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Deflection of a dilute stream of particles
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We consider a two-dimensional system in which a dilute stream of particles collides with an oblique planar
wall. Both collisions between particles and collisions between particles and the wall are inelastic. We perform
numerical simulations in two dimensions and show that the mean force experienced by the wall can be a
nonmonotonic function of the angle between the wall and the particle stream. We show that this occurs because
particles that rebound from the wall can collide with incoming particles and be scattered. This kind of particle-
particle collision can reduce the force experienced by the wall. We refer to this effect as shielding. Further-
more, we show that the force experienced by the wall may be an increasing, decreasing or nonmonotonic
function of the restitution coefficient in particle-particle collisions. We derive an exact solution for the mean
force on the wall if the system is dilute, and the theoretical prediction is found to be in good agreement with
our numerical results. The theory allows us to explicitly quantify the effects of shielding, and thus to explain
a number of interesting features. The theory generally provides a useful upper bound for the mean force.
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I. INTRODUCTION

In this paper we consider the mechanisms that underlie
the process of deflection when a dilute granular stream col-
lides with a rigid wall. By a granular stream, we mean a
localized stream of discrete moving particles with small ran-
dom transverse fluctuating velocities. We will consider the
case in which collisions between particles and collisions be-
tween particles and the wall are characterized by a loss of
energy. We will show that this seemingly simple system can
give rise to an array of surprising dynamics.

There is a broad range of industrial applications in which
streams of particles interact inelastically with rigid bound-
aries. Industrial devices designed for the purposes of particle
handling may have objectives such as diverting particle
streams or reducing the kinetic energy of the particles. Alter-
natively, devices may be designed for the purpose of clean-
ing or abrading a surface, as in the case of sand blasting. In
such applications, details of the dynamics of the particles and
the forces experienced by the particles are critical for under-
standing how these objectives can be best achieved. Other
important applications are related to powerful natural haz-
ards such as rock falls, debris flows and avalanches. In order
to mitigate risks from these natural hazards, passive protec-
tion methods are often employed to deflect or absorb the
kinetic energy of the flows. Examples of this include the
metal containment nets that are widely used above roads,
boulder-gathering trenches that are dug at the base of hills
and barriers that attempt to deflect flows around critical
populated areas. Unfortunately, the dynamics of these flows
present numerous conceptual, theoretical and technical diffi-
culties. This means that the design of passive protection
methods often does not have a solid theoretical underpinning
[1]. A solid understanding of the deflection of granular flows
would clearly represent an important advance in this regard.
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The problems of classical fluid impinging on obstacles
have been studied by many authors. Peng and Parker [2]
studied a two-dimensional free-surface problem of an ideal
fluid impinging on an uneven wall. They obtained a relation
between the flow angle on the free surface and the wall
angle. Wiryanto and Tuck [3] considered a steady two-
dimensional free-surface flow in a channel impinging on a
vertical wall with finite height. The stream is found to go
upward and it may split into two jets. The problem of a
steady flow emerging from a nozzle, hitting a horizontal
plate and falling under gravity was considered by
Christodoulides and Dias [4]. The plate can either divert the
stream or lead to detachment.

Granular materials share many similarities with classical
fluids, and thus exhibit some analogous behavior. For ex-
ample, Anderson elucidated in his book [5] that shocks can
occur when supersonic flows are deflected by a wedge. A
similar phenomena also occurs in granular materials [6].
Other examples of these similarities are found in certain im-
pact problems. When liquid droplets impact on a flat liquid
surface narrow vertical fluid jets are formed by the radial
collapse of the liquid “craters” produced by the impacting
rain drops [7]. Thoroddsen and Shen [8] considered the case
of a solid sphere impacting on a deep layer of granular ma-
terial. They showed that similar narrow jets occur for granu-
lar materials.

However, the presence of dissipation during particle col-
lisions for granular particles represents an essential differ-
ence with classical fluids [9]. Consequently granular materi-
als also exhibit some different phenomena from those
observed in classical fluids. Amarouchene and Kellay [10]
performed experiments with granular materials and found the
features such as Mach cones and shock wave detachment
that are also observed in supersonic molecular fluids under
extreme conditions. They also showed that, in contrast to
classical fluids, the velocity distributions for granular mate-
rials are far from being Gaussian and display algebraic tails.
Royer et al. [11] showed that, in contrast to jets formed by
impacts in fluids, the jets formed in granular materials are
composed of two separate components, an initial thin jet
formed by the collapse of the cavity left by the impacting
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object stacked on top of a second, thicker jet which depends
strongly on the ambient gas pressure. They also found that
the interstitial gas played two distinct roles in the formation
of the jet. The problem of impact craters formed by dropping
a steel ball vertically into a container of small glass beads
was studied by Walsh et al. [12] and de Vet and de Bruyn
[13]. They showed that these impact craters are very nearly
hyperbolic in profile, and both the diameter and the depth of
the craters are dependent on the impact energy, as well as the
projectile density and size.

Due to the distinct phenomena exhibited by granular
flows the understanding of how granular flows interact with
rigid boundaries has been considered in a number of impor-
tant studies. Given the importance of these problems, it is not
surprising that there has been a significant amount of experi-
mental work. Rericha et al. [14] showed that shocks can
form when a stream of particles collides with a rigid wedge.
Cheng et al. [15] performed experiments in which a stream
of particles collided with a fixed object. They showed that
wide incoming streams could result in thin sheets or cones of
outgoing particles that were similar in shape to analogous
flows in zero-surface-tension liquids. Tuzun and Nedderman
[16,17] have performed experiments involving interactions
between slowly moving particles and objects. They showed
that stagnation zones can form upstream of the obstacle and
void regions downstream of the obstacle.

There has also been a number of studies focusing on the
force during the interaction between granular flows and rigid
boundaries. Wieghardt [18] studied the situation in which
momentum transfer between particles is dominated by sus-
tained particle contacts and the force is dominated by fric-
tional interactions. He dragged an array of rods through a
bed of sand and found that the force varied slowly as the
speed of the rod varied. Chehata et al. [19] considered the
dense granular flow past an immersed cylinder. They showed
that the effective force on the cylinder is strongly affected by
the surrounding channel geometry. Zik et al. [20] considered
the flow of energetic particles past an object. They dragged a
sphere through a vibrofluidized granular bed. They showed
that force depended strongly on the speed of the particle and
that systems with highly energetic particles behave in a com-
pletely different way to systems that are dominated by fric-
tion such as the experiments described above. Wassgren et
al. [21] considered the dynamics of a cylinder placed in the
path of a stream of particles. They effectively considered the
case in which the width of the particle stream is much larger
than the size of the cylinder. They used a discrete element
method to simulate a two-dimensional flow and hence com-
puted the effective force on the cylinder.

In the above studies, the focus was principally on the case
in which the obstacle is of comparable size or much smaller
than the width of the flow. The focus of this paper is the
deflection of avalanches or jets and therefore we will con-
sider the opposite case in which the width of the flow is
much smaller than the size of the obstacle.

Hékonardéttir and Hogg [22] considered the interaction of
granular flows with deflecting dams. They performed experi-
mental studies and developed a theoretical framework to de-
scribe free-surface flows. The shallow-layer limit considered
by these authors averages the flow properties over the depth
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of the layer and gives a set of equations for the bulk flow. In
our study, we will consider the interaction at the particle
level to understand the dynamics of the deflection process at
a different scale.

Fang et al. [23] considered the motion of a single particle
falling through a funnel composed up of two rigid walls and
found that the time that the particle spends in the funnel is a
complicated function of the funnel angle. The collapse phe-
nomena of a particle in a corner formed by two boundaries
has been studied by Gao et al. [24]. In bidisperse particle
systems, the case of shocks induced by a moving boundary
was considered by Wylie et al. [25]. Wylie and Zhang [26]
showed that phase-locking and complicated orbits collapse
occur for dissipative particle systems that are driven by forc-
ing from a boundary. Wylie et al. [27] and Wylie et al. [28]
studied the motion of a large number of particles in a closed
box that are excited by a vibrating boundary and experience
a linear drag force from the interstitial fluid.

In this paper, we will focus on the effective force experi-
enced by the rigid boundary and show that a number of
surprising phenomena can occur in dilute systems. The study
of dilute systems provides a number of important insights
into the qualitative behavior of denser systems. In Sec. II, we
will formulate the problem. In Sec. III, we will perform nu-
merical simulations in two dimensions and show that the
effective force can be a nonmonotonic function of the angle
between the particle stream and the boundary. We also show
that the effective force can be either an increasing, decreas-
ing or nonmonotonic function of the restitution coefficient in
particle-particle collisions. In this section we will show that
the surprising behavior is present in the case in which most
of the particles experience relatively few collisions. We will
therefore develop a dilute theory that can give good agree-
ment with the simulations in Sec. IV and study the validity of
our theory in Sec. V. In Sec. VI, we will explain the above-
mentioned phenomena by using our theory.

II. FORMULATION

We consider a system in which a dilute stream of particles
originating from infinity collides with an oblique planar wall
of infinite length (see Fig. 1). We assume that the stream
consists of identical smooth spheres of radius a and mass m.
We further assume that all incoming particles move in the
same direction and have the same initial velocity v,. The
angle between the wall and the direction of the stream is 6.
We will consider a two-dimensional system, but the method-
ology explained in this paper can be extended to three di-
mensions in a straightforward way. We will discuss this in
Sec. IV. We define axes with the Y axis parallel to the stream,
and the Z axis perpendicular to the stream.

