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Nanoparticle agglomeration in a quiescent fluid is simulated by solving the Langevin equations of motion of
a set of interacting monomers in the continuum regime. Monomers interact via a radial rapidly decaying
intermonomer potential. The morphology of generated clusters is analyzed through their fractal dimension df

and the cluster coordination number. The time evolution of the cluster fractal dimension is linked to the
dynamics of two populations: small �k�15� and large �k�15� clusters. At early times monomer-cluster
agglomeration is the dominant agglomeration mechanism �df =2.25�, whereas at late times cluster-cluster
agglomeration dominates �df =1.56�. Clusters are found to be compact �mean coordination number of �5�,
tubular, and elongated. The local compact structure of the aggregates is attributed to the isotropy of the
interaction potential, which allows rearrangement of bonded monomers, whereas the large-scale tubular struc-
ture is attributed to its relatively short attractive range. The cluster translational diffusion coefficient is deter-
mined to be inversely proportional to the cluster mass and the �per-unit-mass� friction coefficient of an isolated
monomer, a consequence of the neglect of monomer shielding in a cluster. Clusters generated by unshielded
Langevin equations are referred to as ideal clusters because the surface area accessible to the underlying fluid
is found to be the sum of the accessible surface areas of the isolated monomers. Similarly, ideal clusters do not
have, on average, a preferential orientation. The decrease in the numbers of clusters with time and a few
collision kernel elements are evaluated and compared to analytical expressions.
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I. INTRODUCTION

Nanoparticle aggregates are of significant importance in
technological and industrial processes such as, for example,
combustion, filtration, and gas-phase particle synthesis. In
addition, colloidal aggregates play an important role in, for
example, the pharmaceutical industry, food processing,
paintings, and polymers. The fractal nature of these aggre-
gates has profound implications on their transport �1� and
thermal �2� properties. Fractal aggregates arise from the ag-
glomeration of smaller units, herein taken to be spherical and
referred to as monomers, which do not coalesce but rather
retain their identity in the resulting aggregate. In a quiescent
fluid the main mechanism driving agglomeration is diffusion:
accordingly individual monomers may be modeled as inter-
acting Brownian particles whose motion and dynamics are
described by a set of Langevin equations. Langevin simula-
tions have been used to study aggregate formation �3�, ag-
gregate collisional properties �4�, the limits of validity of the
Smoluchowski equation �5�, and aggregate films �6�.

In this study we investigate nanoparticle agglomeration
and the diffusive motion and growth of the resulting aggre-
gates by relying solely on the Langevin equations of motion
of a set of interacting monomers in three dimensions. The
monomer-monomer interaction potential is taken to be either
a model potential, composed of a repulsive and a short-
ranged attractive part, or a Lennard-Jones intermolecular po-
tential integrated over the monomer volumes. Both potentials

are spherically symmetric and rapidly decaying. Spherical
symmetry implies that intermonomer forces are central: no
angular force limits reorientation of an attached monomer.
We shall argue that these two features have profound impli-
cations on the small- and large-scale structures of the gener-
ated aggregates. Unlike the works mentioned above, no as-
sumptions are made about the structure �e.g., by specifying
the cluster fractal dimension� or the mobility of the aggre-
gates. Our approach is reminiscent of other applications of
Langevin simulations in dilute colloidal suspensions to study
diffusion-induced agglomeration and the structures it gives
rise to �7�. Stochastic agglomeration �particle motion and
deposition� has also been discussed in terms of Brownian
dynamics; see, for example, Refs. �8,9�.

An inherent difficulty of the adopted mesoscopic descrip-
tion of nanoparticle agglomeration, a description whereby
the effect of collisions of fluid molecules with larger solid
nanoparticles is modeled by a random force, is the choice of
the stochastic properties of the random force. These proper-
ties, in particular the noise strength, are usually specified by
invoking the fluctuation-dissipation theorem �FDT�. We will
use the FDT to relate the amplitude of the fluctuations of the
random force acting on a monomer to its friction coefficient.
In applying the FDT, however, monomer shielding will be
neglected in that the friction coefficient of a monomer in an
aggregate will be taken to be independent of its state of ag-
gregation. This approximation of the hydrodynamic forces
acting on a monomer has been referred to as the free draining
approximation �10�. The monomer friction and diffusion co-
efficients are related to the monomer surface area accessible
�or exposed� to surrounding fluid molecules �11�. The acces-
sible surface area is the fraction of the geometric surface area
that is active in momentum and energy transfer from the
underlying fluid to the monomer: it, thus, determines the
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monomer and aggregate transport properties. We will argue
that the accessible surface area of a generated k-monomer
cluster �also referred to as a k-mer�, is k times the accessible
surface area of an isolated monomer, i.e., the accessible sur-
face area of a sphere. We shall, thus, refer to the clusters
generated by unshielded Langevin equations as ideal clusters
with respect to their dynamic properties. Monomer shielding
may, equivalently, be described in terms of the cluster shield-
ing factor defined as the ratio of the average �per-unit-mass�
friction coefficient of a monomer in an aggregate to the �per-
unit-mass� friction coefficient of an isolated monomer.

In a nonideal cluster the monomer accessible surface area
decreases due to shielding leading to a decrease in the cluster
friction coefficient and a consequent increase in its diffusion
coefficient. Reference �2� presented an expression for the
shielding factor of a cluster by comparing the total heat
transfer to an aggregate to the product of the number of
monomers in the aggregate and the heat transfer to an iso-
lated monomer �under the same conditions�. Monomer
shielding may be understood by noting that the fluid concen-
tration boundary layers of neighboring monomers in a cluster
overlap nonadditively, thereby the fluid molecule-monomer
collision rate decreases. In a Langevin description of cluster
diffusion the change in the monomer accessible surface, and
hence the change in the cluster shielding factor, renders the
strength of the stochastic thermal noise a time-dependent
function of the local arrangement of each monomer. We do
not attempt such a modification of the noise strength, adopt-
ing the form of the FDT that leads to unshielded Langevin
equations.

Since we solve numerically the Langevin equations for
interacting monomers rather than the aggregate equations of
motion, information on the dynamics of aggregate formation
has to be inferred from the simulation output. We obtain this
datum, together with the detailed structure of each aggregate,
from the record of the collisions it underwent and its even-
tual restructuring, using techniques borrowed from graph
theory �12�.

The paper is organized as follows. Section II provides the
theoretical framework for the Langevin simulations. Empha-
sis is placed on the description and justification of the
monomer-monomer potentials used in the numerical experi-
ments. Section III describes the numerical method, and it
introduces the quantities monitored to investigate the statics
and dynamics of the generated aggregates. Section IV pre-
sents the static properties of the aggregates, namely, their
fractal dimension, their morphology �specifically, the cluster
coordination number�, and some indications of cluster re-
structuring. Section V summarizes the cluster dynamic prop-
erties, in particular, their translational diffusion coefficient,
their mean Euler angles, the decay of the total number of
clusters with time, and the determination of a limited number
of agglomeration kernel elements. The final remarks in Sec.
VI summarize the main results and conclude the paper.

