={r;,0,z}. The energy of interaction in the dipole approach
may be found in the usual way [7,8]
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FIG. 1. Geometry of the problem and related notations for the
coordinates of molecules located in the near surface region of
substrate.

1 - :
U== s 0 - Ex(Fon) + Es(o0) - fis(7,0)
| P B (=
- §<Mz(r1,t) Es(7),0))s, M

where iy is the total fluctuating moment of the selected

particle and Ez is the total fluctuating field induced by the
surroundings at point 7; where the selected particle is situ-
ated, the subscript s indicates the symmetrized value. The
calculations are restricted to the nonretarded regime. The to-
tal moment and field may be written down as follows taking
into account the two- and three-particle terms in the expres-
sion for energy

ﬁZ(th) = ﬁip(i)l’t) + &IEJP(Fl’t) + &lTﬁép(F%t)

+ & B (7, 7)) @ (71,1) + 6 Ba (71, 7)) i1 (7p, 1)

+ G TEE (Fat) + & By(F1, Fa) 6o E (Fat),  (2)

Ex(7),0) = EP(Fy,1) + By (71, 7)) @y (71,1) + BoFy, o) iy’ (7, 1)
+ fﬁip(fz’f) + f&zésl’(Fz’f) + ﬁl(flsf)l)&lém(f)l’t)
+ By(F1, y) GoEP (o) + Tan Ty (7, 1)

+ T&ZBI(F29FI)ﬁip(FI7t) + ﬂz(’?l’FZ)&ZTﬁip(Fl»t)’

(3)

where @'P(F;,1) is the proper spontaneous dipole moment of
the particle, situated at point “i,” E“”(Fi,t) is the fluctuating
electric field at the same point created by a half-space, T
=T,;=(3nn;-8,)/ R, i=R/|R|, & is the Kronecker symbol,
R=\e"rﬁ+(z—d)2 is defined in Fig. 1.

Each term in Egs. (2) and (3) has a clear physical mean-
ing, for instance

t
GEP(F,,1) = f a(t=(VEP (7L 0)dr' = @70, (4)
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t
Bo(F1,75) (P (7o, 1) = Bo(Fy,iyst = t") @P (7,1 )dt’

—o0

= EM(7),1), (5)

t
B1(7y, 7)) @ (7y,1) = f Bi(Fy,Fyst = t") P (7,1 )dt’
= EM(7,,1), (6)

the operator B is taking into account the nonlocal response of
a half-space in a general case.

Such operator, for example, [32 creates the field at point 7}
followed by inducing the dipole moment at the same point
under the action of the operator &,

A t I’ A
@, By (71, 7) @' (7, t) = &1(f—1')J AGRENA
—00 -0

— ") @'t (R, ")dt' dt”. (7)

The Fourier transforms follow from Egs. (4) and (5),

(1, 0) = ag()EY (7, ), (8)
E;nd(fl, w) = Bik(FlsFZ;w)ﬂip(FZ’w)' ©)

The number of terms in Egs. (2) and (3) corresponds to the
following terms in the expression for energy [Eq. (1)] U
~ o+ a B+ ar B+ ayan B+ ayany B2, where the first term
describes the pair interaction between molecules, the second
and third terms describe an interaction of molecules with a
substrate separately and the last two terms take into account
of the triple interaction.

States of microparticles nearby solids depend on various
factors including electromagnetic properties of the solids. A
matter of great concern is the case of nonlocal description of
the properties. In thermal equilibrium the van der Waals en-
ergy of a system constituted by two microparticles and a
solid characterized by a local response was calculated in
[25]. The same problem, but in the nonlocal approach was
studied in [26]. Here, a similar problem will be considered,
but in a system out of thermal equilibrium, when the tem-
perature of a substrate T differs from the temperature of a
gas Tg. This approach is the same as one accepted in the
papers [15,16].

A. General case

Substituting of Egs. (2) and (3) to Eq. (1) and taking into
account that molecules in environment at 7; and the sample
is held at T, we have

Uneq(2.71,d, T, Ts) = Uz, 1,d, T) + Uy s(z,1y,d, T, Ts)
+ Uys(z.r,d. Tg. )
+ URs(.r.d.T6.Ty). (10)

where
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6T <
U12(Z”’\|’d» TG) == R_GG E a](iwn)aZ(iwn)v

