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Pressure and energy behavior of the Gaussian core model fluid under shear
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The pressure and energy behavior of the Gaussian core model (GCM) fluid as a function of strain-rate are
obtained from nonequilibrium molecular dynamics simulations for a wide range of thermodynamic state points.
An analytical dependence of pressure on strain-rate is observed which is in agreement with a Taylor series
expansion of pressure in terms of the strain-rate tensor. In contrast, the energy as a function of strain rate is
found to be dependent on temperature and density. The different behavior of pressure and energy contradicts
mode-coupling theory, which requires the same variation of pressure and energy with respect to the strain-rate.
The results for the GCM fluid do not support the hypothesis that the strain-rate exponent for both pressure and
energy can be universally represented by a simple linear function of temperature and density.
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I. INTRODUCTION

The leading non-Newtonian behavior of a fluid is a sub-
ject of longstanding scientific interest [1-11]. The fundamen-
tal observation of long-time tails [1] is the subject of many
theoretical [2—5] and simulation [6—11] studies. One of the
main predictions is the nonanalytical behavior of the hydro-
static pressure as a function of strain-rate (3). Mode-
coupling theory predicts a > dependency of pressure,
which has been confirmed by molecular simulations [6,7] for
a Lennard-Jones fluid at its triple point. Phenomenological
relationships [6-11] for hydrostatic pressure and energy as a
function of strain-rate have been proposed using nonequilib-
rium molecular dynamics (NEMD) data. Although NEMD
data and the relationships are in general agreement, there is a
discrepancy of more than 2 orders of magnitude in the values
of the coefficients for the non-linear contributions.

It has been argued [7] that this difference is a consequence
of the high strain-rates used in molecular simulation. In con-
trast to the relationships proposed by Evans and Hanley [6],
extended irreversible thermodynamics (EIT) [12-14] pre-
dicts the dependence of pressure and energy on strain-rate is
analytical, i.e., both quantities vary as 7. To test this appar-
ent contradiction Nettleton [15] introduced the volume frac-
tion of locally dilated spherical regions as an additional state
variable and studied the transition from 37 to ¥ behavior.
Nettleton observed a bifurcation in the asymptotic solution
with a 7*/> dependence for pressure and energy at high strain
rates. Similar disagreements with mode-coupling theory are
also observed in equilibrium molecular dynamics (EMD)
simulations [16] and in simulated cyclic compression [17].
Matin et al. [18] found that the ¥ variation of pressure and
energy was only observed in the vicinity of the triple point.
The 3/2 exponent was also questioned by NEMD results for
the pressure of shearing dense fluids away from the triple
point [19,20]. Ge et al. [21] determined that the power law
exponent varies continuously between ~1.2 and ~2 as a
linear function of density and temperature. The same linear
relationship also applies to the Barker-Fisher-Watts fluid [22]
suggesting it is independent of the specifics of the interaction
potential [23]. Subsequently, Desgranges and Delhommelle
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[24] demonstrated that the coefficients of this linear relation-
ship are also the same for a realistic many-body potential.
This result is consistent with the thermodynamic fluctuation
theory, which requires that the shear dilatancy exponent must
be less [25] than 2.

Previous theoretical and simulation studies on the non-
Newtonian behavior of fluids have largely focused on un-
bounded potentials. Recently, considerable interest has been
focused on bounded potentials, such as the Gaussian core
model (GCM), because of their usefulness in soft condensed
matter physics [26]. The GCM fluid qualitatively imitates the
anomalies of complex molecular fluids and their solutions. It
exhibits density [27] and structural [29] anomalies as well as
other waterlike anomalies [28] associated with re-entrant
melting behavior. It has been observed [30,31] that transport
properties like the self-diffusion coefficient and the shear vis-
cosity of the GCM fluid also show anomalous behavior. For
example, at high densities where penetration of GCM par-
ticles becomes dominant, shear viscosity increases with in-
creasing temperature. This is consistent with the experimen-
tally observed behavior of cationic surfactant (wormlike
micellar) solutions [32]. It appears that the GCM can be used
to model the effective interactions of micellar aggregates of
ionic surfactants suggested by Baeurle et al. [33].

In view of the anomalous strain-rate dependent viscosity
behavior [30], it is of considerable interest to also study the
pressure and energy behavior of the GCM fluid as a function
of strain-rate. Therefore, we present a comprehensive analy-
sis of extensive NEMD simulation data and compare them to
both existing theoretical and phenomenological models. We
report relationships for pressure and energy for the GCM
fluid as a function of strain-rate and we demonstrate how the
model parameters vary with temperature and density.