II. MODEL DESCRIPTION

A. Monomer Langevin equations of motion

We investigate the nonequilibrium dynamics of interact-
ing clusters in the continuum regime �fluid mean free path

smaller than the monomer radius� by solving the Langevin
equations of motion of a dilute system of N interacting
monomers in a quiescent fluid in three dimensions. We use
the word cluster with the same meaning as the term aggre-
gate in Ref. �13�, i.e., a set of physically bound spherules
�monomers�. The ith monomer obeys the Langevin equation

m1r̈i = Fi − �1m1ṙi + Wi�t�, i = 1, . . . ,N , �1�

where m1 is the monomer mass, ri its position in three-
dimensional space, Fi is an external force, �1 is the monomer
friction coefficient per unit mass, and W is a noise term that
models the effect of collisions between the monomer and the
molecules of the surrounding quiescent fluid. We consider
that each monomer feels a Stokes drag �continuum regime�,
with the friction coefficient per unit mass being �1
=3�� f� /m1, where � f is the fluid viscosity and � is the
monomer diameter. Henceforth all friction coefficients will
be defined per unit mass. The monomer friction coefficient
may also be expressed as the inverse monomer relaxation
time �1=�1

−1, where �1=	p�2 / �18� f� with 	p as the mono-
mer material density. As argued in the Introduction, the use
of Stokes drag implies that the monomer surface area acces-
sible to fluid molecules equals the accessible surface area of
a monomer irrespective of its state of aggregation. The im-
plications of this approximations are explored in Sec. V A.
The noise is assumed to be Gaussian and white �delta corre-
lated in time�,

�Wi
k�t�� = 0, �Wi

k�t�Wj
l�t��� = 
�ij�kl��t − t�� , �2�

where angular brackets �¯ � denote an ensemble average
over realizations of the random force, subscripts denote
monomer number �i , j=1, . . . ,N�, and superscripts denote
Cartesian coordinates �k , l=x ,y ,z�. The noise strength 
 is
determined from the fluctuation-dissipation theorem applied
to each monomer: it evaluates to 
=2�1m1kBT with kB as the
Boltzmann constant and T as the system temperature �14�.

The force acting on the ith monomer arises from its inter-
action with all the other monomers. It is considered to be
conservative,

Fi = − �ri
Ui, �3�

where Ui is the total intermonomer potential the ith mono-
mer feels. We assume that it derives from a pairwise addi-
tive, two-body, and radial potential uij�rij�,

Ui = �
j�i

N

uij�rij� , �4�

where the radial distance is rij = 	ri−r j	.
Equation �1� may be cast in dimensionless form, a form

more convenient for their numerical solution. By choosing
length l�, time ��, and mass m� characteristic scales we in-
troduce the dimensionless variables, denoted by overtilde,

r 
 l�r̃, t 
 ��t̃, m1 
 m�m̃1. �5�

These characteristic scales fix the characteristic system tem-
perature T� to
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kBT� 

m��l��2

����2 . �6�

Equations �1� and �2� in dimensionless and componentwise
form become

d2r̃i
l

dt̃2
= −

1

m̃1

�Ũ

� r̃i
l − �̃1

dr̃i
l

dt̃
+

1

m̃1

W̃i
l�t̃�,

l = x,y,z; i = 1, . . . ,N , �7a�

�W̃i
l�t̃�� = 0, �W̃i

l�t̃�W̃j
k�t̃��� = 2�̃1m̃1T̃�ij�kl��t̃ − t̃�� ,

�7b�

where we introduced the dimensionless variables

�̃1 
 �1��, T̃ =
T

T�
, Ũ 


U

kBT�
, W̃i

l 

����2

m�l�
Wi

l. �8�

Equation �7� shows that three independent dimensionless

variables �m̃1, �̃1, and T̃� determine the dynamics of the sys-
tem. A natural, but not unique, choice of units is m�=m1,
��=�1, and l�=�, where � is a characteristic length scale of
the intermonomer potential �taken to be the monomer diam-

eter�. This choice leads to �̃1= m̃1=1 in Eq. �7a�, a form of
the Langevin equations we will use in our numerical simu-

lations. All simulations were performed at T̃=0.5.
The characteristic scales may be evaluated for a typical

case of agglomeration of combustion-generated nanopar-
ticles. A typical soot monomer of material density 	p
=1.3 g /cm3 and characteristic size l�=�=20 nm has a char-
acteristic temperature T�,

T� =
182�� f

2�

6kB	p
� 650 K, �9�

when suspended in air at 300 K of dynamic viscosity � f

=1.85�10−4 g / �cm s�. Therefore, T̃=0.5 corresponds to ap-
proximately T�300 K. The Stokes monomer relaxation
time, the characteristic time scale, is �1�1.6�10−9 s. Heat,
mass, and momentum transfer between particles and the car-
rier gas depend on the Knudsen number Kn=2g /�, where
g is the carrier gas mean free path: for Kn�1 these transfer
processes occur in the continuum regime. The air mean free
path at atmospheric pressure and 293 K is air=66 nm.
Hence, our simulations are appropriate either for aerosol ag-
glomeration at high pressures �g� pg

−1, with pg as the carrier
gas pressure� or for agglomeration of noncharged colloids in
liquids.

B. Monomer-monomer interaction potential

The monomer-monomer potential is chosen to mimic in-
teraction of hard-core monomers sticking upon collision. As
such it will be taken to be rapidly decaying. The effect of the
range of repulsive interactions in two-dimensional colloidal
aggregation was extensively discussed in Ref. �16�, whereas
Ref. �7� studied the effect of the attractive range. The early
studies �3,15� considered perfect sticking of two monomers

when their relative distance fell below the monomer diam-
eter. In these works the authors did not use an interaction
potential, but they examined the system frequently during its
time evolution to identify agglomeration events �monomer-
cluster or cluster-cluster� by calculating the relative distances
of all monomers. After, e.g., two clusters had touched, the
relative distances of all the monomers in the resulting cluster
were “frozen,” and the cluster was allowed to diffuse with a
diffusion coefficient that had to be prescribed a priori.

Herein, aggregate formation arises from monomer colli-
sions that bind them through their interaction. We used two
spherically symmetric intermonomer potentials: a model po-
tential umm

mod and a potential umm that arises from the integra-
tion of the intermolecular potential over the volume of two
macroscopic bodies �e.g., two monomers�.

The model potential umm
mod is short ranged, and it has a deep

and narrow attractive well to model monomer binding with-
out breakup. Furthermore, it tends smoothly to zero at r
=rcut, where rcut is a cutoff distance such that rcut−���.
This avoids the introduction of the so-called impulsive forces
in the system �17�. It is attractive on a length scale much
smaller than the monomer diameter �. We chose the follow-
ing analytical expressions:

umm
mod�r� =

�

2
�u� − umin

rmin − �
�r − �� + u� if 0 � r � � ,

�10a�

umm
mod�r� = u� − �u� − umin�cos��

2
� rmin − r

rmin − �
�

if � � r � rmin, �10b�

umm
mod�r� = umin cos2��

2
� r − rmin

rcut − rmin
� if rmin � r � rcut,

�10c�

umm
mod�r� = 0 elsewhere, �10d�

where u�=umm
mod���, rmin is the location of the potential mini-

mum, and umin=umm
mod�rmin�. The model potential depends on

five parameters �rmin, �, rcut, u�, and umin� chosen in our
numerical simulations as follows. The potential minimum is
located at rmin=1.05�, where it evaluates to umin=−100kBT.
At monomer separation � the potential evaluates to u���
=60kBT with a steep gradient. For monomer separations in
the range �0,�� the potential is extrapolated linearly with the
slope it has at r=�. Hence, for separations smaller than �,
the monomers feel a strong constant repulsive force equal to
the force at r=�. The cutoff distance is rcut=1.1�. The model
potential and its various parameters are shown in the inset of
Fig. 1.