Collisions between particles are inelastic with a constant
restitution coefficient 0 =e = 1. Here the coefficient of resti-
tution is defined as the ratio of the relative velocities of two
particles in the direction along their line of centers immedi-
ately after and immediately before the particle-particle colli-
sion. The coefficient of restitution is assumed to be indepen-
dent of velocity and denotes the degree of dissipation in
particle collisions. Collisions between particles and the wall
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FIG. 1. (Color online) The system we consider.

are also inelastic with restitution coefficient 0<e, =1,
which is defined as the ratio of the relative velocities of
particles to the wall immediately after and before the
particle-wall collision.

The particles in the stream are randomly located, and in
general, the spatial distributions of particles in the directions
parallel and perpendicular to the stream will be different. We
now specify the statistics of the relative particle locations
within the stream. Without loss of generality, we assume that
the coordinate system is chosen so that the mean Z location
of particles is zero. We denote the marginal density function
of the Z location of particles as p, and the standard deviation
of p, as 0. We denote the marginal density function of the
distance in the Y direction between adjacent particles as py.
Here by adjacent particles, we mean two particles that are
closest in Y direction, even though they are not necessarily
closest in terms of Euclidean distance. We denote the mean
of py as uy. We note that for dense particle streams in which
the magnitude of uy is comparable with the particle radius a
there will be strong dependence between the locations of
particles since two particles cannot occupy the same loca-
tion. However, for the relatively dilute particle streams we
will consider in this paper, the dependence will be weak.

We will begin by neglecting gravity and will consider the
effects of gravity in Sec. VI and show that the surprising
phenomena that occurs for systems with negligible gravity
also can exist when gravity is non-negligible.

The system can be described by the following parameters:
the deflector angle 6, the particle-particle restitution coeffi-
cient e, the particle-wall restitution coefficient e,,, the two
distributions py and pz, and two dimensionless parameters

Vz%y and § =%Z. The parameters V and S, respectively, indi-
cate the particle denseness in Y direction and Z direction. We
denote the effective mean force experienced by the oblique
wall as F,,,,. That is, F,,,, is defined as the average im-
pulse experienced by the wall per unit time. Then we will

Finean

consider the dimensionless force f,,,,,= which repre-

moy/ wy
sents the average dimensionless impulse on the wall per par-
ticle in the stream.
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III. NUMERICAL RESULTS

In our numerical simulations, rather than considering par-
ticle streams originating from infinity, we consider a finite
domain that is much larger than uy and o,. Particles enter
the system at the left boundary of the domain. When par-
ticles leave the domain, they are removed and cannot re-enter
the domain. If, when a new particle enters the system it over-
laps with any previous particles, then this particle is re-
moved. Since we focus on dilute particle streams, there are
typically few such particles. For our numerical simulations
we choose p, to be a Gaussian distribution with standard
deviation o. For simplicity, we choose py to be nonrandom,
that is, all particles are spaced uy apart in the Y-direction. As
we will show at the end of Sec. IV, relaxing this assumption
and including randomness does not qualitatively affect the
phenomena we present in the paper.

We also note that in numerical simulations the inclusion
of small random fluctuating velocities at the inlet does not
fundamentally affect the qualitative behavior described in
this paper. In particular, the nonmonotonic phenomena for
the mean force still exists. However, the case of particles
with equal initial velocity lends itself to a theoretical treat-
ment that can elucidate the important underlying mecha-
nisms.

The algorithm to propagate particles is composed of two
methods. The first is a collision detection method that treats
particles as hard spheres and assumes that particle collisions
are binary events. In this case, the results of collisions can be
solved explicitly and the method computes the times that
each pair of particles would collide if no other particles were
present, then it selects the minimum of these times and uses
the collision rules to update the position and velocity of the
particles. This strategy is then repeated. This method re-
solves collisions very rapidly and efficiently and is very well
suited for relative dilute systems. Nevertheless, this method
cannot always work when inelastic collapse [29] occurs and
an infinite number of collisions occur in a finite time. In this
case, when the time between collisions is below a threshold
we use another method that employs soft spheres to model
the individual particles in the system. Particle collisions are
considered to occur over a finite time with a potential force
that each individual particle experiences with its surrounding
particles. The magnitude of the force is given by

p
d e .
Wexp| — -~ if d>0 and d=0
€ d
|Force|=94 , d ¢ .
eWexp|——~] if d>0 and d<0
€ d
\O if d=0

where d is the overlap distance, d is the rate of change of d
with respect to time, W is the strength of the force and ¢ is
the length over which the force increases. The direction of
the force is assumed to be along the line of centers of the two
particles. If after a time step there are no interactions be-
tween particles, the algorithm reverts to the collision detec-
tion method. The mixture of the two methods provides a
robust and efficient algorithm for our numerical simulations.
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FIG. 2. (Color online) The mean force f,,,,, versus the deflector
angle 6 in dense particle streams for V=0.5 (solid blue), V=1
(dashed green) and V=2 (dot dashed red). Other parameters are
§=20 and e=e¢,,=0.8. The mean force is a monotonically increasing
function of 6.

One may naively imagine that the larger the angle 6 is, the
larger the velocity component in the direction perpendicular
to the wall, and thus the wall experiences a larger force. This
is true in a dense particle stream such as the case shown in
Fig. 2. The figure shows that in a dense particle stream the
mean force on the wall is a monotonically increasing func-
tion of the deflector angle 6. However, surprisingly, for
sufficiently dilute particle streams our numerical simula-
tions show that increasing # may actually cause the force to
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decrease. Furthermore, for sufficiently localized streams,
more complicated phenomena occurs.

In Fig. 3 we plot the mean force in numerical simulations
as a function of the deflector angle 6 with different param-
eters S and V for e=e,,=0.8. Figure 3(a) shows that when
S=5, small values of V (e.g., V=5) make the mean force
increase as the angle 6 increases as one may naively expect.
However, for larger values of V (e.g., V=10,20,50), increas-
ing 6 can decrease the force experienced by the wall. There
exists a critical @ such that the force reaches its maximum,
and further increasing 6 will decrease the force. In Fig. 3(b)
we see that a similar phenomena occurs when we choose a
smaller value of S (e.g., S=1). In this case the non-
monotonic behavior occurs at smaller values of V. Figure
3(c) shows a case of a highly localized stream (e.g., S=0.1).
In this case, for large V, the force first increases, then de-
creases and finally increases again, as 6 increases.

In Fig. 4 we show the results for the mean force as a
function of the particle-particle restitution coefficient e for
three different angles 6. Figure 4(a) shows that when 6
=84.5°, the mean force experienced by the wall decreases as
e increases, while Fig. 4(c) shows just the opposite case for
0=89.5°. Figure 4(b) shows an interesting case for #=86° in
which the force is a nonmonotonic function of e. In the next
section, we develop a simple theoretical model that gives
good quantitative agreement with our numerical results and
allows us to isolate the mechanisms responsible for the phe-
nomena mentioned above.
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FIG. 3. (Color online) Interesting phenomena of the mean force f,,.,, versus the deflector angle # when a statistically steady state has
been achieved for (a) V=35 (solid blue), V=10 (dashed blue), V=20 (dotted green) and V=50 (dot dashed red) with §=5; (b) V=3 (solid
blue), V=5 (dashed blue), V=10 (dotted green) and V=20 (dot dashed red) with S=1; (c) V=3 (solid blue), V=5 (dashed blue), V=10
(dotted green) and V=20 (dot dashed red) with §=0.1. Other parameters are e=e,=0.8. The figure shows that large deflector angle may
decrease the force and even increase it again for sufficiently localized particle streams.
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FIG. 4. (Color online) Three cases of the mean force f,,.,, versus the restitution coefficient e in particle-particle collisions when a
statistically steady state has been achieved for (a) e,,=1 (solid blue) and e,,=0.8 (dashed red) with #=84.5°; (b) e,,=1 (solid blue) and
e,,=0.7 (dashed red) with #=86°; (c) e,,=1 (solid blue) and ¢, =0.9 (dashed red) with 6=89.5°. The other parameters are V=16 and

$=0.1.

IV. THEORETICAL APPROACH AND RESULTS

In this section, we aim to investigate the mean force ex-
perienced by the oblique wall through a theoretical analysis
so that we can interpret the surprising phenomena we have
found in our numerical simulations.

We first note that the surprising behavior observed in
Figs. 3 and 4 occurs when V is large. This suggests that the
particles are highly dilute and so collisions between particles
are rare. If the system is very dilute, almost all particles will
collide with the wall and propagate to infinity without inter-
acting with any other particle [see Fig. 5(a)]. In this case the
dimensionless force f,,.., can be explicitly computed and is
given by f,,..,=(1+e,)sin . This is clearly a monotonically
increasing function of the angle 6, and it is independent of
the restitution coefficient e, i.e., df;,cqn/ de=0. Therefore, the
phenomena observed in Sec. III must arise from the effects
of particle-particle collisions.