(11)
n=0"
* do| 20 20
Uys(z.r»d, T, Tg) = — f ;T{TGAl(wHTSAZ(w) ,
(12)
* dwl| 20 20 |
Uios(z.r.d, T, Tg) = - J py TGBl(w) + f&(w) :
(13)
* dol 20 20 1
Us(zrsd: T, Tg) = = f | i@+ 2 0w) |
(14)
where O s=(hw/2)coth(hw/2T; ),
Aj(w)=adj(w)B'(w), As(w)=p"(0)a](w),
B(w) =2a}(w)[ a;(w)B' (w) — a5 (w)B"(w)]
+2a5(w)a|(w)B' (w), (15)
By(w) = B"(w)aj(w)aj(w), B(w)=Tr{TyBy}, (16)
Ci(w) = o (w)Re{aj(w) Tr{ B 8,1}
+ oy (w)Re{a] () Tt B By, 1}
Co(w) =Re{a; (@) &5 () T BB T}
+ Re{a;(w) ay(0) Tr BB, 1}, (17)

@) »(w) are the polarizabilities of the molecules, B; (7,7, ; )
is the 3 X 3 matrix [26] with components

o0

1
Bxx(FI’FZ;w) = EJ pzdp[‘IO(er)

0
- Jr(pr) 1 (p, w)exp[— p(z + d)],

[

1
B)ry(Fl9?2;w) = Ef pzdp[‘]()(pr“)

0

+Jo(prp]riy(p, w)expl- p(z + d)],
Be:F1 Py 0) = J p*dpJo(pr)riy(p,w)expl- p(z + d)],
0

ﬁxz(Fl,FZ;w) == Bzx(Fl’FZ;w)

= f p*dpJ,(pr)riy(p.w)exp[- p(z + d)],

0
(18)
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other components of the matrix are equal to zero, i, (p, w) is
the Fresnel coefficient taking into account the nonlocal pe-
culiarities of the optical response of the substrate in a general
case, Jy;, are the Bessel functions. In a special case r,
=0, z=d, the matrix By(F,F;w) is reduced to B(w)
=B..(F1, 71 0) =2, (71,71 0) =28, (F) . s 0).

In the quasistatic local approach, r,(p, w)=ri,(w)=x(w)
=[e(w)=1]/[e(w)+1] and B(w)=x(w)/4d>. It is seen from
the structure of formulas (18) that B,(7,,7)=/,(7.7) in
formulas (2) and (3).

The force acting between the selected first particle and
substrate under an influence of the second particle is
[199==0U poq(2.1y,d, T, Ts) / 0d.

The Egs. (12)—-(14) may be transformed, explicitly ex-
tracting the equilibrium terms, as follows:

Uys(d,Tg.Ts) = UTUd. Tg) + Uys(d,Tg.Ts), (19)

(]1252' (Z’ r“’d TG’ TS) U(IIZSZ')eq(Z9rH7d3 TG)
+ U5 (@n.d. T, T, (20)

where

“ dw
Uys(d,Tg.Ts) = - ﬁJ ;Q(M;TS,TG)Az(U)), (21)

©

U ddToT,) = — —
1s\d, T, 1) = 2d3n=o'

T(2+3 Cos260+3 Cos 2¢)
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“ dw
UYs(z,1.d, T, Ts) = —ﬁJ ;TQ((U;TS’TG)BZ(Q)),

—o0

(22)

* dw
Uz, d.Tg.Tg) == i f 2w Ts.To) Colw),

(23)

where Q(w; T, Tg)=coth(fiw/2Ts)—coth(fiw/2T;).
Explicit expressions for the terms U{(d,Ts) and
11232)eq(z r,d,Tg) in Egs. (19) and (20) are given in [26].

B. Local limit

First of all we put our special attention to a local descrip-
tion of matter because a first goal of this work is to study the
resonance effects in a system out of equilibrium. It should be
noticed that the case for thermal equilibrium [25,26] follows
directly from the formulas (10)—(17). In a local approach for
a system out of equilibrium we have from Egs. (10)—(17) of
the same expression (11) for the energy of interaction be-
tween two molecules in free space U,,(z,7,d,Tg) and for
other terms

ﬁ o
%2 ayio)xlio,) - mf dwaj(w)Y'(0)QUw:TsTg), (24)
0

A(2+3 Cos 260+ 3 Cos 2¢)

Uizs(2,d. 5, Tg) = RR) 20 a(io,) aylio,) X(io,) + TrRR)} d X' (@)
X{Re[ o} (w) ay(0)] + Re[ ) (w) ar(0) [} Qw3 T, Tg), (25)
) 6T 3h * , . .
Uiss(z.r,d, Ts, Tg) = o6 2 a(iw,) ay(iw, )X (iw,) + - Y da))( (0){Rel a;(w)ay(w) X" (w)]
TRy <, (R')
+Rela;(w) ay(0) x(0) JQ(w: T, Tg), (26)

where R'=\R>+4zd, Cos(260)=1-2(z—d)*/R?, Cos(2¢)=1
—2(z+d)*/ (R*+4zd).