The interaction potential may be obtained from the inte-
gration of the intermolecular interactions over the nanopar-
ticle volumes as in Ref. �18�. We assume pairwise additivity
of the intermolecular potential, continuous medium, and con-
stant material properties. Elastic flattening of the monomer is
neglected. The intermolecular potential is taken to be the
Lennard-Jones potential
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uLJ�r� = 4����LJ

r
12

− ��LJ

r
6� , �11�

where � is the depth of the attractive potential, the maximum
attractive energy between two molecules, and �LJ is the dis-
tance at which the potential evaluates to zero, the distance of
closest approach of two molecules which collide with zero
initial relative kinetic energy. The first term expresses �ap-
proximately� the repulsive part �Born repulsion�, while the
second expresses the attractive �van der Waals attraction�.
Integration of Eq. �11� over two equal-sized spheres of diam-
eter � yields �see, for example, Refs. �18,19�� an attractive
part,

umm
vdW�r� = −

A

6
�ln� r2 − �2

r2  +
�2

2�r2 − �2�
+

�2

2r2� ,

�12a�

and a repulsive part,

umm
rep �r� =

A�LJ
6

2520r
��2� 1

2�r − ��7 +
1

2�r + ��7 +
1

r7�
−

�

3
� 1

�r − ��6 −
1

�r + ��6�
−

1

15
� 2

r5 −
1

�r − ��5 −
1

�r + ��5�� , �12b�

to obtain

umm�r� = umm
rep �r� + umm

vdW�r� , �12c�

where A=4���LJ
6 n2 is the Hamaker constant and n is the

molecular number density in the solid. In the limit r�� the
potential decays as umm�−r−6, i.e., the expected attractive
van der Waals interaction energy between two noncharged
macroscopic bodies is recovered. The Hamaker constant of a
typical soot nanoparticle, for example, n-hexane, was esti-
mated to be A=2.38�10−19 J �20� with a corresponding

�LJ=0.5949 nm �21�. We used these values, along with �
=20 nm, to render the interaction potential dimensionless.

The repulsive part of umm diverges for r→�; it may, thus,
cause numerical difficulties in the solution of the Langevin
equations. We modified the potential at distances rmat
=1.015� �less than the position of the potential minimum at
rmin�1.017�� by extrapolating it linearly with the same
slope it has at rmat until r=0.995� �where it evaluates to
about 60kBT��. A similar matching condition was used to
determine the coefficient of the model-potential linear term.
We set umm to zero at smaller monomer-monomer separa-
tions. This modification of the repulsive part is not expected
to affect the dynamics of the system since it involves mono-
mer separations that are energetically unfavorable �and,
hence, unlikely�. Therefore, the intermonomer potential we
use is

umm
sim�r� = 0 if 0 � r � 0.995� , �13a�

umm
sim�r� =� �umm

�r
�

rmat

�rmat − r� + umm�rmat�

if 0.995� � r � rmat, �13b�

umm
sim�r� = umm�r� if rmat � r . �13c�

We truncate the potential at distances r�7� where it is neg-
ligible with respect to the thermal energy, umm�7�� / �kBT��
�10−4.

Although neither potential diverges at separations r��,
at such distances monomers feel a very strong repulsive
force; monomer separations below � are energetically unfa-
vorable and their occurrence is extremely unlikely during the
system dynamics. This justifies the identification of � with
the hard-core monomer diameter. Moreover, since the two
intermonomer potentials are much deeper than kBT� the
sticking probability upon collision may be considered to be
unity.

In the following, we will use only dimensionless quanti-
ties; we will, thus, drop the overtilde to simplify the notation.
Furthermore, unless specified otherwise, the results pre-
sented were obtained with umm

sim �Eqs. �13��. Figure 1 presents
and compares the two dimensionless radial potentials.

III. NUMERICAL METHOD

A. Numerical solver

The numerical simulations were performed with the soft-
ware package ESPResSo �22�, a versatile package for ge-
neric molecular-dynamics simulations in condensed-matter
physics. We used the molecular dynamics program with a
Langevin thermostat. The Langevin thermostat was con-
strued as formal method to perform molecular-dynamics
simulations in a constant temperature canonical ensemble;
see, for example, Ref. �23�. It introduces a fictitious viscous
force to model the coupling of the system to a thermal bath
according to Eq. �1� that ensures the system temperature
fluctuates about the bath mean temperature. The molecular
equations of motion with a Langevin thermostat are formally
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FIG. 1. �Color online� Model and simulated monomer-monomer
interaction potentials.
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identical to the Langevin equations of interacting Brownian
particles: the physical scales and their interpretation differ.

The ESPResSo numerical solver uses the Verlet algorithm
for the deterministic part, with a numerical error that scales
at least like O��t3�. The combination of the Verlet algorithm
with the solver for the stochastic part �Langevin thermostat�
yields an error estimate of O��t3� in the monomer positions
and of order O��t2� in the velocities �24�. As a check of the
numerical solver we simulated the motion of a single Brown-
ian particle in a quiescent fluid. The simulations for the
mean-square displacement �r1

2�t��, the mean-square velocity
fluctuations �v1

2�t��, and the velocity autocorrelation function
�v1�t�v1�0�� agreed with the analytical expressions �14�.

The initial state was created by randomly placing
n��0�V=5000 monomers in a cubic box of size L with V
=L3 as the box volume and n��0� as the initial monomer
concentration. The box size was chosen to give the desired
initial monomer concentration according to L= �5000 /n��1/3.
We chose n��0�=0.01 corresponding to L�80. The initial
random placement of monomers could cause numerical prob-
lems if two or more monomers happen to be placed in almost
overlapping positions, thus experiencing immediately a very
strong repulsive force. We used a well-known technique of
molecular-dynamics simulations to avoid these numerical in-
stabilities by ramping up the repulsive force for r�1 to its
constant final value during 800 time steps. The �dimension-
less� simulation time step was chosen to be �tsim=1.25
�10−3. After initialization, the system was evolved until a
final time of 3000, when the cluster concentration had de-
creased by almost two orders of magnitude. The results we
show were obtained using the output of ten simulations, each
one with different initial monomer positions and zero initial
monomer velocities. Finally, periodic boundary conditions
were imposed.

B. Cluster identification

The identification of clusters is one of the most time-
consuming tasks of postprocessing the simulation results.
The ESPResSo simulations return individual monomer posi-
tions and velocities. Unlike the previously mentioned works
�3,15�, agglomeration events are not identified during the
time evolution of the system, but cluster formation is deter-
mined a posteriori. Sampling of the simulation output was
performed at time intervals �tsam=2 �every 1600 simulation
time steps�.

We resort to an approach based on graph theory. A cluster
is a set of connected bound monomers. As both interaction
potentials are very deep once two monomers collide and
bind, they remain bound: no agglomerate breakup was no-
ticed during our simulations. Hence, two monomers may be
considered bound when their relative distance is less than a
threshold distance dthr. The choice of dthr depends on the
position of the minimum of monomer interaction potential
rmin. For the simulations with the integrated Lennard-Jones
potential we used dthr=1.04, whereas for the model potential
we used dthr=1.06. Small variations of dthr about these values
did not affect the identification of clusters. Our definition of
a cluster is reminiscent of the liquid cluster definition pro-

posed by Stillinger and used in gas-liquid nucleation studies
�see, for example, Ref. �25��.

Computationally, the first step is the calculation of the
distance matrix D between all monomers. For a box with
periodic boundary conditions, the distance between two
monomers is the distance between the ith monomer and the
nearest image of the jth monomer �17�. For instance, the
�ordered� distance between two monomers along coordinate l
is

Dij
l = ri

l − rj
l − L nint� ri

l − rj
l

L
, l = x,y,z , �14�

where “nint” is the nearest integer function. The periodicity
of the box imposes a cutoff of L /2 on the maximum distance
between two monomers along each axis. The three-
dimensional distance,

Dij = ��
l=1

3

�Dij
l �2�1/2

, �15�

is always a non-negative quantity. The distance matrix D is
subsequently used to calculate the adjacency matrix A, de-
fined as

Aij = �1 if Dij � dthr

0 otherwise.
� �16�

The adjacency matrix is usually introduced in graph
theory �12� as a convenient way to represent a graph
uniquely. Monomers in a cluster can be formally regarded as
graph vertices �nodes�, whereas the bonds due to the interac-
tion potential become graph edges �links�. The problem of
cluster identification, given the distance matrix D, is then
reformulated as the identification of the connected compo-
nents of a nondirected graph expressed by the �symmetric�
adjacency matrix A. They can be determined using a stan-
dard breadth-first search algorithm �12�. Due to its speed and
scalability, we resort to the implementation of its algorithm
in the igraph library �26�.