In order to investigate the first effects of collisions be-
tween particles, we assume that each particle can only expe-
rience one collision with another particle. After this particle-
particle collision, one or both of the two particles can hit the
wall again, but we will neglect further particle-particle colli-
sions. As we will show in Sec. V, for dilute systems, it is
sufficient to consider the case in which only one particle-
particle collision can take place for each particle. We will
derive an analytical formula for the mean force based on this
assumption. For denser systems, more particles experience

more than one particle-particle collision. It is extremely dif-
ficult to conduct a theoretical analysis that includes multiple
particle-particle collisions. However, as we will show, our
analysis allows us to explain the qualitative feature of the
results from full numerical simulations which contain mul-
tiple particle-particle collisions and identify the fundamental
mechanisms underlying the behavior.

With this simplification we can determine the total aver-
age impulse on the wall by analyzing the possible interac-
tions between any two particles. We denote two adjacent
particles as By and B, where B, is the particle directly ahead
of Bz.

Because of the randomness in the positions of the two
particles in the stream, there are three possible outcomes.
The first possibility is that both particles collide with the wall
and propagate to infinity with rebound velocity oy
=(vp;,vp2)" without any particle-particle collision, as shown
in Fig. 5(a). The other two possibilities are that B, can col-
lide with B, after B, rebounds from the wall, after which one
or both of the particles may hit the wall again only once and
propagate to infinity with post-collision velocity v,
=(vp1,vp2)T, as shown in Figs. 5(b) and 5(c).

Next we analyze the probability that a given particle ex-
periences a particle-particle collision, and hence derive an
expression for the mean force experienced by the wall. We
denote the nth particle by B,, and define the following
events:

C,;=1{B, collides with B},
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FIG. 5. (Color online) Sketch for the three possible ways in which two particles pass through the system. (a) Both of them can be
rebounded by the wall without any particle-particle collision; (b) B, can collide with B after B, rebounds from the wall, after which one of
them hits the wall again; (c) B, can collide with B after B, rebounds from the wall, after which both of them hits the wall again.

D,={B, collides with any of the previous particles},

M, ={B, experiences a collision} for all n,j e 7.

Then by the above definition, we can write D, and M, as

n-1 +00
p,=Uc,;, m,=Uc,;
=0 =0

According to our assumption, B, may collide with at most
one of the particles {By,B;,...B,_1,B,.1,B,2...} before
propagating to infinity without experiencing further colli-
sions. That is

Coi( ) Coi= B (Vj#1).

First we consider the simple case where B, may only
collide with its nearest neighbors B,_; or B,,;. That is,
Copj=0(2=j=n,Vn,jeZ). In this case, we can obtain
that the probability of B,, colliding with any of the previous
particles is equal to the probability of B, colliding with B,,_;.
That is

n-1

P(D,) = P( U c,,,j) =P(Cper)-
j=0

We can also obtain that the probability of B, experiencing a
collision equals to the sum of the probability of B, colliding
with B,_; and the probability of B,, colliding with B, . That
is

+00

P(Mn) = ]P( U Cn,j) = ]P(Cn,n—l) + P(Cn+l,n)

=0
= P(Dn) + ]P(Dn+1)

Note that we assume that each particle can experience at
most one particle-particle collision and hence B, may collide
with B,_; if and only if B,_; does not collide with the previ-
ous particle B,_,. Thus we can write the probability of D, as
follows:

P(D,) = P(Cpet) = P(Cppat|Dyy) - P(D,. )
= P(Cn,n—lux) . [1 - P(Dn—l)] (1)

where overbar denotes complement. Let p; denote the prob-
ability of a single particle colliding with its previous particles
in this case, and P, denote the probability of a single particle
experiencing a collision. When a steady state has been
achieved, there will be no difference between the states of B,
and the states of other particles, and hence letting n— +% in
Eq. (1), we can obtain p; and P, as

pP1= lim P(Dn):L’ (2)

n—+0© 1 Pr

P;= lim P(M,)= lim P(D,) + lim P(D,,,)

n—+x n—+% n—+®
2
=2 lim P(D,)=2p; = Pr 3)
n—+% T

where
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pq'z]P(Cn,n—1|Dn—l) Vi’l € Z (4)

denotes the probability of a single particle experiencing a
particle-particle collision with its previous nearest particle
subject to the condition that the previous neighboring par-
ticle does not collide with its previous particle.

The force experienced by the oblique wall, denoted by F,
consists of two components. One, denoted by F,, is the im-
pact caused by the direct particle-wall collision without any
collision with previous particles. The other, denoted by F..,,,
is the impact caused by the particle-wall collision after the
particle-particle collision. For example, B, can directly hit
the wall before experiencing a possible particle-particle col-
lision if and only if it does not collide with the previous
particle B,,_;, or B, can hit the wall after the particle-particle
collision with B,_; only if B,_; does not hit its previous
particle B,_,. Therefore we can write the total average im-
pulse on the wall as

E(F) = E(F,) + E(F,,)
= K(F,|D,) - P(D,) + E(F,,|D,_,) - P(D,_,)
=F(F,|D,) - (1 =P(D,)) + E(F,|D,_,) - (1= P(D,_))).

For a steady state and n— +o, we obtain,

F(l) = (1 _pl)[ lim E(FW|D_YL) + lim E(Fc'w|Dn—1)]

mean
n—+0 n—+0

L (F,+F.,) s)

T l4p,

where Fsy:gan denotes the average force experienced by the

oblique wall when we only include the effect of the nearest

neighbors, F » denotes the average impact on the wall caused
by a single particle to which the first collision is with the

wall, and ch denotes the average impact on the wall after
the particle collides with the previous neighbor when the
neighboring particle itself does not experience a collision
with its previous neighbor.

Now let us consider the more complicated case where B,
may also collide with the next nearest neighboring particles.
That is B, may collide with two previous particles B,_; and
B,_, or two later particles B,,; and B,,,, i.e C,,;=D(3
=j=n,Vn,jeZ). In this case, we can write the probability
of B, colliding with any of the previous particles as the sum
of the probability of B,, colliding with B,_; and the probabil-
ity of B,, colliding with B, _,. That is

n—1

P(D,) = IP( U Cn,j) =P(C,aUC,)

J=0

= P(Cn,n—l) + ]P(Cn,n—z) .

We can also write the probability of B, experiencing a colli-
sion as the sum of following probabilities:

PHYSICAL REVIEW E 82, 011307 (2010)

+0o0

]P(Mn) = JP( U Cn,j) = JP)(Cn,n—l) + P(Cn,n—Z) + JP)(Cn+1,n)
Jj=0

+ ]P(Cn+2,n) .

Following a similar approach in deriving Egs. (2) and (3),
when a steady state has been achieved, we obtain,

lim P(Cn’n_1)= lim P(Dn—l)'

n—+® n—+®

pA1=p.ps)
1=ppat+(1=p)ps,
(6)

pZT(l _p7)2(1 +p27')
1=ppr+(1=p)°py,
(7)

lim P(Cn!n_z) = lim P(Dn_z) .

n—+% n—+%

where p, is defined in Eq. (4), and

P2r= P(Cn,n—2|cn,n—l m Cn—l,n—2m Dn—2> v ne Z
(8)

is the probability of a single particle experiencing a particle-
particle collision with its next previous particle subject to the
condition that the nearest previous neighboring particle does
not collide with its nearest previous and later particles and
the next previous particle does not collide with its previous
particles.

Let p, denote the probability of a single particle colliding
with previous particles in this case, and P, denote the prob-
ability of a single particle experiencing a collision, thus we
can write p, and P, as

p,= lim P(D,) = lim P(C,, )+ lim P(C,,»)

n—+0© n—+o0w n—+0
p,+B
S )
1+p.+B
Py= lim P(M,)=2 lim P(C,,_;)+2 lim P(C,,_,)
n—+% n—+9w n—+0
2(p,+B
2 lim P(D,)=2p, = 2Pt B) (10)
400 l+p,+B
where
1-p)*(1=p,+
B:pZT( pr) ( Pr p27’) (11)

1=ppat+(1=p)ps,

In this case, the force experienced by the oblique wall
consists of three components. One is F,, which is the impact
caused by the direct particle-wall collision without any col-
lision with previous particles. The other two, denoted by
F,, and F,,,, are the impacts which are caused by particle-
wall collisions after particle-particle collisions with its pre-
vious two neighbors. For example, B, can directly hit the
wall if and only if it does not collide with previous two
particles B,_; and B,_,, otherwise it may hit the wall after
colliding with either B,_; or B,_,. Therefore, by an analysis
similar to the previous case we can write the total average
impact on the wall as follows:
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E(F) = ]E(Fw) + E(chl) + E(FCWZ) = E(quTn) : P(D_n)

+ E<ch1|cn,n—20 Dn—l) : P(Cn,n—2m Dn—l)

+ E(FL'W2|CI1,I1—] n Cn—l,n—2 m Dn—Z)

xP(Cori M€ Dy, (12)

To obtain the force when a steady state has been achieved,
we let n— +% and after some algebra and the use of elemen-
tary probability, we obtain,

- 1- -
Ffr%e)un = {FW' + p7p27 2 chl
l+p,+B L=ppr+(1=p)par
1-p)*(1+ -
(1-p)( pzi chz], (13)
L=pprr+(1=p)°pa;
where F ,(fe)an denotes the average force experienced by

the oblique wall when the interactions with the nearest and
the next nearest neighbors are both included, and B is de-
fined in Eq. (11). The quantity F,=lim, ..., E(F,|D,)
denotes the average impact on the wall caused by di-
rectly hitting the wall when a single particle does

not collide with previous ones. The quantity F ewl
=lim,_ o E(F 1| CpeaND,,_;) denotes the average impact
on the wall caused by the particle-wall collision after the
particle-particle collision between B, and B,_;, and F.,,
=limn—>+00 E(FLWNZ | Cn,n—l N Cn—l,n—Z N Dn—2)
counterpart of F.,; after the particle-particle collision be-
tween B,, and B,_,.