The formulas for R’, Cos(26), Cos(2¢) can be regarded
as the functions of “d” at fixed distance “R” between of the
two molecules, or as the functions of “R” between of the two
molecules at fixed distance “d.”

Thus, the quite complex expression for energy depends
on the geometrical configuration, electrodynamical proper-
ties of particles and substrate and difference of the tempe-
ratures between them. In the case Tg=T; we clearly have
the known result obtained by McLachlan [25] for the first
time.

Here, it should be noted that every term of energy in Egs.
(24)-(26) is the sum of “equilibrium” and additional “non-
equilibrium” terms. The equilibrium terms may be repre-
sented via imaginary frequencies using the Cauchy theorem.
Response functions have no singularities along the imaginary
axis. This is a mathematical consequence of the absence of
any energy flows (in average) in such the systems. Spectral
density of energy of systems out of thermal equilibrium con-
tains parts which are not analytical functions, see formulas
(24)—(26). The additional nonanalytical functions are combi-
nations of the pure real and pure imaginary parts of different
susceptibilities. Therefore, due to their non analyticity, the
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additional parts of energy could not be expressed via imagi-
nary frequencies. That is why the additional energy in this
case can be expressed only via real frequencies on the com-
plex plane of a frequency. But, at the real axis the density of
energy has some singularities of the different susceptibilities
of subsystems composing the whole system. We will find
further below that an immediate proximity of the resonances
yields the resonance magnification of the dispersion energy
in our case.

III. RESULTS AND DISCUSSION

Numerical calculations in local approach for dielectric
substrate were performed for the GaAS case characterized by
dielectric function in the frame of oscillatory model

2 2
W —w
s(a)):sm(1+—2 1‘2 L ), (27)
wp— 0 —iyw
where e,=11, w;=268.7 cm™!, w;=292.1 cm™!, and Y

=24 cm™!. The symbols w;, w;, y designate the transverse
and longitudinal frequencies and the damping constant due
to an anharmonicity. The frequency of the Coulomb polar-
iton is wpp=290 cm™! for this material.

The polarizabilities a;(w) (i=1,2) of molecules are mod-
eled by the Lorentzian profile

() e*fim,
ao(w) = ,
b2 w%’z— o’ —iTw

(28)

where e and m, are the charge and mass of an electron, f is
the oscillator strength.

The eigenfrequencies w;=wy=wpp- 1, where w is the
mismatch parameter (dimensionless) and I' is the width of
the transition line due to relaxation processes in a gas (damp-
ing).

The relaxation of molecules is determined by a gas
pressure and may be estimated as follows I'~ovng
~(107°-10""%n,, where o~10""* cm? is the molecular
cross-section of scattering, v=y2T5/m=~10*~10°> cm/s, m
is the mass of molecule, ny is the buffer gas concentration.
For a wide range of nz=10'8-10*" ¢cm™ the damping is I’
=108-10"" s7'. For definiteness we consider the damping
I'= 10‘2w1,2 at u=1 for vibration transitions or it will be
indicated in figure captions. Run a few steps forward we can
say that the chosen molecular damping is the worst value for
the resonance effect of our interest, because the smaller
width of the molecular line, the larger is the resonance mag-
nification of the dispersion energy.

The resonance increase of the van der Waals energy of
molecules near surface was found in our calculations as well
as in the case of multiparticle interactions in a gaseous media
[4,5]. Such an enhancement occurs in the closeness (u=1)
of eigenmodes of the subsystems kept at different tempera-
tures. At fixed geometrical locations of the interacting par-
ticles and substrate the value of enhancement depends on a
characteristic frequency range of eigenmodes of whole sys-
tem, on dampings and difference of temperatures.

The most prominent resonance effect manifests itself in
range of frequencies of the rovibrational molecular transi-
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tions and corresponding spectral range of excitation of the
surface polaritons due to the temperature factor Q(7Ts,Tg)
=coth(fiw/2Tg)—coth(hw/2T) in formulas (24)—(26) at rea-
sonable temperatures. From these formulas it follows that the
energy of the selected first molecule in the system may be
represented as follows:

Uis(d,Ts, Tg) = Uys(eq) + Uys(neq), (29)

U5 (e d. T, Tg) = U3 (eq) + U3 (neq).  (30)

where U, g(eq) is the dispersion energy of interaction of the
first molecule with a substrate in equilibrium at T, U(llz’sz)(eq)
are the three-body corrections [25,26] taking into account an
influence of the second molecule in equilibrium at 7. The
additional terms U s(neq) and U5 (neq) which are present-
due to the difference of the subsystem temperatures 7 # T.

It is clear from Egs. (24)—(26) and Egs. (29) and (30)
that the corresponding ratios U, g(neq)/U;s(eq) and
U523 (neq)/ U\52(eq) are not depend on the geometrical fac-
tors in local approach. These are universal functions deter-
mined by the temperatures of subsystems and their electro-
dynamic properties.