C. Cluster radius of gyration

The radius of gyration is a geometric parameter used to
characterize the size of fractal aggregates. It describes the
spatial mass distribution about the aggregate center of mass.
As such it is a static property that depends on the cluster
mass distribution, and not on the diffusive properties of the
cluster. For a cluster composed of k equal-mass monomers it
becomes the root-mean-square distance of the monomers
from the cluster center of mass �2�,

Rg
2 =

1

k
�
i=1

k

�ri − RCM�2 + a1
2, �17a�

where the aggregate center of mass is

RCM =
1

k
�
i=1

k

ri, �17b�

and a1 is a monomer characteristic size. Since we are inter-
ested in the power-law dependence of the radius of gyration
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on the number of monomers in a cluster even for small clus-
ters, we included a1 in the definition of the radius of gyra-
tion; otherwise, Eq. �17a� evaluates to zero for a monomer.
The additional term may be taken to be either the primary
particle radius �2�, a1=� /2, or the radius of gyration of a
sphere �27�, a1=�3 /5�� /2�. The choice of a1 as the mono-
mer radius of gyration ensures that, if an average fractal
exponent is used, the large k behavior in the power-law scal-
ing persists even for smaller clusters. Of course, the value of
a1 �including a1=0� is irrelevant for large clusters. We used
both choices for a1: the results presented were obtained with
a1 as the monomer radius of gyration because this choice
gave better agreement of the calculated and numerically es-
timated kernel elements �see Sec. V E�. Nevertheless, the
difference between the two choices was small.

The calculation of Rg according to Eq. �17a� must take
into consideration the periodicity of the box. Since all
monomer-monomer distances are known from Eq. �14�, the
position of monomers in the cluster with respect to a ran-
domly selected monomer �say monomer 1� may be easily
calculated; for instance, the jth monomer position along co-
ordinate l with respect to monomer 1 is

rj
l = r1

l + D1j
l . �18�

Given the relative position of all monomers in the cluster, the
position of the aggregate center of mass may be calculated
via Eq. �17b�, and the radius of gyration from Eq. �17a�. We
adopted a reference system centered on the randomly chosen
monomer in the cluster, i.e., r1= �0,0 ,0�. For this reference
system rj

l =D1j
l . This procedure is independent of the choice

of the selected monomer since the radius of gyration is inde-
pendent of the cluster position in the box, nor does the pro-
cedure depend on the sign convention chosen for D1j

l .

D. Collision kernel

The package ESPResSo allows addressing each monomer
individually at all times during the simulation, i.e., a perma-
nent label �e.g., color� may be associated with each mono-
mer. A monomer label allows the unequivocal identification
of the cluster it belongs to. Each cluster becomes an unor-
dered collection of monomer labels where no monomer label
is repeated: this amounts to the mathematical definition of a
set. Viewing clusters as sets of monomer labels provides a
computational method to investigate cluster collisions even
for sampling times considerably longer than the simulation
time step, as long as the aggregates do not break up. To be
specific, consider two clusters at time t. If during the �sam-
pling� time interval �t , t+�tsam� they collide, they will be part
of the same newly formed cluster at t+�tsam. An equivalent
description of the collision is that the two monomer-label
sets that identify the precollision clusters become proper sub-
sets of the monomer-label set that identifies the cluster
formed by their collision, and detectable at t+�tsam. The
number of collisions that occurred during �t , t+�tsam�, and
the clusters involved in the collisions, may be recorded sim-
ply by comparing different sets.

The collision kernel Kij �rendered dimensionless by scal-
ing it by �3 /�1� between an i-mer and a j-mer during the
sampling time interval is

Nij�t�
V�tsam

= �2 − �ij�Kij
Ni�t�

V

Nj�t� − �ij

V
� �2 − �ij�Kijni�t�nj�t� ,

�19�

where Nij�t� is the number of collisions between i- and
j-mers that took place during the interval �t , t+�tsam�, Ni�t� is
the number of i-mers at time t, ni�t�=Ni�t� /V is the cluster
concentration, and �ij is the Kronecker delta. The collision
kernel Kij is estimated from Eq. �19� by treating it as the
fitting parameter that minimizes �in a least-squares sense� the
distance between the number of detected collisions
Nij�t� / �V�tsam� and �2−�ij�Kijni�t�nj�t�.

IV. STATIC CLUSTER PROPERTIES

Examples of 50-monomer clusters that survive at the end
of one of the simulations are shown in Fig. 2. The top left
subfigure is a snapshot of the system, whereas the other three
are color-coded aggregates. The color code denotes the num-
ber of first neighbors of a monomer. Note the relatively com-
pact and long tubular structure of the generated aggregates.
These two features, small-scale compactness and large-scale
tubular structure, will be related to properties of the inter-
monomer potential in the following sections.

A. Cluster fractal dimension

The fractal dimension of the clusters is determined from
the statistical scaling law that governs the power-law depen-
dence of the cluster radius gyration Rg on cluster size k,

Rg = ak1/df , �20�

where df is the average time-independent fractal dimen-
sion of the aggregates, and a is the fractal prefactor, occa-
sionally referred to as lacunarity �28�. The fractal prefactor
provides information on the packing of monomers �29�. The
cluster radius of gyration was obtained by averaging over
generated cluster configurations. Specifically, the average ra-
dius of gyration of a k-monomer aggregate is taken over all
k-monomer aggregates that had been recorded at least 200
times. This requirement aims at eliminating outliers. It is not
particularly stringent since for each simulation 1500 system
configurations �snapshots� were stored, and ten simulations
were performed. Our results are not sensitive to reasonable
choices of the threshold of minimum number of cluster oc-
currences: raising the occurrence threshold to 400 does not
change the calculated fractal dimension.

Figure 3 presents the calculated radius of gyration as a
function of aggregate size. The double-logarithmic plot
shows that power-law scaling breaks down for cluster sizes
k�5. Hence, we set k=5 to be the minimum cluster size in
the fits. All cluster configurations with k�5 were fitted to a
single line leading to an average fractal exponent df
=1.62�0.02 and a prefactor a=0.242�0.006. The prefactor
re-expressed in terms of k=kg�2Rg�df gives kg=3.24. The cal-
culated prefactor is on the high side of fractal prefactors
reported in the literature for clusters generated by computer
simulations �30�, but closer to experimentally determined
prefactors that indicate kg�2 �28,30�. Inspection of the fig-
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ure shows that clusters with k�15 deviate significantly from
the single-line fit. Simulation results are fitted better by con-
sidering two cluster population �and hence two different
slopes�: we identify small �k�15� and large �k�15� clus-

ters. Refitting the data gives a fractal dimension df
mc

=2.25�0.05 for small clusters and df
cc=1.56�0.02 for large

clusters. The corresponding average prefactors, as well as the
fractal dimensions, are reported in Table I. As before, the
prefactor for the large clusters is on the high side of
literature-reported values for computer-generated clusters
and is closer to experimental values determined by angular
light scattering, suggesting that the cluster generated in this
study has a closely packed structure �29� �see also Fig. 2�.