In principle, we can follow this procedure to include more
particle-particle collisions in calculating the mean force. By
comparing Egs. (2) and (9) we see that the effect of including
collisions with the next nearest neighbors is the replacing p,
by p,+B where B is relatively small to p, for a dilute system.

denotes  the

For simplicity we choose p1=%;r as the approximate prob-
ability for a single particle to collide with previous particles
in the system, and use Eq. (5) to evaluate the mean force
experienced by the wall. In Sec. VI, we will show that in-

(I+e,)sin 6
4+2 erf(C.) -4 erf(C,)

fmean -

PHYSICAL REVIEW E 82, 011307 (2010)

cluding interactions with more previous particles does not
qualitatively affect the phenomena we present here, and the
correction is indeed small for a dilute system.

According to the formula (5), we can determine F,, and
fcw by analyzing pairwise particle-particle collisions, and
thus to determine F,,,,,. We still denote the two particles B,
and B, where B is the particle that immediately precedes the
particle B,. Let z; and z,, respectively, denote their initial
heights which are independent random variables. Because of
the randomness of z; and z,, the rebound velocity v}, and the
postcollision velocity ¥, are random variables related to z;
and z,. Notice that the impact on the wall depends on v and
U,, and consequently on z; and z,, thus we can write the

mean force F,,,,, as follows:
1 -~ =
Fmean = 1 + pT(FW + FCW')’ (14)
where
F, = Fvg(z1.2)], (15)

FCW=JE(F,,~1A)=IJ Flv,(z1,20)1p(21,20)dz1dz; .
A

(16)

Here F}, and F), denote the impact on the wall caused by the
rebound velocity oy, and the postcollision velocity ©,,, respec-
tively, and p(z,,z,) is the joint distribution density of z; and
7. The quantity 1,(z,,z,) denotes the indicator function of
the set A, i.e.,

Li(zey) = 1 if (z1,20) € A
AR = 0 Gtherwise
where

A ={(Z1’Zz) € R2|C2,1}'

Using Eq. (14), a straightforward calculation (see Appendix
A), gives the analytical formula for the dimensionless mean
force f,,0qan as

{4 +((1+e)—e, (1 —e))erf(D_) —erf(D,)) + (1 —e) —e, (L +¢))

X {erf(C_) —erf(C,) + H(ew - 5)(erf(l(+) - erf(K_))] +(1+e)(1+e,)

$%sin2 0 V2cos® 6
X +
2 4

) (erf(C_) —erf(C,) +erf(D,) —erf(D_) + H<ew - i )(erf(K+) - erf(K_)))

—e
+e

VS sin 6 cos 6 1-e
A (e_ci—e_cz+€_D2—e‘D3+H<eW— )(e‘Kz—e‘ 3))
NT 1+e
$? sin® 6 l—e
—/_<C+e—Cf —Ce 4D e P DDy H<ew - 1_>(K_e"KZi - +e‘Ki)> ] } (17)
N te
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FIG. 6. (Color online) Comparison between theoretical results (solid blue) and numerical results (dashed red) for the mean force f,,,4,
against the parameter V for (a) 6=20°; (b) 6=50°; (c) =70°. The other parameters are S=5 and e=e¢,,=0.8. Our theoretical results match
the numerical results when V cos > 1, and for larger values of 6, one requires larger values of V for our approximation to be good.

where

X

1 if x=0

2
erf(x) = = 0 i
NiJo if x<O0

e"Zdt, H(x) = {

are Error function and Heaviside function, respectively, and

. V cos 0
*1-

2
Co=—C0 7,
S sin 6

_\/(1+e)—ew(1—e) V cos 6
N (ro+e,) 2

S sin 6

)
I+
1

_\/ew(1+e)—(1—e) V cos 0
N (re)(l4e,) 2

S sin 6

K. =

The methodology in a two-dimensional system can be ex-
tended to three-dimensions in a straightforward way. The
main difference is that there will be another distribution rep-
resenting the initial location in the third dimension. This will
lead to an extra collision angle similar to ¢ (see Fig. 23 in
Appendix A) when two particles collide with each other. For
theoretical analysis, this implies that in three dimensions we
need to perform one more integral to obtain the analytical
formula for the mean force.

We note that, Eq. (17) was derived under the assumption
that the distribution of the distance between particles in the Y
direction, py, is nonrandom. If we relax this assumption, then
the quantity V in Eq. (17) can be interpreted as a random
variable and it is easy to show that the mean force is the
expected value of Eq. (17) with respect to the probability
density of V.

V. VALIDITY

In this section we will derive conditions under which our
theoretical prediction for the mean force given by Eq. (17)
will be valid. In our theoretical derivation, we assumed that
each particle could experience at most one particle-particle
collision. Therefore, our theory should give a good approxi-
mation when the fraction of particles that experience at least
two particle-particle collisions is low. In Appendix B 1, we
show that if V cos 6> 1, then the probability of a particle
experiencing a particle-particle collision is low. In this case
the probability of a particle experiencing at least two
particle-particle collisions must also be low, and so our
theory will be valid. In Fig. 6, we plot the theoretical results
for the mean force f,,,,, (solid blue line) together with the
numerical results (dashed red line) as functions of the param-
eter V with different deflector angles for S=5. From the fig-
ures, we see that our theoretical results match the numerical
results when V cos > 1. The figures also show that for
larger values of 6, one requires larger values of V for our
approximation to be good.

However, when the deflector angle 6 is close to 7, the
particles in the stream have high probabilities to experience
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FIG. 7. (Color online) Comparison between theoretical results (solid blue) and numerical results (dashed red) for the mean force f,,,4,
against the parameter S for (a) V=5; (b) V=10; (c) V=50; (d) V=75; The other parameters are #=90° and e=e,,=0.8. For larger values of
V, our theoretical and numerical results agree more closely over a wider range of S values.

their first particle-particle collision. In this case, the condi-
tion V cos > 1 is not the appropriate condition for the va-
lidity of our theory. In Appendix B 2, we show that if V
>1 and V>, the probability of particles experiencing two
particle-particle collisions is also low, and so our theory will
be valid if V>1 and V>S. In this case, the probability of a
particle experiencing a particle-particle collision is not nec-
essarily low. That is, our theory can also work if the prob-
ability of a particle experiencing a particle-particle collision
is high as long as the probability of particles experiencing
two particle-particle collisions is low, which implies most
particles in the system experience either zero or a single
particle-particle collision. In Fig. 7, we plot the theoretical
results for the mean force f,,,,, (solid blue line) together with
the numerical results (dashed red line) as functions of the
parameter S with different values of V for =90 °. From the
figures, we see that for larger values of V, our theoretical and
numerical results agree more closely over a wider range of S
values. This means that the larger the value of V, the wider
the particle stream can be before our theoretical prediction
will break down.

In the subfigures in the left column of Figs. 8—11, we plot
the theoretical results for the mean force (solid red lines),
compared with our numerical results (dashed blue lines). In
the subfigures in the right column we show the theoretical
results for particle-particle collision probability P; (solid red
lines) defined in Eq. (3), in comparison with the results from
numerical simulations (dashed blue lines). We also plot the
probability of particles experiencing at least two collisions in
the numerical simulations (blue circles). These figures show
that our theoretical predictions are in good agreement with

the numerical results when the probability of particles expe-
riencing at least two collisions is less than about 5%. They
also show that the theoretical particle-particle collision prob-
ability P, is lower than the results observed in our simula-
tions. This is due to the assumption that each particle can
experience at most one particle-particle collision in our the-
oretical derivation. However, in our simulations there may be
additional collisions neglected by our theory. In the next sec-
tion, we will explain why taking into account more particle-
particle collisions generally makes the mean force experi-
enced by the wall smaller.

From Figs. 8—11, we see that our theory works extremely
well for all of the cases in which V cos >1. In Fig. 8§,
although for large deflector angles the particle-particle colli-
sion probability increases rapidly and even approaches 1, the
probability of particles experiencing at least two particle-
particle collisions can achieve low values. Our theory works
very well for this region because the particles only collide
with their nearest neighbors and the interactions occur in
pairs. Figures 9(a), 11(a), and 11(b) also show that our theory
works well for low probability of particles experiencing at
least two particle-particle collisions. Although our theory
cannot perfectly match the numerical results when the prob-
ability of particles experiencing at least two particle-particle
collisions is high, see Figs. 9(b), 10, and 11(c), we can still
use the theory to give reasonable qualitative analysis for the
mean force.