Figure 2 shows the universal ratios U,g(neq)/U,s(eq) and
U9 (neq)/U'52(eq) as the functions of the mismatch
parameter u at 75=300 K and 7¢=800 K for two dif-
ferent relaxation molecular parameters I'=0.0lw;, and
I'=0.005w, ,. It is clearly seen that accounting of the tem-
perature difference and the three-particle interaction may
crucially change the value and sign of interaction. It should
be noted, that it is possible to analyze the case when the
temperatures of gaseous subsystems are different. Such a
situation can be met in experiments for several crossed mo-
lecular beams nearby a surface of solids. In this case, a mani-
festation of the dispersion interactions in multiparticle non-
equilibrium system is wider compare with an equilibrium
one.

The graphic (a) of the figure demonstrates the modifica-
tion of the dispersion interaction in a system “one particle-
sample” when a temperature of gas is not equal to the tem-
perature of a substrate. The graphics (b) and (c) correspond
to the case when an influence of the third particle is taken
into account: both the particles are kept at the same tempera-
tures of the gaseous thermal bath T, but the temperature of
a substrate is T¢# T;. It should bear in mind that in equilib-
rium U, g(eq) > U\ (eq) > U'%(eq).

A. Resonance energy increase in a “molecule-substrate”
subsystem

Here we consider modification of the dispersion energy
in a “molecule-substrate” subsystem due to the additional
molecule near the selected subsystem, see Fig. 1. We define
the dimensionless parameters r;=R/d and z;=z/d so that
R’:d\r’rf+4zl. Thus, the geometric factor in Eq. (25) is
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FIG. 2. Universal ratios U,s(neq)/ U,s(eq)-a),
U(llz)s(neq)/ U(llz)s(eq)-b) and U(lzz)s(neq)/ U 2S(eq) -¢) as the functions
of the mismatch parameter u at 75=300 K and 75=800 K for two
different relaxation molecular parameters ['=0.01w; 5 (thick line)
and I'=0.005w, , (thin line).

(2+3 Cos260+3 Cos 2¢)
(RR')?
8 6[(z; — 1)2/rl +(z) + 1)2/(r] +4z))]
dﬁ(rlw’ +4z))°

. (3D

where we have taken into account that sin ¢=(z+d)/R’,
cos @=r/R’, sin =(z—d)/R, cos 6=r/R, so that

2+3 Cos20+3 Cos2¢
=8-6[(z—d)’/R>+ (z+ )Y (R*>+4zd)]. (32)

Because in Eq. (26) the geometric factor (R’)6=d6(r%
+4z,)® we have different “d”-dependence in Eqgs. (24)—(26).
We consider the total energy in this case

Uis(d,ry,21,Ts.Tg) = Uys(eq) + U12S(CCI) + U(lzs(eCI)

+ U s(neq) + U (llz)s(neq) + U3s(neq).

(33)
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UIS (neq)
UG (neq)+U ) (neq) a)

u

Usss (neq)

Ul (negq) D)
0.0005’,/h/7

- 0.001

- 0.002

FIG. 3. Relative contribution of the nonequilibrium terms
Uls(neq)/[UuS(neq)+U(lzz)s(neq)] a) and Ulzs(neq)/U(llz)s(neq)-b)
in the expression for total energy, Eq. (30), as the functions of the
mismatch parameter w. The temperatures are 75=300 K and
Tg=1000 K. The geometry is set by d=10° cm, r;=0.1,
zy=1.1-thick line and d=10"% cm, r,=0.1, z;=1-thin line.

The force acting on the first
=—§U15(d,71 ,Z[,Ts,TG)/(?d.

In order to study relative contribution of the non-
equilibrium terms in Eq. (33) we calculate the ratios
Uls(neq)/[UIZS(neq)+U(lzs(neq)] and U(lzs(neq)/U(lzs(neq)
Figure 3 demonstrates these ratios as the functions of the
mismatch parameter w at two different fixed mutual loca-
tions of molecules. Figure 3(a) clearly shows that the three-
body term may be larger than the two-body term of the non-
eqiulibrium energy in case of the resonance condition
0= W= wpp when =~ 1. The relative contribution of the
three-body terms U i neq) and U( )(neq) is characterized
by Fig. 3(b). The ratlo U 12S(neq)/ Um(neq) is not depends
on the distance d between the first molecule and sample as it
follows from Egs. (25), (26), and (31).