The presence of two cluster populations obeying scaling
laws with different exponents may be attributed to different
agglomeration mechanisms. Small clusters are generated
mainly by monomer-cluster agglomeration; they are more
compact and spherical than large clusters. This agglomera-
tion process is similar to, but different from, diffusion-
limited aggregation, as argued in Sec. IV B. Large clusters
are mainly generated by cluster-cluster agglomeration.
Therefore, it is expected, and numerically confirmed, that
df

mc�df
cc. Furthermore, the calculated fractal dimension of

large clusters is comparable, but lower, to reported fractal
dimensions of cluster-cluster agglomeration df �1.7–1.8
�3,31�. Further comments on the agglomeration process and
the associated fractal dimensions are made in Sec. IV B.

The existence of two cluster populations that arise from
the predominance of different agglomeration mechanisms as
agglomeration progresses suggests the calculation of a time-
dependent average fractal dimension df�t�. We calculated it

FIG. 2. �Color� Clockwise from top: snapshot of the system at the end of a simulation �tfinal=3000� followed by three different
50-monomer aggregates. Three-dimensional images created with the software Mayavi2 �40�. The color code denotes number of first
monomer neighbors.
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FIG. 3. �Color online� Average radius of gyration as a function
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for k�5 �long-dashed line�, 5�k�15 �short-dashed line�, and k
�15 �solid line� �see also Table I�.
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by considering the instantaneous radius of gyration of
k-monomer clusters for each of the ten initial configurations:
only clusters with k�5 were included, and no occurrence
threshold was imposed. As the number of clusters is consid-
erably smaller than those used in time-independent calcula-
tions we do not calculate first the instantaneous average ra-
dius of gyration and then fit the data �as done for the
calculation presented in Fig. 3�: instead we fit all the data
simultaneously �no averaging�. The fractal dimension as a
function of time is shown in Fig. 4 �top�. The evolution of
the fractal dimension may be linked to the kinetics of the
small and large cluster populations. At early times, the sys-
tem is almost entirely made up of small clusters �k�15�
�Fig. 4 �bottom��; hence df�t��df

mc, whereas at late times the
contribution of large clusters �k�15� to the overall cluster
population is dominant; hence, df�t�→df

cc.
These findings are in the spirit of the study by Kostoglou

and Konstandopoulos �13� who used a distribution of fractal
dimensions to characterize aggregate morphology. They
showed that the mean fractal dimension relaxes to an a priori
fixed asymptotic value specified by the dominant agglomera-
tion mechanism. Our results on the importance of agglom-
eration kinetics on the evolution of df�t� are in agreement
with earlier works, e.g., Refs. �3,31�, which suggest that the
aggregate fractal dimension depends mainly on the dominant
agglomeration mechanism.

B. Cluster morphology

As a measure of local compactness of the generated ag-
gregates we calculated the cluster coordination number. The
cluster coordination number, defined as the mean number of
first neighbors of a monomer in a cluster, provides informa-
tion on the openness of the aggregates and their compactness
and on the presence of cavities in their structure, i.e., their
porosity. Hence, it is related to the fractal prefactor �Eq.
�20��; it characterizes the small-scale structure of an aggre-
gate, whereas the fractal dimension characterizes its large-
scale structure. The coordination number varies between 0
and 12 for spherical particles, reaching its highest value for
hexagonal-close-packed or face-centered-cubic structures at
a volume fraction of 0.74 �8�. The cluster coordination num-
ber is obtained during postprocessing of the simulation re-
sults resorting again to the igraph library �26�.

We calculated the mean cluster coordination number by
averaging the coordination number of each cluster over all
clusters at a given time. It is plotted in Fig. 5 as a function of
time. At late times it reaches values higher than 5, implying
that the aggregates are relatively compact.

The local small-scale compactness of the aggregates, ag-
gregates that are similar to those generated by the Langevin
simulations of, e.g., Ref. �7�, is related to the spherical sym-
metry of the monomer-monomer interaction potential. At
early times when a monomer collides and binds to an aggre-
gate it is free to slide, a motion induced by the thermal noise,
and to reorient to maximize the number of contacts with
other monomers. Since the potential is isotropic there is no

TABLE I. Overview of cluster static properties.

Fractal dimension Prefactor �Rg=ak1/df� Prefactor �k=kg�2Rg�df�

All clusters df =1.62�0.02 a=0.242�0.006 kg=3.24

k�15 df
mc=2.25�0.05 amc=0.386�0.009 kg

mc=1.75

15�k df
cc=1.56�0.02 acc=0.218�0.007 kg

cc=3.65
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angular restoring force to prevent sliding. However, short-
time restructuring is hindered as the number of monomer-
monomer contact points increase because the energy cost
associated with stretching monomer-monomer bonds is high.
Inspection of Fig. 2 shows that the minimum number of first
neighbors in a stable cluster is 3, suggesting that in three
dimensions three contact points are sufficient to prevent
monomer sliding. Hence, the aggregates generated herein are
different from those generated by diffusion-limited aggrega-
tion where colliding monomers remain fixed at the initial
point of contact. Becker and Briesen �10� showed that in the
absence of a potential to prevent bending of monomer-
monomer bonds the aggregate collapses to a more compact
structure. The monomer reorientation at early times also sug-
gests that the high fractal dimension df

mc we associated with
monomer-cluster agglomeration mechanism arises from
monomer rearrangement. In our simulations monomer reori-
entation occurred at very small time scales, smaller than the
sampling time. After the short-time monomer reorientation
clusters remain rigid until the next collision, as discussed
Sec. IV C.

An additional explanation for the compactness of aggre-
gates generated by Langevin simulations, neglecting Brown-
ian motion, was suggested by Tanaka and Araki �32�. They
argued that in the absence of interparticle hydrodynamic in-
teractions, in particular of squeezed-flow effects, the gener-
ated clusters tend to be more compact.

Even though the clusters are locally compact, the large
clusters generated at late times have a low fractal dimension
df

cc�2. Inspection of Fig. 2 �second and third clusters� sug-
gests that the low late-time fractal dimension is due to their
tubular elongated shape. The aggregates are not porous: they
do not have holes or cavities. The large-scale structure of the
late-time �large� clusters is determined by the attractive range
of the intermonomer potential. At late times when two �lo-
cally compact� clusters collide aggregate restructuring is lim-
ited to the monomers that are in contact: the attractive range
of the potentials used in the simulation is too short to induce
significant cluster reorganization, a process that would in-
crease the fractal dimension. Videcoq et al. �7� showed that
increasing the attractive range modifies the shape of the gen-
erated aggregates leading to more spherical aggregates.
Hence, the late-time fractal dimension associated with
cluster-cluster aggregation depends on the extent of restruc-
turing due to the attractive potential range. This restructuring
provides a possible explanation of the lower than expected
fractal dimension for cluster-cluster aggregation.

Additional simulations were performed to assess the sen-
sitivity of the observed cluster morphology, and their rigidity,
on the simulation time step. We simulated a 50-monomer
cluster �shown at the bottom right in Fig. 2� for 32 000 time
steps �tfinal=40�, with two different time steps, �tsim and
�tsim /4. We monitored the time evolution of the cluster ra-
dius of gyration Rg�t�, an average cluster property, and an
instantaneous cluster property, the distance d1,12�t� of two
randomly chosen monomers �monomers 1 and 12�. We found
that both quantities fluctuated by approximately 0.1%, inde-
pendently of time step. These results confirm that cluster
morphology does not depend on the choice of the time step,
as long as it is chosen within reason. In fact, for considerably

longer time steps the cluster breaks up. The fluctuations arise
because monomer radial positions fluctuate, albeit slightly,
about the potential minima.