VI. DISCUSSION

In this section, we show that our theoretical results for the
mean force given in Eq. (17) can explain the phenomena
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FIG. 8. (Color online) Comparison between theoretical results (solid red) and numerical results (dashed blue) for the mean force f,,,,4,
against the deflector angle 6, together with corresponding theoretical particle-particle collision probability P; (solid red), numerical particle-
particle collision probability (dashed blue) and the numerical probability of particles that experience at least two particle-particle collisions
(blue circle) for (a) V=20; (b) V=10; (c) V=6. The other parameters are S=0.1 and e=e,,=0.8. In the right-hand side panels of (a) and (b)
the solid red curves and the dashed blue curves almost exactly coincide.

found in numerical simulations. For simplicity, we will focus
on the case in which the restitution coefficient for particle-
wall collisions is unity. Nevertheless, the situations with
e,,<1 have similar results.

When the particle-wall restitution coefficient is unity
(e,,=1), we can obtain

Uy =0 sin 0le—(1+e)g*], (18)

Upp ==V sin 0le—(1+e)g*], (19)

where u,,; and u,, denote the postcollision velocity compo-
nents of the two particles in the direction perpendicular to
the wall, and q:i[,uy cos 6—(z,—z;)sin 0] (see Appendix
A). Thus, after their first particle-particle collision the two
particles share the same value of the velocity component

perpendicular to the wall, but with opposite directions. Then,
the particle approaching the wall (the one with positive ve-
locity component) will experience a collision with the wall
that changes the sign of its velocity. Therefore the velocity
components perpendicular to the wall are the same after the
two particles interact with themselves and the wall. Hence
combining Egs. (A9)—(A12) (see Appendix A), we can write
the analytical expression for the mean force f,,,,,, in this case
as follows:

fmean =fgfs’ (20)

where

f,=2sin 6, (21)
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FIG. 9. (Color online) Comparison between theoretical results (solid red) and numerical results (dashed blue) for the mean force f,,.q,
against the deflector angle 6, together with corresponding theoretical particle-particle collision probability P; (solid red), numerical particle-
particle collision probability (dashed blue) and the numerical probability of particles that experience at least two particle-particle collisions
(blue circle) for (a) V=20; (b) V=10. The other parameters are S=1 and e=¢,,=0.8.
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FIG. 10. (Color online) Comparison between theoretical results (solid red) and numerical results (dashed blue) for the mean force f;,,4,
against the deflector angle 6, together with corresponding theoretical particle-particle collision probability P; (solid red), numerical particle-
particle collision probability (dashed blue) and the numerical probability of particles that experience at least two particle-particle collisions
(blue circle) for (a) S=1 and V=5; (b) S=1 and V=3; The other parameters are e¢=e,,=0.8.
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FIG. 11. (Color online) Comparison between theoretical results (solid red) and numerical results (dashed blue) for the mean force f,,04,
against the restitution coefficient e, together with corresponding theoretical particle-particle collision probability P, (solid blue), numerical
particle-particle collision probability (dashed blue) and the numerical probability of particles that experience at least two particle-particle
collisions (blue circle and blue triangle) for (a) e, =1 and e,,=0.8 with §=84.5° (b) ¢,,=1 and e,=0.7 with #=86°; (c) e, =1 and
¢,,=0.9 with 6=89°. The other parameters are V=16 and S=0.1. In the left-hand side of (a) and (b) the solid red curves and the dashed blue

curves almost exactly coincide.

1+ f le = (1+e)q?|p(&)dé
Q

s =

(22)
1+ f p(§)dé
QO

Q and p(¢) are given by Egs. (A14) and (A15), respectively,
(see Appendix A).

In the left column of Fig. 12, we plot the theoretical mean
force f,yeqn (solid line) together with f, (dashed line) as func-
tions of the deflector angle 6. There are three cases similar to
the phenomena we have found in numerical simulations. Fig-
ure 12(a) shows a monotonically increasing case which is
consistent with intuition. Namely, larger angle 6 implies a
larger velocity component perpendicular to the wall, and
hence larger impulse. We refer to this as a geometric effect,
and we quantify it by f, defined in Eq. (21). Clearly increas-
ing 0 makes the geometric effect stronger, and thus makes

the force experienced by the wall increase. However, this
effect does not always dominate. Figure 12(b) shows a case
in which the mean force increases, reaches a maximum, and
then decreases as 6 increases. Figure 12(c) shows the case in
which an additional local minimum occurs.

Below we explain the origin of these phenomena. Com-
paring the curves for f,,.,, and f, in Fig. 12, it is clear that
there exists another effect that decreases the mean force and
hence, works against the geometric effect. Since particle-
particle collisions do not change the total momentum of the
two particles, the impulse experienced by the wall is the net
change of momentum experienced by the particles. The wall
only exerts a force in the direction perpendicular to the wall.
In comparing the three possible outcomes mentioned in Sec.
IV, it shows that when particles rebound from the wall they
can collide with incoming ones and be scattered. This scat-
tering may reduce the net impulse on the wall. We refer to
this effect as shielding.
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FIG. 12. (Color online) Three cases of the mean force f,,.,, changing against # according to our theoretical results (solid) and theoretical
geometric effect f, (dashed), together with corresponding particle-particle collision probability Py for (a) V=5, S=1, =0.8; (b) V=20,

S=1, ¢=0.2, and (c) V=20, §=0.1, ¢=0.8 with ¢,,=1.

The simplest example of shielding is shown in Fig. 13
where we let #=/2 and the particle-wall restitution coeffi-
cient e,,=1. The two particles have initial velocity v,. Figure
13(a) shows the case where there is no particle-particle col-
lision. In this case, the two particles are directly rebounded
from the wall, and the net impulse is 4v,. Figure 13(b) shows
the case where the particle B, collides with B, and after the
collision, they both propagate to the direction parallel to the
wall, and the momentum in the direction perpendicular to the
wall is zero. Thus the net impulse in this case is 2v, which is
smaller than the first case, and thus the force experienced by
the wall is smaller. Although in general the particles will
scatter to all the possible directions rather than the direction
parallel to the wall, it is this kind of scattering after the
particle-particle collisions that reduces the net impulse, and
thus reduces the force.

We can measure the degree of this shielding effect by 1/f;
with f, given by Eq. (22). Increasing the angle 6 makes the

shielding effect become stronger because the larger 6 is, the
more likely particles are to collide with each other, thus the
increase in the numerator of 1/f, exceeds the increase in the
denominator due to |e—(1+e)g?|=<1. In the right column of
Fig. 12, we plot the theoretical prediction for the particle-
particle collision probability P, defined by Eq. (3), against
6. The figures also show that the probability of a particle-
particle collision P; is a monotonic function of 6.

From the figures of P; versus 6 in Fig. 12 we know that
for small @, there is a very low probability of particle-particle
collisions and thus the shielding effect is weak and the
changes in the mean force are dominated by the geometric
effect. However, for sufficiently large 6 the probability of
particle-particle collisions may increase sufficiently quickly
that the geometric effect becomes less important than the
shielding effect. Thus the shielding effect dominates and the
mean force decreases with increasing 6 as shown in Fig.
12(b). Nevertheless, in a denser system such as the one
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FIG. 13. (Color online) A simplest example of shielding effects. The deflector angle 6 is /2. The initial velocity of the two particles is
vg, and the particle-wall restitution coefficient e, =1. (a) B; and B, are directly rebounded from the wall without any particle-particle
collision. The net impulse in this case is 4vg. (b) B, collides with B}, and after the collision, they both scatter to the direction parallel to the
wall. The net impulse in this case is 2vg. Thus the force experienced by the wall in case (b) is smaller than case (a).

shown in Fig. 12(a), the opposite is true and increasing 6
makes the probability of particle-particle collisions increase
so slowly that the geometric effect dominates, and the mean
force is monotonically increasing. If one considers a rela-
tively concentrated particle stream, such as the stream in Fig.
12(c), particles have a high probability to collide with each
other when @ is sufficiently large, which implies that the
shielding effect reaches its maximum and cannot increase
further. Then the geometric effect becomes dominant again
and the mean force increases again. Therefore, when 6 in-
creases, even for the simple monotonically increasing case,
the fact is that the geometric effect and the shielding effect
compete with each other.

In our theoretical analysis, we assume that a given particle
in the stream can only experience at most one particle-
particle collision. However, in practical situations additional
particle-particle collisions can occur. In general, the correla-
tions between particle-particle collisions are weak. In this
case, more particles will be scattered by the additional
particle-particle collisions and thus leads to stronger shield-
ing. Consequently, our theory will give a useful upper bound
for the mean force on the wall (see Figs. 6-11). However, in
the very special case (e~0,60=~m/2,S<1) in which the
particle-particle collisions are strongly correlated, the above
argument does not necessarily hold and our theory could
underestimate the mean force [see Fig. 11(c)].