II. SIMULATION DETAILS
The isothermal isochoric NEMD simulations were per-
formed on a homogenous fluid of 4000 particles interacting

via a GCM potential of the form:
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2
u(r)=sexp[—(§> ], (1)

where € and o are the height and width of the potential. The
sllod [34] equations of motion were integrated using a five-
value Gear predictor-corrector scheme [35]. Lees-Edwards
periodic boundary conditions [36] and a Gaussian thermostat
[37] were used. The normal conventions were used for the
reduced density (p*=pc”), temperature (T*=kT/e), energy
(E*=E/g), pressure (p*=pa/e), viscosity (7]*:7]0'2/\5%),
strain-rate (¥'=9Vmo?/e), and time (7*=m/e/mo?). All
quantities quoted in this work are in terms of these reduced
quantities and the asterisk superscript will be omitted in the
rest of the paper.

The simulations covered five isochors of densities p=0.1,
0.2, 0.3, 0.4, and 1.0, temperatures ranging from 7=0.015 to
3.0. The strain-rates used in this study were terminated at
‘safe’ values [30] to avoid string phases. Further simulation
details are discussed elsewhere [30]. It has been previously
shown [25] that an analytical expansion for the pressure in
the asymptotic limit of zero shear does not exist. At very
high temperatures pressure and energy variations of the
GCM fluid are sensitive to the low strain-rates. Therefore in
our study we have carefully avoided the pressure and energy
variation for y— 0 at high temperatures.

II1. STRAIN-RATE DEPENDENCE
OF PRESSURE AND ENERGY

To analyze the NEMD data for the pressure and energy
behavior of the GCM fluid as a function of strain-rate, we
used the following pair of equations proposed by Evans and
Hanley [6]:

p(p.T,%) =po(p,T) + p3p,T) V* @)
E(p.T.9) = Eo(p.T) + Es(p.T) V" |

where the 0 and 7y subscripts denote equilibrium and shearing
contributions respectively. In this work, we tested three dif-
ferent hypotheses for the « exponent, corresponding to
mode-coupling theory (MCT), analytical behavior (AB), and
a density-temperature functional behavior (pTF), i.e.,

32 MCT
a=12 AB 3)
fp,T) pTF

Several workers [2,38—42] have demonstrated that
Lennard-Jones simulation data at the triple point are in very
good agreement with the MCT hypothesis. In contrast, Ge et
al. [21] showed that away from the triple point, and for a
wide range of thermodynamic state points, the power law
exponent is not independent of density and temperature.
They proposed a pTF description of the a exponent. Using a
Taylor series expansion Ge et al. [20] calculated that the
leading term of pressure and energy must vary as 7 if the
pressure is analytical in powers of the strain rate. This result
is also predicted by EIT. We are not aware of any simple
liquids that exhibit AB in pressure and energy. Ge et al. [21]
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FIG. 1. Pressure as a function of strain-rate at densities of (a)
p=0.1 and (b) p=1.0 for different temperatures 7=0.002 (H), 0.1
(@),0.5(A),1.0(V¥),2.0 (#) and 3.0 («) (data from simulations).
pTF fits are shown as thin continuous lines. The 7=0.02, 0.1, 0.5,
1.0, and 2.0 pressure isotherms are shifted by 100, 80, 60, 40, and
20 in Fig. 1(a) and by 150, 120, 90, 60, and 30 in Fig. 1(b), respec-
tively, in order to avoid overlap.

determined a simple linear pTF for the Lennard Jones. Con-
ducting NEMD simulations on liquid metals Desgranges and
Delhommelle [24] conjectured that the linear form of « as a
function of temperature and density, which is a special case
of pTF [Eq. (3)] with a specified set of coefficients, could be
used universally for all atomic liquids.

IV. RESULTS AND DISCUSSION
A. Strain-rate dependent pressure behavior

To examine the consistency of the strain-rate dependent
pressure we do not assume any value of the scaling exponent
(e.g., 3/2 or 2) or linear pTF behavior, but determine its
value a posteriori via a least-squares fit of the pressure as a
function of strain-rate (pTF). We then extract the value of «
for each (p,T) state point and compare the behavior with the
MCT and AB hypotheses. Typical pressure fits as a function
of strain-rate are shown in Fig. 1 for densities of p=0.1 (a)
and p=1.0 (b) at temperatures ranging from 7=0.02 to 3.0.
The agreement between simulated results and the power-law
fit is very good which allows an accurate determination of
the model parameters.

The state point dependency of the fitting parameters is
shown in Fig. 2. Figure 2(a) shows the equilibrium pressure
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FIG. 2. Parameters (a) p, (b) p;, and (c) « of the pTF fit as a
function of temperature for densities p=0.1 (H), 0.2 (@), 0.3 (A),
0.4 (V¥), and 1.0 (#). Data obtained from the pTF fit with the
pressure data from simulations as a function of strain-rate. In Fig.
2(a) and 2(b) the pressure isochor for p=1.0 is shifted by -2 and in
Fig. 2(c) the « isochors are shifted by —0.1 each starting at p=0.2 in
order to avoid overlap.