As a different measure of a possible dependence of cluster
morphology on the simulation time step we compared the
time-dependent adjacency matrices �Eq. �16�� for these two
simulations. The adjacency matrices were found to be all
identical, another confirmation that cluster morphology is in-
dependent of the time step. Note that small fluctuations of
monomer radial positions in the cluster are not reflected in
the adjacency matrix �a binary matrix� since a distance
threshold is used to convert the distance matrix �Eq. �15�� to
it.

Thus, the morphology of the generated aggregates arises
from a combination of kinetic effects, as induced by the ther-
mal noise, and energetic effects, as determined by the attrac-
tive range of the interaction potential. A precise characteriza-
tion of aggregate morphology requires both the fractal
dimension and the coordination number �or the lacunarity�.

C. Cluster restructuring

In addition to short-time monomer reorientation cluster
restructuring may occur following a cluster-cluster collision.
Cluster restructuring following contact of two clusters was
investigated in a three-dimensional lattice model in Ref.
�33�. In our approach cluster restructuring does not have to
be imposed as an additional feature of cluster dynamics, but
it occurs naturally. The deep radial intermonomer potential
locks distances between neighboring monomers, but bonded
monomers may slide over each other due to the thermal
noise term. However, as mentioned earlier, monomer sliding
is restricted by the number of monomer-monomer contact
points.

We use two statistical quantities as indicators of the modi-
fication of the structure of a cluster: the radius of gyration
and the mean monomer-monomer distance. For a k-mer the
mean monomer-monomer distance Dmm is the average
monomer-monomer distance over all the monomers,

Dmm =
1

k2�
i,j

k

Dij , �21�

where the monomer-monomer distance Dij was defined in
Eq. �15�. We monitored cluster restructuring by selecting a
monomer at the beginning of the simulation and following
it as it collides with other monomers or clusters. In Fig. 6
�left� we show Dmm during a period when a collision occurs
�t=568� and the cluster size increases from k=14 to k=43.
We notice that before and after the collision Dmm is constant,
a clear sign of cluster rigidity. When the collision between
the two aggregates occurs, Dmm increases, but on a time scale
of a few monomer relaxation times it decreases, and after-
ward remains relatively constant. We consider this behavior a
strong indication of cluster reorganization following the col-
lision of two clusters. The cluster radius of gyration shows a
perfectly analog behavior �Fig. 6 �right��. Note, however,
that once cluster restructuring occurs after a cluster-cluster
collision the resulting cluster retains its shape and it remains
rigid until possibly the next collision.
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V. DYNAMIC CLUSTER PROPERTIES

A. Cluster translational diffusion coefficient

Equation �1� determines the dynamics of each monomer
and indirectly the cluster diffusive properties. The cluster
diffusion coefficient is calculated from the late-time depen-
dence of the variance of the cluster center-of-mass position
as a function of time �14�,

��RCM
2 �t�� = ��RCM�t� − �RCM�t���2� →

t→�

6Dkt . �22�

A different set of simulations was performed to determine
the diffusion coefficient of a few selected clusters. As noted
in Sec. IV C in the absence of collisions clusters are rigid:
the dynamical properties presented in this section refer to
perfectly rigid clusters. A selected cluster was placed in the
simulation box with its center-of-mass position at RCM
= �0,0 ,0� and with zero monomer velocities. The box size
was chosen to be L=10 000, a size much larger than the box
size used for the agglomeration simulations. A large box is

necessary because the aggregate center of mass has to be
tracked for a �potentially� long time; and, due to the periodic
boundary conditions, no displacement of the aggregate from
its initial position larger than L /2 is admissible. For these
simulations the cluster never crossed the boundary of the
box.

The center of mass of a single cluster was tracked up to
t=400 for clusters with k=4,10,50,98. Averages were per-
formed over 800 trajectories, with each trajectory starting
with an identical cluster: different cluster trajectories arise
from different realizations of the stochastic noise. Figure 7
�top� shows ��RCM

2 �t�� for a 50-monomer cluster, chosen to
be the cluster at the bottom right of Fig. 2. The time depen-
dence of the ensemble-averaged mean-square cluster dis-
placement quickly becomes linear, in agreement with Eq.
�22�. The inset of Fig. 7 �top� magnifies �on a double-
logarithmic scale� the early-time behavior of ��RCM

2 �t��. For
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t�1 cluster motion is ballistic, and the mean-square dis-
placement exhibits a power-law dependence on time,
��RCM

2 �t��� t� with �=3. This is the expected behavior for a
single Brownian monomer with zero initial velocity �14�.
Similar early-time ballistic motion was found for a cluster
with k=4.

The results of the numerical simulations for the four clus-
ters are summarized in Table II, where we also report the
cluster radius of gyration �obtained from Fig. 3�. They may
be interpreted by considering theoretical estimates of the dif-
fusion coefficient Dk of a k-mer. The Stokes-Einstein diffu-
sion coefficient of a single spherical monomer, in dimension-
less form, scaled by D�=kBT� / ��1m1�, is �14�

D1 = T . �23�

The diffusion coefficient of a k-mer of mass Mk=km1 may be
expressed as a generalization of Eq. �23�. Let �k be the av-
erage friction coefficient of a monomer in the k cluster. Then,
the cluster drag term in Eq. �1� may be written as �kMk
=k�km1, and the cluster diffusion coefficient generalizes to

Dk = D1
�1

k�k

 D1

1

k�k
. �24�

Equation �24� manifestly shows the importance of the ratio
of the average friction coefficients �k=�k /�1, with �k being
the average shielding factor of a monomer in a k cluster. In
fact Ref. �2�, in a different context, used the cluster shielding
factor to describe how monomer shielding affects heat trans-
fer to an aggregate. Herein, the cluster shielding factor is
connected to cluster mobility.

The numerically determined diffusion coefficients behave
as Dk�1 /k with k spanning almost two orders of magnitude.
The estimated value of �k equals the monomer friction coef-
ficient �1 within a few percents �Table II ��1=1 in our
units��. The small deviations are attributable to the limited
number of simulated stochastic trajectories. Our Langevin
simulations suggest that the cluster diffusion coefficient is
inversely proportional to the cluster mass and to the mono-
mer friction coefficient. This behavior is a direct conse-
quence of neglecting shielding of inner monomer by outer
monomers in an aggregate. The cluster accessible area be-
comes the sum of the monomer accessible areas, since for
�k=1 the total friction coefficient of a k-mer is 3�� f�k. For
this reason we refer to these clusters as ideal clusters, with
respect to their dynamical properties. For ideal clusters the
average monomer shielding factor is unity irrespective of the

state of aggregation of the monomer. This is an inherent
property of all simulations of monomer agglomeration via
the unshielded monomer Langevin equations �1�.

The cluster diffusion coefficient �in the continuum re-
gime� is frequently expressed in terms of a mobility radius
Rm, the radius of a sphere with the same friction coefficient
as the aggregate �34�. In the dimensionless units used in this
work, the mobility radius determines the cluster diffusion
coefficient by

Dk = D1
1

2Rm
. �25�

Comparison of Eqs. �24� and �25� gives an expression for the
mobility radius in terms of the �average� cluster �per-unit-
mass� friction coefficients �k and �1, or the shielding factor
�k,

Rm =
k

2

�k

�1
=

k

2
�k. �26�

For the ideal clusters generated in this work Rm=k /2. Table
II presents the mobility radius calculated either from the nu-
merically determined diffusion coefficient �Eq. �25�, fourth
row� or by evaluating it directly from Eq. �26� with �k=1
�fifth row�. A comparison of these two values provides an
indication of the numerical error of our simulations: the per-
centage shown in the fifth row �in parentheses� quantifies the
difference.