In Fig. 14, we show the changes in the theoretical mean
force against the particle-particle restitution coefficient e.
There are also three cases similar to those we have found in
our numerical simulations. Figure 14(a) shows that for V
=16 and $=0.1, when the deflector angle @ is approximately
less than 84.5°, increasing the restitution coefficient de-
creases the mean force experienced by the wall, while Fig.
14(c) shows the opposite case when @ is approximately
larger than 89°. However, Fig. 14(b) shows an interesting
case in which @ is between 84.5° and 89°, the mean force
first decreases as e increases, and then increases. Our nu-
merical simulations in Sec. III exactly showed the same
qualitative behavior. For a fixed angle 6, the geometric effect
f, does not change. From Egs. (18), (19), and (22) we can

see that when the component of the velocity perpendicular to
the wall for the second particle u,, =0, f; is a monotonically
decreasing function of the restitution coefficient e, while
when the component of the velocity perpendicular to the wall
for the first particle u,; =0, f; is a monotonically increasing
function of the restitution coefficient e.

There are two kinds of collisions when two particles col-
lide: “glancing collisions” and “head-on collisions” (see Fig.
15). When a “glancing collision” occurs, the second particle
obliquely hits the first particle, and is only slightly deflected
by the collision before it hits the wall. In this case, a larger
restitution coefficient e increases the deflection of the second
particle, thus makes the shielding effect stronger. However,
when a “head-on collision” occurs, the first particle is
heavily deflected by the second particle and will hit the wall
again. In this case, a larger restitution coefficient e means
that the first particle will rebound from the particle-particle
collision with higher speed and heavy deflection, and thus
impart a larger impulse on the wall. This means that increas-
ing e makes the shielding effect weaker. Therefore, if glanc-
ing collisions are predominant, the mean force will decrease
as e increases, while when head-on collisions are predomi-
nant, the mean force will increase as e increases. Hence these
two competing effects result in three cases of changes in the
mean force against the restitution coefficient.

Varying the value of the particle-wall restitution coeffi-
cient e,, does not qualitatively affect the phenomena we have
presented, but will weaken both the geometric effect and the
shielding effect. Our theory also gives similar results to the
cases where e, =1, as shown in Figs. 16 and 17. In fact, the
geometric effect in this case can be quantified by the factor
(1+e,,)sin 6 which tells us that the smaller e,, the weaker the
geometric effect. This can be seen in Figs. 16 and 17 where
a smaller e,, makes the mean force increase more slowly. On
the other hand, no matter whether one or both of the particles
hits the wall after the possible particle-particle collision, they
will be less scattered when e,, <1, because a smaller value of
e,, makes the first particle slower and the particles have less
chance to scatter after the particle-particle collision, thus a
smaller value of e,, makes the shielding effect weaker. More-
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FIG. 14. (Color online) Three cases of the mean force f,,.,, changing against e according to our theoretical results for (a) 6=84.5°; (b)

0=86°, and (c) =89° with V=16 and S=0.1.

over, the smaller e,, is, the more likely it is that both of the
two particles collide with the wall after the collision. This
also weakens the shielding effect. This can also be seen in
Figs. 16 and 17 where a larger value of e, can strongly
decrease the mean force.

In Sec. IV, the expression for the mean force [Eq. (5)] is
based on the assumption that a particle can only experience
one particle-particle collision with its nearest neighboring
particles. When the collisions with the next nearest neighbor
particles are included, the formula (13) gives a correction to

=
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FIG. 15. (Color online) Sketch
for (a) “glancing collision” and
(b) “head-on collision.” When a
“glancing collision” occurs, B,
obliquely hits By, and after the
collision B, is only slightly de-
flected and hits the wall. In this
case, a larger e increases the de-
flection of B,, thus makes the
shielding effect stronger. When a
“head-on collision” occurs, B; is
heavily deflected by B, and will
hit the wall again after the colli-
sion. In this case, a larger e means
that B; will rebound from the
particle-particle  collision  with
higher speed and heavy deflection,
and thus makes the shielding ef-
fect weaker. Moreover, By the
definition of the collision angle ¢
(see Appendix A), we know that
when 1-|cos ¢| <1, the particle-
particle collision is “glancing col-
lision,” while when |cos ¢|<<1
the particle-particle collision is
“head-on collision.”
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FIG. 16. (Color online) Three cases of the mean force f,,,,, changing against 6 according to our theoretical results for (a) e,,=1 (solid
blue), e,,=0.8 (dashed green) and e,,=0.6 (dot dashed red) with V=5, S=1 and ¢=0.8; (b) e,,=1 (solid blue), ¢,,=0.8 (dashed green) and
¢,,=0.6 (dot dashed red) with V=20, S=1 and ¢=0.2; (c) ¢,,=1 (solid blue), e,,=0.8 (dashed green) and e,,=0.6 (dot dashed red) with

V=20, §=0.1, and ¢=0.8.

Eq. (5). Figure 18 shows the comparison between the predic-
tion by Egs. (5) and (13). For a dilute system the correction
due to including collisions with the next nearest neighbors is
very small. Therefore, in many situations it is sufficient to
consider only the collisions with the nearest neighbor.

In our study, we have neglected the effects of gravity. The
inclusion of gravity will change the particle trajectories from
straight lines to parabolas. If gravity is small, such deviation
from the straight line will also be small. In addition, the force
experienced by the oblique wall will be sensitive to the ini-
tial height of particles because gravity stores some of the
kinetic energy in the form of gravitational potential energy,
and thus the further particles fall, the larger the impulse the
wall experiences. Moreover, in our theory, after particles re-
bound from the wall, they never hit the wall again unless
possible particle-particle collisions occur, thus the force ex-
perienced by the wall is not sensitive to the length of the
wall. However, this is not the case when gravity is included.
With gravity, even if there are no particle-particle collisions
in the system, the gravity makes particles hit the wall repeat-
edly if the wall is sufficiently long. Ultimately, the particle
will experience inelastic collapse with the wall and thereafter
slide down the wall. In the case of an infinite wall, the wall
must support the weight of the particle. The wall must pro-
vide a constant force for each particle that has inelastically
collapsed and so the mean force increases without bound as
the number of particles increases. In order to attain a steady
state, it is therefore crucial to have a wall of finite length
when gravity is included.

Let L denote the length of the wall and H denote the
relative height between initial height of the particles and the
midpoint of the wall, as shown in Fig. 19. The system in-
cluding gravity g can be described by the following dimen-
sionless parameters:

1/2—
U= vy +28H

a

The parameters 6, e, e,, S have the same meanings as the
case without gravity. The parameter € is the dimensionless
length of the wall. The parameter R is the ratio of the length
L and the particles’ initial height H. The parameter G is the
dimensionless gravity and is twice the distance between two
neighboring particles when the second particle is first re-
leased. The parameter U is the dimensionless velocity of a
particle, which is released from the mean location of the
stream, immediately before it hits the wall, and U-G/2 is
the typical distance between itself and the next particle at
this time.

Including gravity may cause particles to collide with the
wall repeatedly until the particles pass the end of the wall.
One can show that, in this case, multiple particle-wall colli-
sions can cause the mean force on the wall to oscillate as 6
varies. A example of the mean force oscillation caused by
repeated particle-wall collisions is shown in Fig. 20. By per-
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FIG. 17. (Color online) Three cases of the mean force f,,.., changing against e according to our theoretical results for (a) e,,=1 (solid
blue), ¢,,=0.8 (dashed green) and e,,=0.6 (dot dashed red) with #=84.5°; (b) e,,=1 (solid blue), ¢,,=0.8 (dashed green) and e,,=0.7 (dot
dashed red) with 6=86°; (c) e,,=1 (solid blue), e,,=0.8 (dashed green) and e,,=0.7 (dot dashed red) with 6=89°. The other parameters are

V=16 and S=0.1.

forming some calculation, one can easily show that in the
case where R<a=16 cos 0(63. sin @+cos? 6) or in the case

where R> o and G < z%f’ most of the particles will not hit the
wall for the second time unless they are deflected by the
particle-particle collisions. In this case, the gravity does not

play a significant role for the changes of the mean force.
However, when R>« and G> 2%2, the effect of the gravity
has a significant effect on the mean force. In this case, the
gravity makes most of the particles hit the wall more than
once even if there are no particle-particle collisions, and thus
the oscillation of the mean force occurs.

In our simulations, we choose the parameters to avoid the
repeated particle-wall collisions mentioned above, and we
find that including gravity does not qualitatively affect the
nonmonotonic phenomena we have presented. As shown in
Fig. 21, there still exist three cases of mean force changing
against the deflector angle 6. The behavior of the mean force
is still a result of the competition between geometric effects
and shielding effects. Thus the gravity does not play a critical
role in the changes of the mean force except the case in
which the repeated particle-wall collisions occur because of
the gravity.

VII. SUMMARY

In this paper, we have considered a system in which a
dilute stream of particles originating from infinity collides
with an oblique planar wall. We showed that the mean force

experienced by the wall can be a nonmonotonic function of
the angle between the stream and the wall. Moreover, the
mean force may also be an increasing, decreasing or non-
monotonic function of the restitution coefficient in particle-
particle collisions. We developed a theory which gives an
exact solution for the mean force on the wall if the system is
dilute. The theory showed good agreement with the numeri-
cal results, and the surprising phenomena can be explained
by the competition between shielding effects and geometric
effects. The theory generally provides a useful upper bound
for the mean force. We hope that our work will motivate
further experimental works. These could be done by using an
experimental setting similar to the one Rericha er al. [14]
used to study a different problem, namely shocks in super-
sonic sand.
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APPENDIX A: DERIVATION FOR THE ANALYTICAL
FORMULA FOR THE MEAN FORCE

From Egs. (15) and (16), we know that in order to evalu-
ate the mean force F, one must determine the rebound

mean»

velocity 0y, the postcollision velocity ¥, and the region A.
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FIG. 18. (Color online) Comparison between the theoretical results for the mean force f,,,,, obtained by p(!) (solid blue) and the results
obtained by p®(dashed green) together with the corresponding numerical results (dot dashed red) for (a) V=3, S=1, ¢=0.8, and ¢,,=0.8; (b)
V=12, S=1, ¢=0.2 and ¢,,=0.8; (c) V=6, §=0.1, ¢=0.8, and ¢,,=0.8. In all three cases the solid blue curves and the dashed green curves

almost exactly coincide.