(po) as a function of temperature for five different densities.
To avoid a large pressure scale the p, isochor for p=1.0 is
shifted by —2. At low temperatures and for densities p>0.2
the slope of the pressure exhibits a weak minimum (not re-
solved on the scale of the figure), which corresponds to the
well-known density maximum of the GCM at constant pres-
sure [27,28]. Apart from this anomaly the pressure isochors
grow monotonically with increasing temperature for all
densities.

The strain-rate dependent (p;) term as a function of tem-
perature is shown in Fig. 2(b) for five densities. Again,
the pressure isochor for p=1.0 is shifted by —2. The p,, val-
ues show only a weak temperature dependency and grow
monotonically with increasing density. In Fig. 2(c) we illus-
trate a as a function of temperature for five different densi-
ties. To avoid overlaps the « isochors are shifted by —0.1
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FIG. 3. Comparison of the relative percentage difference of the
zero-shear pressure obtained from the pTF fit with EMD calcula-
tions (Ref. [31]) as a function of temperature and densities of
p=0.1 (W), 0.2 (@), 0.3 (A), 0.4 (¥), and 1.0 (#).

each starting at p=0.2. Figure 2(c) clearly indicates that « is
completely independent on the state point with a value of
approximately 2, which strongly supports the AB hypothesis
and clearly contradicts the MCT hypothesis.

It is of interest to compare p, values obtained from the
PTF hypothesis with equilibrium values obtained elsewhere
[31] from EMD simulations. Figure 3 compares EMD and
PpTF p, values along isochors at p=0.1, 0.2, 0.3, 0.4 and 1.0
as a function of temperature. The comparison indicates that
the discrepancies between the pTF p, values and the EMD
calculations are typically less than 0.3%.

To quantify the quality of agreement we also fitted the
simulation data using AB and compared the percentage av-
erage absolute deviations (%ADD). These data are summa-
rized in Table I; in all cases the squared-correlation function
was 1. In Fig. 4 we show the deviations of the hydrostatic
pressures obtained from simulation with hydrostatic pres-
sures calculated using AB for two state points (p=0.1, T
=0.015) and (p=1.0, T=3.0). The deviations fluctuate
around zero and the extent of the longitudinal and lateral
variation of the data fluctuates within a £0.04% range as a
function of strain-rate. The plot also indicates a more accu-
rate fit in the high strain-rate region. The % AAD values in

TABLE 1. Percentage average absolute deviation (% AAD) val-
ues of AB and pTF fits with simulation pressure data obtained in
this work for five densities and two extremum temperatures of each
density.

p T AB pTF
0.1 0.015 0.011 0.002
3.0 0.123 0.11
0.2 0.015 0.006 0.001
3.0 0.258 0.247
0.3 0.015 0.034 0.002
3.0 0.636 0.523
0.4 0.015 0.186 0.02
3.0 0.233 0.227
1.0 0.015 0.682 0.04
3.0 0.334 0.327
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FIG. 4. Comparison of the relative percentage difference of hy-
drostatic pressures obtained from simulation with the hydrostatic
pressures calculated from the AB fit as a function of strain-rate for
the state points (p=0.1, 7=0.015) (®) and (p=1.0, 7=3.0) (O).

Table I and the deviations of pressure in Fig. 4 suggest that
either the AB or pTF hypotheses can be used to accurately fit
the data for all strain-rates. However, as the AB fit requires
only two parameters, it should be preferred to the pTF fit. In
contrast, the MCT hypothesis does not work for the GCM
fluid. These considerations indicate that the pressure varia-
tion of the GCM fluid under shear behaves analytically.

B. Strain-rate dependent energy behavior

Following the same procedure as for the pressure, we de-
termined the fitting parameters of the strain-rate dependent
potential energy per particle a posteriori via least-squares fits
using the pTF hypothesis. Typical fits of the potential energy
as a function of strain-rate are shown in Fig. 5 for densities
of (a) p=0.1 and (b) p=0.4 at temperatures ranging from T
=0.015 to 0.08. Unlike the pressure data, the strain-rate pro-
files of the potential energy do not display simple power-law
behavior for 7>0.1 (not shown in Fig. 5), which suggests
that Eq. (2) is not valid for high temperatures. Therefore, we
only analyzed the strain-rate dependent potential energy up
to T=0.1 for p=0.1 to 0.4 and up to 7=0.06 at p=1.0. As is
shown in Fig. 5, in these ranges we find good agreement
between simulation results and the pTF.