The cluster diffusion coefficient is frequently estimated by
taking the aggregate mobility radius Rm approximately equal
to the cluster radius of gyration Rg. Our simulations show
that the radius of gyration is of the same order of magnitude
for cluster sizes in the range k=4 to k=98, whereas the mo-
bility radius is considerably higher. Since the radius of gyra-
tion severely underestimates the mobility radius, the diffu-
sion coefficient of ideal clusters is lower than the diffusion
coefficient of clusters with Rm�Rg. In ideal clusters the av-
erage monomer shielding factor is unity, whereas monomers
in nonideal clusters are at least partially shielded, resulting in
higher cluster mobility �cf. Eq. �24��.

B. Cluster thermalization

For a single Brownian monomer, the late-time mean-
square velocity fluctuations �dimensionless, scaled by
kBT� /m1� tend to �14�

TABLE II. Overview of cluster diffusive properties. The percentage in parentheses �fifth row� is the
relative difference of the two mobility radii reported in the fourth and fifth rows.

k=4 k=10 k=50 k=98

Dk Simulations, Eq. �22� 1.30�10−1 4.92�10−2 9.48�10−3 4.84�10−3

Rg Simulations, Fig. 3 7.5�10−1 1.14 2.12 4.70

�k Simulations, Eq. �24� 9.6�10−1 1.01 1.05 1.05

Rm Simulations, Eq. �25� 1.92 5.08 26.35 51.56

Rm Equation �26� with �k=1 2 �4%� 5 �1.6%� 25 �5.4%� 49 �5.2%�
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��v1,�
2 � = lim

t→�
��v1�t� − �v1�t���2� = 3 T , �27�

where v1�t� is the monomer instantaneous velocity. For a
k-mer the previous expression, a manifestation of energy eq-
uipartition and a consequence of the FDT, may be general-
ized to

��VCM,�
2 � = lim

t→�
��VCM�t� − �VCM�t���2� = ��v1,�

2 �
1

k
, �28�

where the cluster center-of-mass velocity is VCM�t�=�ivi /k,
with vi as the ith monomer velocity. As for a Brownian
monomer Eq. �28� expresses energy equipartition for a
k-monomer cluster. In Fig. 7 �bottom� we plot ��VCM

2 �t�� as a
function of time for the 50-monomer cluster used in the pre-
vious section. As shown, Fig. 7 �bottom�, ��VCM,�

2 �t�� tends
at late times to 0.03 �up to noise fluctuations�, i.e., the theo-
retical value for ideal clusters �Eq. �28�� for the simulation
parameters T=0.5 and k=50.

The main result of Sec. V A and this section is that a
monomer in an ideal k cluster generated according to Eqs.
�1� and �2�, i.e., neglecting monomer shielding, feels the
same friction coefficient as an isolated monomer ��k=�1�.
An ideal k-monomer aggregate has the same diffusive prop-
erties as a monomer sphere of k times the mass of a single
monomer �Dk=D1 /k�. The cluster diffusion coefficient dif-
fers from the monomer diffusion coefficient only due to the
larger cluster mass and not, in addition, due to the decrease
in the average monomer shielding factor.

C. Cluster rotation

We investigated whether ideal clusters have a preferential
orientation by examining the distributions of their average
Euler angles. As argued, clusters in the absence of collisions
may be treated as rigid bodies. Rigid body rotation in three
dimensions may be described by the three Euler angles �, �,
and � �35�. We evaluated them during postprocessing by
eliminating cluster translational motion via rigidly translat-
ing the cluster center of mass to the origin of the
computational-box coordinate system at all times. The Euler
angles may, then, be calculated by recording the time-
dependent positions rA�t�, rB�t�, and rC�t� of three noncopla-
nar monomers. We define a 3�3 matrix X�0�
= �rA�0� ,rB�0� ,rC�0�� containing the initial positions of the
three reference monomers and a matrix X��t�
= �rA�t� ,rB�t� ,rC�t�� with their positions at time t. The rota-
tion matrix A such that X�=AX is

A�t� = X��t�XT�0��X�0�XT�0��−1, �29�

where the superscript T denotes matrix transpose. Once the
rotation matrix A is known, the Euler angles may be deter-
mined. Since they are not uniquely defined, with their values
depending on the order of the three rotations, we chose to
calculate them via the algorithm presented in Ref. �36�. The
range of the Euler angles so determined is � and � range in
the interval �−� ,��, whereas � lies in the interval �
−� /2,� /2�. For uniform random rotation matrices �37�,
both � and � are random variables with a uniform probabil-

ity distribution in the interval �−� ,��; hence, ���= ���=0
and ���2�t��1/2= ����t�− ���t���2�1/2= ���2�t��1/2=� /�3
�1.81. On the other hand, the Euler angle � is distributed
according to �37�

� = arccos�1 − 2Z�0,1�� −
�

2
, �30�

where Z�0,1� is a random variable with a uniform probabil-
ity distribution in the interval �0,1�. The corresponding aver-
ages, obtained numerically, are ���t��=0 and ���2�t��1/2

�0.68.
Figure 8 �top� shows the mean Euler angles calculated for

an ensemble of 800 identical clusters containing ten mono-
mers each. Their mean values fluctuate about zero. On the
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bottom diagram we show their mean-square fluctuations:
they rapidly tend to the expected values for random rotation
matrices. Another calculation of ���2� for an ensemble of
800 identical cluster with k=50 shows saturation to the same
value but on a longer time scale. The rotational thermaliza-
tion time of an ideal k cluster depends on its total mass.
Hence, at late times an ideal cluster does not have a prefer-
ential orientation.

D. Time dependence of cluster number:
The agglomeration equation

The instantaneous total number of clusters, N��t�
=�k

�Nk�t�, quantifies the progress of agglomeration. It may
be calculated via the numerical solution of the agglomeration
equation �34�,

dnk

dt
=

1

2 �
i+j=k

Kijninj − nk�
i

Kikni. �31�

For definitions and scalings see Sec. III D. In this section the
collision kernel Kij is scaled by K�=D��=�1�3 �see Eq.
�6��.

The standard treatment of the collision kernel for fractal
aggregates in the continuum regime gives �34�

Kij = 4��Di + Dj��Ri + Rj� , �32�

where we dropped the subscript g in the radius of gyration of
an i-mer, Ri=Rg,i, to simplify the notation. Equation �32� is
often expressed in terms of the aggregate volume of solids
�i� �Ri�df �38� since the volume of solids is conserved during
agglomeration. Moreover, the diffusion coefficients in Eq.
�32� are given by Eq. �25� with the mobility radius being the
radius of gyration. The kernel then reads

Kij
Sm = 2�D1� 1

�i
1/df

+
1

� j
1/df

��i
1/df + � j

1/df� , �33�

where the superscript Sm refers to the so-called Smolu-
chowski kernel. The Smoluchowski kernel is not expected to
model our numerical results accurately because it is based on
diffusion coefficients given by Eq. �25� with Rm=Rg, an
equality not respected by our simulations. Instead, the nu-
merical simulations may be used to derive a modified kernel
appropriate for the reproduction of the numerical results.
Such a kernel is obtained by using the numerically deter-
mined cluster diffusion coefficients �Eq. �24� with �k=�1 in
Eq. �32��. For the radius of gyration, we use the fitted value
for k�5 �and the data reported in Table I� to obtain

Ri = �simulation data, i � 5

amci
1/df

mc
, 5 � i � 15

acci
1/df

cc
, 15 � i .