For convenience, we can consider a set of geometric
transformations as shown in Fig. 22. First we rotate the origi-
nal system with the deflector angle 6. In this frame [Fig.
22(b)] the two particles have the same velocity components
in the direction parallel to the wall. We thus change to a
frame moving with this speed as shown in Fig. 22(c).

Figure 23 shows two possible situations when two par-
ticles collide. From Fig. 23, we know that the two particles
will collide with each other only when the distance between

—
ti

G/2

FIG. 19. (Color online) Sketch for the system with gravity.

them in the direction parallel to the wall is not more than
twice of the particle radius.

Let ¢ denote the angle from the direction Z' [see Fig.
22(c)] to the direction B_ZB?I which denotes the vector point-
ing to B, from B,, then by geometry we have

y cos 0—(z,—z;)sin 6
cos = : ,
a

(A1)

where cos ¢ is negative in Fig. 23(a) and positive in Fig.
23(b). Therefore, the two particles will collide with each
other if and only if

1.4

1.2r

1t

f’rnean
o o o
£ @

o
[N}
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FIG. 20. (Color online) The mean force oscillation caused by
repeated particle-wall collisions between about the angle 80° and
90°. The parameters are G=2, R=2, {=100, U=20, S=1, ¢=0.6,
and e, =1.
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FIG. 21. (Color online) Three cases of the mean force f,,.,, versus the deflector angle # when the gravity effect is included for (a)
G=0.02, R=0.8, £{=200, U=3.16, S=3, ¢=0.8, and ¢,,=1; (b) G=2, R=0.5, £{=450, U=60, S=5, ¢=0.8, and ¢,,=0.8; (c) G=2, R=0.5,

€=50, U=20, §=0.1, ¢=0.8 and ¢,,=1.

|cos ¢| = 1. (A2)
Combining Egs. (A1) and (A2), we obtain
cos 0—2a
A= {(zl,z2) e R2|MY— =-7;
sin 6
cos 6+2
= u} (A3)
sin 6

When the two particles do not collide with each other,
they will directly rebound from the wall, and thus have the
same rebound velocities, i.e., Uy =03,. We define the follow-

ing operators:
sin § —cos 6 -e, O
Rl = . Cw = >
cos @ sin @ 0 1
where R, denotes the coordinate rotation matrix from (Y,Z)
to (Y',Z’), as shown in Fig. 22, and C,, denotes the particle-

wall collision matrix. By simple geometry it is easy to write
the rebound velocities as follows:

— [ Un [ Up Vg — e, sin @
o= )=em=( )=l )= ()
Upl Upo 0 v, cos 6

(A4)

where uy,, u;,, respectively, denote the rebound velocity
components perpendicular to the wall for the two particles,
and v, vy, respectively, denote the parallel ones.

When the two particles collide with each other, B, col-
lides with By after B; rebounds from the wall. Let

R (cosgo —sincp)
- sin ¢  CoS ¢

denote the rotation matrix by which we can obtain the two
particles’ velocity components in the directions normal and
parallel to the line of their centers before the particle-particle
collision. This allows us to apply inelastic collision rules and
solve for the postcollision velocities in a simple way. Let vy,
U,,, respectively, denote the norm components mentioned
above, and v;., v, respectively, denote the parallel ones,
then we obtain

Uln Uo
=R,C,,R
(Ulc> 2 1<0)

( (- e,sin 6 cos ¢ —cos 6 sin @)v, )
"~ \(=e, sin #sin ¢+ cos 6 cos @)vy/’

Uy, v sin A cos ¢ — cos 6 sin ¢)v
( 2 ):R2R1< 0):<( ¢ ®) 0>'

Uy 0 (sin @ sin @ + cos 0 cos @)v,

Since there is no friction, the components of velocity per-
pendicular to the line of centers of the two particles are un-
changed by the collision. By the definition of the restitution
coefficient e, and the conservation of momentum, the rules
also allow us to determine the post-collision velocities U,y
and U, by using the particle-particle collision matrix
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FIG. 22. (Color online) Rotation for the system. We can clockwise rotate the original system (a) with the deflector angle 6 to obtain the
system (b), and then for convenience we can investigate pairwise particle collision in a moving frame as shown in (c).

l1-e 1+e
2 2
= l+e 1-e
2 2

Let v}, vy, V1. and v}, respectively, denote the counter-
parts of vy,, Uy,, U and v,, after the particle-particle colli-
sion, then we have

(

a)
ZF FoA /

FIG. 23. (Color online) Two possible cases when two particles
collide with each other. (a) shows the case in which the particle-
particle collision angle ¢ is an obtuse angle. (b) shows the case in
which the particle-particle collision angle ¢ is an acute angle.

!
U Uie
( ,C ) - Cp( L ) )
Uae U2¢
Therefore, multiplying the inverse of the rotation matrix R,

gives the post-collision velocities U,; and D, in the coordi-
nate (Y',Z’) as follows:

!

u v
— rl | _ p-1 1n

Upl Ule

u vS
— P2 | _ -1 Y2n
vpz = —R2 , .

UP2 Uoe

where u,,; and u,,, respectively, denote the post-collision ve-
locity components perpendicular to the wall for the two par-
ticles, and v,,; and v, respectively, denote the parallel com-
ponents. Thus we obtain

l+e 1-e¢

=vj sin 6] - 2+< -
upl Vg SIn |: eq > >

ew>p2}, (AS)

_— 2+(1—e 1+e
U, =70 sin -
p2 = U0 q 2 2

ew>p2} . (A6)
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1+e )
Up1 =0y T(l +e,)pq sin 0+ cos 6|, (A7)
1+e .
Upo =Up| = T(l +e,)pg sin O+cos 0|,  (A8)
where
My cos 0—(z,—z;)sin 6
g=cos ¢=
2a
and

p=sin g=1\1-¢g>.

In fact, it is easy to see that only the velocity components
perpendicular to the wall will give impulse to the oblique
wall, while the parallel components will not contribute to
the impact on the wall, thus by using the particle-wall colli-
sion matrix C,,, we can determine the post-particle-wall col-
lision velocity for the particles which obtain positive velocity
components perpendicular to the wall after their particle-
particle collision Actually, Egs. (A5) and (A6) tell us that
when 0 =e,= ] o ¢ B, will definitely hit the wall again, while
when = <e =1, either one or both of B; and B, may hit.

Let §— =, then we have

Mycos 60— \E&TZ sin 6
2a

g=cos ¢=

V cos 0—\555 sin 6
= > , &eR.

Through the above linear transform, and combining Egs. (5),
(15), and (16), we can write the dimensionless mean force
Sonean as follows:

F, 1
— mean - + , A9
fmean mv%/luy 1 + pT(fW fCW) ( )
= f p(&)d¢, (A10)
Q
fo= =(1+e,)sin 6, (A11)
va/MY
F.,
fCW
O/MY

:(l +€w)<f lAl EL
0 0

L p(é)de+ f 1,

Q

“e2 p<§>d§),
0

(A12)

where f,, and f.,,, respectively, denote the dimensionless av-
erage impact on the wall caused by the rebound velocity and
the posteollision velocity. The quantities 1, (i=1,2) denote
the indicator functions of the sets

PHYSICAL REVIEW E 82, 011307 (2010)

The interval,
\% 6-2V 0+2
Q=|—nr = 22 (A14)
V2§ sin & V2S sin 6

is the phase set of A formulated in Eq. (A3) under the linear

=21 . .. .o .
transform §=E, and we can write the joint distribution
density p(z;,z,) as a function of the variable &, i.e., p(&). If
we choose the marginal density function of the Z-location of
particles p, to be a Gaussian distribution with mean zero and
standard deviation o, we can obtain the exact distribution
density for the standardized relative distance of the two par-
ticles’ initial height

2
£ ) (A15)

p(&) = h@XP( 5

Therefore, substituting Egs. (AS5), (A6), (Al4), and (A15)
into Eq. (A12), and combining Egs. (A9) and (All), we
obtain the analytical formula of dimensionless mean force
fmean Eq (17)

APPENDIX B

1. Derivation that the probability of a particle experiencing
a particle-particle collision is low if V cos >1

Let P denote the probability of a particle, say B,, experi-
encing a particle-particle collision, and let p; denote the
probability of B, experiencing a particle-particle collision
with the particle B,_; (i € Z). Then we can write P as

P E P(Cl‘l n— l) 22 P(Cnn l) 22 pl

j=—

Our theory assumes that each particle can experience only
one particle-particle collision. Let A; denote the set of events
that guarantee B, may collide with B,_; under our assump-
tion. In the theoretical derivation in Sec. IV, we have ob-
tained that

Al =Dn—1’

A2 = Dn—2 N Cn—l,n—2 N Cn,n—l .