From Fig. 3 it is directly follows that the three-body terms
of energy may be larger than the two-body term in a system
out of equilibrium. To compare the terms describing the non-
equilibrium part in total energy [Eq. (33)] with the energy in
equilibrium we introduce the following ratio:

molecule is f

G U,s(neq) + ng)s(neq) + U(lzs(neq)
17 Uis(eq)

This relative value of energy is a function on the distance d
due to different dependence of the related terms of energy in
Egs. (24)—(26). The total sum of terms in numerator of Eq.
(34) corresponding to the nonequilibrium interaction can be
normalized to the total sum of equilibrium energy U, g(eq)
+ U D(eq)+ U'%(eq), but the sum of terms related to the
three-body interaction U} (eq)+U 12S(eq) accounts for neg-
ligible value (about 1%) from the value of the two-body term

(34)

U,s(eq). Figure 4 exemplifies the relative total energy U, g at
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(33
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FIG. 4. Relative energy U 1s at different distance d (d
=10"° ¢cm—thin line, d=8 X 10~7 cm—thick line) of the first mol-
ecule from surface at various spatial locations of the second mol-
ecule as the function of the mismatch parameter w. The mutual
geometry of the molecules and sample surface are clarified in the
inserts in figures (a) at r;=0.1, z;=1.1, (b) at r;=0.1, z,=1.071,
and (c) at r;=0.1, z;=1. The temperatures are T5=300 K and
T4=1000 K.

different distance d of the first molecule from surface at vari-
ous spatial locations of the second molecule.

The mutual geometry of the molecules and sample surface
are clarified in the inserts in Figs. (a)—(c). A resonance in-
crease of the dispersion interaction in a system out of equi-
librium is obviously seen from the pictures. The force acting
on the first molecule can change from attractive to repulsive
in dependence on the geometry of interaction. A distance
between two molecules is fixed in Figs. (a)—(c). Proximity of
the subsystem eigenfrequencies is the necessary condition of
the resonance under our consideration.

A possible range for the energy increase U 15 at various
distances from the surface and fixed temperatures 7T
=300 K, T4=1000 K is demonstrated in Fig. 5(a). Figure
5(b) shows a possible range for the energy at various tem-
peratures 7.

B. Resonance energy increase in a subsystem of two molecules
near a substrate

It is clear, see Fig. 1, we may consider various two-body
subsystems under the action of the third body. Here we con-
sider modification of the previous results considering a sub-

PHYSICAL REVIEW E 82, 011602 (2010)

FIG. 5. (Color online) Possible range for the energy 1715 at
various distances d of the first molecule from the surface and fixed
temperatures 75=300 K, T4=1000 K (a) at r;=0.1, z;=1.1. Figure
5(b) shows a possible range for the energy at different temperature
T of substrate at fixed distance d=10"° cm, r,;=0.1, z;=1.1 and
T;=300 K.

system “molecule-molecule” in the presence of a substrate. It
is useful to define other dimensionless parameters d,=d/R
and z,=z/R so that R’ =R\1+4z,d,. Thus, the geometrical
factor in Eq. (25)
(2+3Cos260+3 Cos 2¢)
(RR')*
_8-6[(z22—dy)* + (22 + d)*/(1 + 425d,)]
RO(1 +4z,d,)? '

(35)

Because in Eq. (26) the geometrical factor (R')®=R®(1
+47,d,)? we have the same “R” dependence in Egs. (25) and
(26). We consider the total energy in this case

Upa(R,da,25,Ts, Tg) = Upy(eq) + U'y(eq) + UZ(eq)

+ U(llz)s(neq) + U(122)S(neq). (36)

The force acting on the first
==dU5(R,d»,2,,Ts,T)/ IR.

We introduce the following ratio:

g, = Yizs(neq) + Uizs(neq) 7)
Uia(eq)

It should be noted that the relative energy U 1> 1s not function
on the distance R between two molecules. Figure 6 exempli-

molecule is f

fies the resonance energy U,, increase in case of various
mutual locations of two molecules near surface at different
temperature 7's. The mutual geometry of the molecules and
sample surface is clarified in the corresponding inserts in this
figure.
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FIG. 6. Resonance energy 1712 increase as the function of the
mismatch parameter u in case of various locations of two mol-
ecules near surface at fixed temperatures 75=300 K, 75=1000 K.
The mutual geometry of the molecules and sample surface is clari-
fied in the corresponding inserts. In figure (a) at d,=1, z,=2 (thin
line), d,=0.8, z,=1.8 (thick line), (b) at d,=1, z,=1.71 (thin
line), d,=0.8, z,=1.51 (thick line), (c) at dy=z,=1 (thin line),
dr=2,=0.8 (thick line).

Figure 7 shows the resonance energy U 1» Increase in case
of different damping of molecules and at various mutual lo-
cations of two molecules near surface. We recall that the
dimensionless parameters d,, z, determine geometry of the
problem in this case.