� �34�

Furthermore, noncontinuum effects arising from monomer-
monomer collisions, and dependent on the monomer mean
free path, have been shown to be important in combustion-
generated nanoparticle agglomeration �38�. They may be ac-
counted for by introducing the �dimensionless� Fuchs correc-
tion factor �F in the kernel: for the explicit expression of �F

consult Ref. �38�. Hence, the kernel appropriate for the
Langevin simulations �hereafter referred to as Langevin-
dynamics kernel� reads

Kij
LD = 4�D1�1

i
+

1

j
�Ri + Rj��F. �35�

The late-time dependence of the total cluster number may
be expressed in terms of the kernel homogeneity exponent 
�39�, whereby a kernel Kij is a homogeneous function of
order  if K�i,�j =�Kij. Then, the asymptotic time decay of
the total cluster number is N��t�� t−1/�1−�. For the Smolu-
chowski kernel =0 and, therefore, N�� t−1, whereas for
the Langevin-dynamics kernel = �1 /df

cc�−1, leading to
N�� t−0.74.

The results of the simulations �with both potentials� for
the total number of clusters and the numerical solution of
the agglomeration equation with KSm and KLD are shown in
Fig. 9. The numerical solution of the agglomeration equation
with the Langevin-dynamics kernel �short dashes� shows
good agreement with the simulations �dots, simulated inter-
monomer potential� The early-time agreement is attributed
to the Fuchs correction factor, an observation also made in
Ref. �38�.

The time decay of the total cluster number was fitted to
a power law N�� t−� at times 2500� t�3000. For the
Langevin-dynamics kernel we find �=0.77, a value close
to the exponent determined from the numerical simulations
��=0.78 and �=0.79 for model and the simulated potentials,
respectively� and to �=0.74 expected for homogeneous ker-
nels. The Smoluchowski kernel exponent is considerably
different, �=1. The slight difference between calculated and
theoretical exponents is attributed to the slow approach to
the asymptotic limit of the agglomeration equation: the
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asymptotic limit is reached at times about one order of mag-
nitude longer than the duration of the simulations, primarily
due to the Fuchs factor. Finally, we note that, as expected,
the van der Waals attraction enhances the agglomeration rate
�compare the simulation results with the two potentials�, as
noted in Ref. �7�.

E. Collision kernel elements

Collision kernel elements may be obtained by ensemble
averaging Eq. �19� over the ten initial conditions, i.e.,

�Nij�t��
V�tsam

= �2 − �ij�Kij�ni�t�nj�t�� . �36�

We found that the average of the nonlinear term decouples,
�ninj�= �ni��nj�, to the accuracy of our simulations. We re-
corded cluster collisions every �tsam to avoid counting ter-
nary collisions. We had enough data to calculate only a few
kernel elements Kij for low i and j indices. Figure 10 shows
an example of the fitting procedure to determine K13 from
�N13� / �V�tsam� and �n1��n3�. The calculated kernel elements
Kij are reported in Table III, and they are compared to the
analytical values of Kij

LD. Kernel elements are scaled to the
diagonal of the Smoluchowski kernel Kii

Sm=8�D1. We note
an excellent agreement for the ��1,1�,�1,2�,�2,2�� elements.
These kernel elements are important in the early-time behav-
ior of N��t�, and therefore they are responsible for the agree-
ment of the numerical simulations with the numerical solu-
tion of the agglomeration equation at early times, as shown
in Fig. 9.

VI. SUMMARY AND CONCLUSIONS

The static structure and diffusive properties of aggregates
formed in a quiescent fluid by the collision, and subsequent
binding, of spherical monomers were investigated via Lange-
vin dynamics, in the limit of small Knudsen number �con-

tinuum regime�. The Langevin equations of motion of a col-
lection of diffusing and interacting monomers were solved
numerically using a package for generic molecular-dynamics
simulations with a Langevin thermostat. Two intermonomer
interaction potentials were used: a model potential and a po-
tential that arises from the integration of the Lennard-Jones
intermolecular potential over the volume of two monomers.
Both potentials are spherically symmetric and rapidly decay-
ing. Aggregates were identified during postprocessing by
considering them to be the connected components of a non-
directed graph.

The static structure of the generated aggregates was de-
scribed in terms of their average fractal dimension and clus-
ter coordination number. We found that the aggregate fractal
dimension varied with time from an early-time value charac-
teristic of monomer-cluster agglomeration �df =2.25�0.05�,
as determined by local monomer rearrangement and restruc-
turing, to a late-time value characteristic of cluster-cluster
agglomeration �df =1.56�0.02�, a value dependent on the
attractive range of the intermonomer potential. The time de-
pendence of the fractal dimension was linked to the dynam-
ics of two cluster populations: small clusters �k�15� at early
times and large clusters �k�15� at late times. The average
cluster fractal dimension, thus, was related to the dominant
agglomeration mechanism. The generated aggregates had a
cluster coordination number, defined as the mean number of
first neighbors of a monomer in a cluster, of more than 5 �at
late times� suggesting that the clusters were compact and not
porous. The generated clusters were long, compact, and tu-
bular with a high mean coordination number and a low frac-
tal dimension.

We argued that these two salient features of aggregate
morphology, small-scale local compactness �evident at the
early stages of the agglomeration process�, and longer-scale
tubular structure �evident at later stages of the agglomeration
process�, were a consequence of properties of the monomer-
monomer interaction potential. The small-scale structure is
determined by the isotropy of the potential that allows short-
time local reorientation of bonded monomers induced by the
thermal noise. Monomers are free to rearrange to maximize
their interaction with other monomers, since there is no an-
gular potential to hinder bending of monomer-monomer
bonds, under the constraint that monomer-monomer bonds
are not stretched. The large-scale structure is determined by
the potential interaction range. Colliding locally compact
clusters rearrange locally at the point of contact: the attrac-
tive interaction range of the potential used in the simulations

TABLE III. Comparison of kernel elements �expressed in units
of 8�D1�.

�i , j� Kij
LD �Eq. �35�� Kij �Eq. �36��

�1,1� 0.213 0.214

�1,2� 0.294 0.298

�1,3� 0.309 0.397

�1,4� 0.309 0.449

�2,2� 0.317 0.317

�2,3� 0.303 0.349
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was too short to induce larger-scale rearrangement. Increas-
ing the attractive range would lead to more spherical aggre-
gates. After the initial rearrangements the aggregates re-
mained rigid until the next collision.

The dynamic cluster properties were analyzed in terms of
the cluster translational diffusion coefficient. We found that
the diffusion coefficient of a k-mer scaled with cluster size as
Dk�k−1: aggregates diffuse like massive monomers. Further-
more, the average �per-unit-mass� friction coefficient of a
monomer in a k-monomer cluster was found to equal the
�per-unit-mass� friction coefficient of an isolated monomer.
Hence, the friction coefficient of a monomer in a cluster was
determined to be independent of its state of aggregation, an
approximation referred to as free draining approximation: the
average monomer shielding factor of the generated clusters
was unity. We argued that this diffusive behavior is a conse-
quence of the absence of shielding in the Langevin equa-
tions. This is an inevitable consequence of the usual applica-

tion of Langevin simulations, unless a �time-dependent�
shielding factor is explicitly introduced in random force term
of the Langevin equations. The shielding factor would, as a
consequence of the fluctuation-dissipation theorem, modify
the monomer friction coefficient. We, thus, referred to these
clusters as ideal clusters, with respect to their transport prop-
erties. Similarly, the generated clusters did not have, on av-
erage, a preferred orientation.

We also calculated numerically and compared to analyti-
cal predictions kernel elements Kij for low indices. An ex-
tensive numerical investigation of the kernel elements is be-
yond the purpose of the present study, but it can be
performed using the methodology described herein. We con-
clude that aggregates generated by unshielded Langevin
equations of motion of monomers interacting via a central
rapidly decaying potential are on small scales locally com-
pact and on larger scales tubular, and they diffuse as massive
monomers.
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