And we can obtain the expressions for A; through a similar
approach. We can also write p; as

pPi= P(Cn,n—i) = P(Cn,n—i N Al) .

Then we have
400 400 +0o00 +o0

P= 22 pPi= 22 P(Cn,n—i N Az) = 22 P(Cn,n—i|Ai) = 22 Pir

i=1 i=1 i=1 i=1

where p;,=P(C,,_;|A;). Similar to the derivation in Sec. IV,
we can obtain

Pir= P(Cn,n—i|Ai) = P(f)df,

I}

where
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FIG. 24. (Color online) Sketch for the terms of the series =1 p;,
in the case where V cos #>1 and VCOS 9>1 All the terms p,, are
integrals on the intervals which locate on the tail of the standard
normal distribution.

_ 6_2)
p(é) = me"p(‘ :

and

iVcos @-2 iVcos 0+2
;= Ra - N
V2Ssin 6 V2S sin 6

We can see that p;, is a integral of the density of standard
normal distribution on an interval with center ig;—:z% d
length =—— \2s ;- We will divide V cos 6> 1 into two cases to
show that the series 21| p;, is convergent and the sum is
much small than 1, thus the probability of a particle experi-
encing a particle-particle collision P is low.

Case 1: V cos 0> 1 and \;clonsg>1

In this case, all the terms in the series 2, p,, are integrals
on the intervals which locate on the tail of the standard nor-
mal distribution (see Fig. 24). We use the following inequal-
ity as the estimation for the tail probability of the standard
normal distribution,

where X is a random variable with standard normal distribu-
tion. Let

iVcos -2 iVcos 0+2
ai=—=—— and bj=—pF—"—". (B1)
V2S sin 6 V2S sin 6

They are both monotonically increasing functions of the in-
dex i. And if Vcos >1, then b;<a;,; since a;,—b;
= % >0 in this case. Hence none of the shaded areas in
Fig. 24 overlaps. And notice that

1 \2Ssin 6 a
—=—"—"-<1 and exp|-—-|<I1,
a; Vcos -2 2

then we can obtain
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FIG. 25. (Color online) Sketch for the terms of the series =17 p;,
in the case where V cos #>1 and S sin > 1. All the terms p;, are
integrals of the standard normal distribution on the intervals with
thin length.

Ep” 2

40

=2 Pla;=X=b)=P(X=a,)
i=1

_ 1 ( a%) <1
= expl\ — — < 1.
V/;Tal p 2

Hence the series s=27"|p;, is convergent and the sum s<<1.
Therefore, we can obtain

p(&)dé

Q;

oo
P=2>p,=2s<1.
i=1

Case 2: V cos 6>1 and S sin 8=0(V cos 6)

In this case, we have § sin §>1 which implies all the
terms in the series X1” p;, are integrals of the standard nor-
mal distribution on the intervals with thin length (see Fig.
25). We use the following inequality as the estimation for the
probability over these regions,

P(a; <“§<b)<

—_ ( a?) 0=a=b)
eX =a;=0;).
@T A

Then we can obtain

2= | plOde
i=1 i=1 Q~

2
a:
—ETP(a <x<b><2 - exp(——l)
-1 VS sin 6 2

2
v 7TS sin 0 i=1 P\T
2 f” l (chos 6—2)2:|
NP exp| = | —F7=——— | |dx
VaSsin 6 Jy V2S sin 6
2 \27S sin 6 V2 )

== . - | erf -

VaSsin & 2V cos 6 S sin 0

) xVcos -2 2\6
+ lim erf| ———— | | = .
X400 V28 sin 6 V cos 6

I/\

I
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In this case, V cos 6> 1, thus the series s=2"|p; is conver-
gent and the sum s<< 1. Therefore, we can obtain

+00

P=2> p,.=2s<1.
i=1

Now combining the two cases, we can conclude that the
probability of a particle experiencing a particle-particle col-
lision P is low if V cos 6> 1.

2. Derivation that the probability of a given particle
experiencing two particle-particle collisions is low
if V>1 and V>§

In this subsection, we will show that if V>1 and V>,
the probability of any given particle, say the nth particle B,,
experiencing two particle-particle collisions is low.

We therefore define

Q=P(B, experiences two particle-particle collisions).

Assume that B, has already experienced its first particle-
particle collision with some particle in the stream. Then, we
bound the probability Q as follows:

Q =P(B, experiences a second collision|B,
experiences a first collision)
XP(B, experiences a first collision)
= P(B, experiences a second collision|B,

experiences the first collision).

We define

Q:P(Bn experiences a second collision|B,

experiences the first collision),

which represents the probability of B, experiencing another
particle-particle collision given that it has already experi-
enced its first particle-particle collision.

In order to obtain the exact expression for the probability

é, for each particle that may collide with B,, we need to
perform multiple integrals with respect to the positions and
velocities of the two particles over a domain which repre-
sents the condition for the collision.

The derivation for the exact formula for Q is complicated.
Therefore we will estimate the order of magnitude of the

probability Q Starting from the position immediately after
its first collision, the particle B, will pass through the particle
stream with its post-collision velocity and may experience a
second particle-particle collision. For our estimation of the

order of magnitude of Q, we assume that B, passes through
the stream from —o to +% in the Z direction. The angle
between the velocities of B, and the stream will have a cer-
tain distribution. In order to obtain an order of magnitude
estimate, we choose a uniformly distributed angle which we
denote by 7(0= 7= ). That is, the density function of 7 is
given by
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Lt peqom
pm=im =TT (B2)

0 otherwise

The post-collision speed of the particle B, will be of order
unity. In order to obtain an order of magnitude estimate we
assume that B, passes through the stream with velocity
(cos 7,sin 7)T. In addition, the particles in the stream move
forward with velocity (1,0)T. We let I' denote the probability
of B, experiencing another particle-particle collision in this
case. Then the probability I" provides an estimate for the

order of magnitude of the probability 0.

By symmetry, we only consider the case in which the
Z-location of B, is non-negative. That is, B, is initially lo-
cated at Z=0 and then passes through the particle stream
from O to +2° in the Z direction. In this case, let dy denote the
relative distance between the initial ¥ location of B, and By,
which represents the nearest neighboring particle to B,. In
order to obtain an order of magnitude estimate, we choose a
uniform distribution for the relative distance dy. That is, the
density function of dy is given by

.
— if &y € [0, py]
py(8y) =1 My .

0  otherwise

(B3)

As before, the density function of the Z location of the par-
ticles in the stream is given by

(2) = — ( Zz)
Z)=—7— ¢€X - 1.
P \"ETO‘Z P 20‘%

Next we bound the probability I" to obtain the order of

(B4)

magnitude estimation for the probability 0. We therefore de-
fine I';=1(C, 44,)(j € Z) which represents the probability of
B, experiencing a particle-particle collision with By, ;. Then
we can write the probability I" as

+oo j-1

r=2>[la-rr;

j=1 i=0

(B5)
where

[y=0, Fj=fff Wdy,z,m)ddydzdn (j=1,j €Z),
Q;

(B6)

Q;= {(ﬁy,z, 7))| |5y cos? —zsin +(j— Dpuy cos-;z| = Za}.
(B7)

The quantity ¢(dy.z,n)=p,(dy)-p.(z)-p,(7) represents the
joint density function of dy, z, and %, which for the purposes
of obtaining an order of magnitude estimate we assume are
independent. The set Q;(j=1,;j e Z) represents the condi-
tions for B, experiencing a particle-particle collision with

Note that when the particle B, moves in the direction
almost opposite to the direction of the particle stream (the
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angle 7 is close to 77), then the probability of a collision will
be large. We therefore divide the integrals in Eq. (B5) into
two cases: angles close to 7 and those bounded away from
. We let &€ denote a small positive number and performing
some integrals, we can bound the probability I" as follows:

I'= —E f J f P[0, 7e)(m)dSydzdn+ O(e) (B8)
28 (™
== Y{(mdn+ O(e) (B9)
iz
where 1} ,_.1(7) denotes the indicator function of the inter-

val [0,7—¢], i.e.,

1 if pe[0,7-¢€]

0 otherwise

1[0,71'—8]( 77) = {
and

¥i(m) = & (n) - & (m) + B} (m) - B;(n)
+ ;—1(77) _,3;_1(77) + )\j(ﬂ),
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—l)Vcoz +2 JVCOZZ +2
2 2
af(n) = erf]
\% cos%7 \ES sin—
G-V cosg +2
—erf] )
\ES sinﬂ
2
2
\ES sin17 jVv Cos%7 *2
B; (n)= - expl—-| ————— | |
vV cosﬂ \rES sinll
2 2
chosll+2 chosg—Z
\j(7) =erf] —erf]
\ES sin17 \JES sin17
2 2

If V>1 and V>, by letting s=‘l, and performing some
elementary calculations, one can show that the series
P i217;(m) is uniformly convergent with respect to the angle
7, and the magnitude of the expression given by Eq. (B9) is
O(V). Then, I'<< 1, and thus the probability of a given par-
ticle experiencing two particle-particle collisions is low.
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