A possible range for the energy U 1> at various normalized
distances d, from the surface and fixed location of the second
molecule z, at the temperatures 75=300 K, 75=1000 K is
demonstrated in Fig. 8(a). Figure 8(b) shows a possible range
for the energy at various temperature 7 and fixed geometry
and T;=300 K.

C. Nonlocal corrections

It should be emphasized that an accounting of nonlocal
material response leads to new interesting results. Some im-
portant nonlocal effects in relation to the van der Waals
forces and radiative heat transfer are discussed, for example,
in Ref. [17-24]. In particular, for a case of good conductors
the dispersion force saturates at the short distances charac-
terizing by the Thomas-Fermi screening length and deviates
from the local curve at the distances compare with the mean
free length of electrons in metals [26]. The reason of that is
a saturation of the spectral power density of fluctuating elec-
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FIG. 7. Resonance energy U 12 increase as the function of the
mismatch parameter u in case of different damping of molecules
I'=0.01 s~ (thick line) and I'=0.005 s~' (thin line) at various mu-
tual locations of two molecules near surface and at fixed tempera-
tures T;=300 K, T5=1000 K. In figure (a) at d,=0.5, z,=1.5, (b)
at d2= 125, Z2=0.25, (C) at d2=Zz= 1.

tromagnetic fields generated by matter described by a nonlo-
cal response. A nonlocal description of matter allows calcu-
late the van der Waals potential at all distances among
microparticles and a substrate. Because the potential is fully
determined by the fluctuating electromagnetic fields, a re-
lated knowledge of the properties of the fields is a key ele-
ment in the theory. One of the most essential characteristics
of fluctuating electromagnetic fields is the density of states
(or spectral power density) near the surface of solids gener-
ating such fields. Various ways to calculate the spectral prop-
erties of thermally stimulated fields of solids are described,
for instance, in review [27].

A simplest way to describe nonlocality may be found in
literature, see, for instance [28]. In a quasistatic approach
c¢—oo the Fresnel coefficients in Eq. (18) are expressed as
follows

1-2°(p,w)

)= )

2p f © dq
ZP B =" 5 1
(. ) 7)o Kelw,k)
(38)

where ZP(p, w) is the impedance, ¢(w,k) is the longitudinal
dielectric function, k%= p2+q2 is the wave number within a
material domain.

For good conductors in semiclassical limit k<<2ky the
Lindhard-Mermin dielectric function is
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FIG. 8. (Color online) Possible range for the energy U, at vari-
ous normalized distances d, from the surface and at various mis-
match parameter u at fixed location of the second molecule
7,=1.5 and at the fixed temperatures 7;=300 K, Ts=1000 K (a).
Figure 8(b) shows a possible range for the energy at various T and
w at fixed geometry (z0=1.5, d,=0.5) and T;=300 K.

1f¢(0,u)
w+ive+ivf(0,u)’

2
3wp

Sf’(k» (1)) = Sb(ﬂ)) +

u+1

Fol0,u) ~ 1 - %u In——, (39)

u—1

where &,(w) is the background dielectric constant associated
with the bound electrons, v is the electron-phonon collision
frequency, w, is the plasma frequency, u=(w+iv)/kvp
=1/kt, €=vp/(w+iv), kp, Vp are the Fermi wave number
and velocity.

Importance of the space dispersion for both longitudinal
and transverse components of the dielectric function at low
temperatures were indicated in Ref. [18,19].

Besides, it is easy to find models for dielectrics functions
in case of plasma, see, for instance [29,30]. For weakly ion-
ized plasma in classical approach when kT ,> Er,, where
Er,=3mN,)**h%/2m, is the Fermi energy at w>kvy, we
have

2 2.2
w kv
elwk)=1-> ﬁ(l +3TZT“)

a

. ™ ww%’a (1)2 w%—"avafn
+1 E k3 3 exp| — 2k2 2 + 3 4
A VTa @

(40)

where a means a sort of particle, wp,=\4me’N,/m, is the
plasma frequency of the ath particle, N,, is the concentration,
Vra=\3kgT,/m, is the thermal velocity of the ath particle,
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FIG. 9. Normalized energies U,;g(neq) (a) and U(llz’sz)(neq)
(b,c) from Egs. (21)—(23) as the functions of the mismatch param-
eter u for two identical atoms with a polarizabilities [Eq. (28)]
(w1 2=(wp/ \E)-M) near a plasma halfspace characterized by re-
flectivity [Eq. (38)] and dielectric function [Eq. (40)] with wp
=10" rad/s, v,,=0.01wp, v7,=3%X107 cm/s at T3z=300 K and
Tg=2000 K. The arrows correspond to different distances of
the first atom from plasma surface (d=5X10"% cm™ and 4
=10"% cm™2). Geometry is depicted in the insert. A distance be-
tween two atoms R=0.1d. Corresponding energies U, g(neq),
U(llz’g)(neq) in local approach are shown by thin curves. Normaliza-
tion is done to a maximum value in each graphic.

v, 18 the frequency of collisions of ath particle with neutral
atoms.

The first term of the imaginary part in Eq. (40) is stipu-
lated by Cherenkov’s absorption of electromagnetic waves in
plasma and the second one describes the energy dissipation
due to collisions of electrons and ions with atoms.

Figure 9 shows the normalized energies U, ¢(neq)-(a) and
U(llz'sz)(neq)-(b,c) from Egs. (21)—(23) as the functions of the
mismatch parameter u for two identical atoms with polariz-
abilities [Eq. (28)] [w,=(wp/V2)- 1] near a plasma half-
space characterized by the reflectivity [Eq. (38)] and by the
dielectric function [Eq. (40)]. We take into account only elec-
tron response (a=e) in Eq. (40) with wp=5305 cm™!
(~10" rad/s), v,,=0.01wp, v7,=3 X107 cm/s. The arrows
correspond to two distances of the first atom from plasma
surface d=5X 107® c¢cm™') and d=1X10"% cm™2). Geometry
is depicted in the insert. A fixed distance between two atoms
R=0.1d. The energies U,g(neq), U(llz’f)(neq) in a local ap-
proach are shown in this figure by thin curves.

It is seen the shift of the curves in nonlocal approach to
the higher frequency range. The smaller the distance d the
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larger is the displacement. The matter is that the Fresnel
coefficient [Eq. (38)] is expressed via the longitudinal dielec-
tric function determining tensors B (w) in [Eq. (18)]. From
the expression (18) it follows that the principal contributions
to the integral give the lateral wave numbers p ~ 1/2d due to
the exponential factor. From the dispersion relation for the
quasistatic surface waves [31] Zp(p,w)=—1 it is easy to find
that the larger p the larger is the frequency w of the corre-
sponding Coulomb surface mode. Thus, in accordance with
Fig. 9, the smaller d the larger are p giving principal contri-
bution to B;(w) and the larger is the frequency of the quasi-
static Coulomb resonance and, as a consequence, the larger
are the eigenfrequencies w; ,=wgp- 1 used in our calcula-
tions.

In the presence of spatial dispersion in case of dielectrics
and semiconductors [32-35,38] for frequency range Aw near
the excitation frequency w,,, the dielectric function may be
approximated by the form

2
wp

e(w,k)=ep+— (41)

2 2_
w,, — o + Dk —iyw

where ep is the background dielectric constant, w,, is the
transverse resonance frequency of TO phonon or the reso-
nance frequency of an exciton, wp is a measure of the oscil-
lator strength, 7 is the damping constant, D=fw,,/m”, where
m™ is the exciton mass. The longitudinal excitation occurs at

2_ 2 2, 2 2_ 2, 2
w;=wr+Dk*+wp/ep, k*=p~+q°.

”%(Wo +wo) (Wows + P - ng(Wo +wp)(ww; +p?)
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At given frequency w there exist two transverse and one
longitudinal modes. They are follows from the dispersion
relations ¢?k?/ w*=¢&(w,k) and &(w,k)=0, correspondingly.
The three roots are given by

qi,= (2[5 + ekg— p?)
+ V/(Flzg — ek + p)? + 4wre’/ D],

q3=T% — wplegD, (42)

where T'3=(w’ - w2 ~Dp*+iyw)/D, ky=w/c.

Expressions for the Fresnel coefficients may be found in
[32-37]. For instance, the Fresnel coefficient for p-polarized
waves is given by

11,2

o) = B TR0 43)
kg = p* = ko/Q

where
4 2(,.2 2
o=r, L*P (6211 9192+ 9) * (91 + 9919293
P a1+ 9192~ 43) + 019243
(44)

It should be noted that the reflectivity [Eq. (43)] has been
derived with the help of the additional boundary condition
(ABC) P |l.co+ils aP/dz .-0=0. Another form for the Fresnel
coefficients was obtained in [35] using the ABC for the den-
sity of nonlocal polarization P |.=o=0. The p-polarized reflec-
tion amplitude is

”1132(‘”’17) == "fz(w’l’){

n%(Wo —wy)(wow; + Pz) - ”%(Wo —wi)(wyw; +P2)

}, (45)

. . . . s (2 T N2_ .2
where in case of the dielectric function [Eq. (41)] wy=g; from [Eq. (42)] for the longitudinal wave, w;=vn;(w/c)*-p~,

(i=1,2) for the transverse waves, wy=\(w/c)*—p?,

l

Fal@,p) = [(wo = w1) (wy = wo) V[ (wy +wo) (wy + wo)], (46)

2
n =
1279 DI

for two different transverse waves inside the spatially disper-
sive matter.

In local approach (D=0) we used the parameters corre-
sponding to ZnSe ®,,=w;o=200 cm™!, gz=g,=5.8, w%,
=(89—£..) WF, £9=9.06, y=0.02w7,. Nonlocality was taken
into account by the parameter D=%wy,/m, in Eq. (41). In
this case the eigenfrequencies of molecules were chosen as
W) ,=wgp- 4, Where wpp=243 cm™! is the root of the dis-
persion equation Re[e(w)]+1=0.

Taking into account that the formulas (43) and (45) for the
p-polarized reflection amplitudes were found for different
ABC it is worth to compare their influence to the problem of

1 (wz—ng+sBDk3+i'yw)+ \/((wz—w§x+83Dké+i'yw)>2+4[w%+83(w§x—w2—i'yw)]J

(47)

Dk Dk

our interest. Figure 10 exemplifiers the universal ratios
U,s(neq)/U,s(eq) and U(,12’32>(neq)/ U(llz’sz)(eq) from Egs.
(19)—(23) as the functions of the mismatch parameter w at
T5=300 K and T4=700 K for two different models of the
nonlocal reflectivities [Egs. (43) and (45)]. The dashed lines
represent the same ratios, but in local approach of the reflec-
tivity. All graphics were calculated at the same distance d
=5X%107° cm of the first molecule from the surface of ZnSe
substrate. Geometry is depicted in the insert. The distance
between two molecules is R=0.1d.

It is seen from this figure and our study that both models
of the reflectivities [Egs. (43) and (45)] give similar results at
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FIG. 10. Universal ratios U;s(neq)/U;s(eq) (a) and

Uglz’sz)(neq)/U(llz’g)(eq) (b, ¢) from Egs. (19)—(23) as the functions of
the mismatch parameter u at 73=300 K and 74=700 K for two
different models (thick curves) of the nonlocal reflectivities [Egs.
(43) and (45)] corresponding to different ABC. The dashed lines
represent the same ratios, but in local approach of the reflectivity.
All graphics were calculated at the same distance d=5X 107% cm
of the first atom from the surface of ZnSe substrate. Geometry is
depicted in the insert. A distance between two atoms R=0.1d.

distances of molecules from surface substrate larger than d
=107 cm. At smaller distances the discrepancies are quite
essential.

We note that it is possible to study the similar effects in
case of excitonic transition in matter. For ZnSe correspond-
ing parameters may be found in [32,33,35,37,38].

IV. CONCLUSIONS

A resonance enhancement of the van der Waals interaction
was studied in the three-body systems out of thermal equi-

PHYSICAL REVIEW E 82, 011602 (2010)

librium. One of the bodies occupies a half-space. A material
of the half-space may be characterized both by local or non-
local optical reflectivities. An analytical expression for
energy depends on the geometrical configuration, electrody-
namical properties of particles and substrate and on a differ-
ence in temperature between thermostats. Formulas relating
to the systems in equilibrium directly follow from the gen-
eral expression. In particular, the known expression for the
energy of three-body system obtained by McLachlan [25] for
the first time. The resonance increase of the van der Waals
energy of molecules near surface was found in our calcula-
tions as well as in the case of multiparticle interactions in a
gaseous media [4,5]. Such an enhancement occurs in the
closeness of eigenmodes of the subsystems kept at different
temperatures. At fixed geometrical locations of the interact-
ing particles nearby substrate the value of enhancement de-
pends on a characteristic frequency range of eigenmodes of
whole system, on dampings and on a difference in tempera-
ture. The most prominent resonance effect manifests
itself in range of frequencies of the rovibrational molecular
transitions and corresponding spectral range of excitation
of the surface polaritons due to the temperature fac-
tor (T, Tg)=coth(hw/2Tg)—coth(hw/2T;) in formulas
(24)—(26) at reasonable temperatures. We considered differ-
ent two-body subsystems of the whole three-body system.
For instance, the resonance energy increase was established
in the “molecule-substrate” subsystem due to the additional
molecule nearby and in the subsystem of two molecules near
a substrate. Different constituents of whole system exchange
by energy among itself most effectively via the frequency
channels in closeness of eigenmodes of the subsystems An
opportunity of the resonance increase of the dispersion inter-
action between molecule and substrate under the action of
another molecule nearby was examine in case of nonlocal
description of the substrate reflectivity. Despite of different
ABC the resonance magnification occurs in the system of
interest. The resonance enhancement of the dispersion en-
ergy in a three-body system depends on the geometrical con-
figuration, electromagnetic properties of subsystems and on
the temperature difference among subsystems.
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