The state point dependencies of the fitting parameters are
shown in Figs. 6 and 7. Figure 6(a) shows the equilibrium
energy E as a function of temperature for five different den-
sities. The E, isochor for p=1.0 is shifted by —1.5. The zero-
strain energy E; grows monotonically with increasing den-
sity [Fig. 7(a)] and temperature [Fig. 6(a)] where the effect
of temperature is weaker than the effect of density. The
strain-rate dependent contribution (E;) is shown in Fig. 6(b)
as a function of temperature for different constant densities.
Figure 7(b) shows E, as a function of density for different
constant temperatures. Up to a density of approximately
0.23, E, increases with increasing density at constant tem-
perature and decreases with increasing temperature at con-
stant density. This behavior is consistent with the behavior
reported for the Lennard-Jones fluid. For densities greater
than 0.23, E,, decreases with increasing density at constant
temperature showing an anomalous density dependency in
this region.

PHYSICAL REVIEW E 82, 011201 (2010)

N

0104
009
008
007
0.06 frvve:

005

00— 11

1 b iy
0.77 ‘5§;f
0.74 /4/‘::/ I
E 1 e v E-0.02 1

on] T
v/ n

0.68 -

0.65 -

0.62

00 02 04 06, 08 10 12 14 16

FIG. 5. Potential energy per particle as a function of strain-rate
at densities of (a) p=0.1 and (b) p=0.4 for different temperatures
7=0.015 (H), 0.02 (@), 0.03 (A), 0.04 (V¥), 0.06 (#), and 0.08 ()
(data from simulations). The pTF fits are shown as thin continuous
lines. The energy isotherms in Fig. 5(b) for temperatures 7=0.015,
0.02 and 0.03 are shifted by —0.03, —0.02, and —0.01, respectively,
in order to avoid overlaps.

In Fig. 6(c), we illustrate the « exponent for the potential
energy as a function of temperature for different constant
densities and in Fig. 7(c) as a function of density for different
constant temperatures. Up to a density of approximately
0.23, « decreases with increasing density at constant tem-
perature and increases with increasing temperature at con-
stant density. The temperature dependency of « is approxi-
mately linear [Fig. 6(c)] except for p=1.0. Again, this
behavior is consistent with that of a Lennard-Jones fluid. For
densities greater than 0.23, « increases with increasing den-
sity at constant temperature showing behavior similar to the
E,, density dependency in this region. It is of interest to note
that at a density of 0.23 many equilibrium properties of the
GCM change also from normal to anomalous behavior [28].
In the nonequilibrium sheared fluid state the energy behavior
of the GCM characterized by the shearing parameters £ and
a reflects the equilibrium behavior of the system.

Similar to the pressure data, we compared values of E|
obtained from the pTF fit with equilibrium values obtained
from EMD simulations [31] at constant density and different
temperatures (Fig. 8). The comparison indicates that the dis-
crepancies between E,, extracted from the fit and EMD cal-
culations are typically less than 0.2% and in general they are
higher than the EMD values.
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FIG. 6. Values of (a) Ej, (b) Ej, and (c) « as functions of
temperature obtained from the simulation data via a least-squares
pTF fit for densities p=0.1 (H), 0.2(®), 0.3 (A), 0.4 (V¥), and 1.0
(#). In Fig. 6(a) the E; isochor for p=1.0 is shifted by —1.5.

The strong state point dependency of « clearly contradicts
both the MCT and AB hypotheses. Unlike the pressure,
the data points of our simulations support the general pTF
hypothesis of Eq. (3) but clearly contradict the linear pTF
behavior of Ge er al. [21] However, for increasing tempera-
ture and decreasing density the error bars for « increase
[Figs. 6 and 7(c)]. To quantify the quality of the pTF fit we
calculated the % relative deviation of the potential energy
per particle as a function of strain-rate. The percentage de-
viation in Fig. 9 show typical deviations of the model for two
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FIG. 7. Values of (a) E, (b) E;, and (c) « as functions of density
obtained from the simulation data via a least-squares pTF fit
for temperatures 7=0.015 (H), 0.02 (@), 0.025 (A), 0.03 (V¥), 0.04
(#),0.06 («), 0.08, (») and 0.1(®).

state points (p=0.1, T=0.015) and (p=0.4, T=0.1), which
fluctuate around zero. The extent of the longitudinal and lat-
eral variation of the data indicates that for the state point
(p=0.4, T=0.1) the calculations systematically deviate from
the simulation results at low strain-rates but attain improved
agreement at high strain-rates. Nonetheless, the % relative
deviations in Fig. 9 indicate that the pTF fit provides a good
overall description of the simulation data and as such provide
evidence of the nonanalyticity of the potential energy varia-
tion of the GCM fluid under shear.
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zero-shear potential energy per particle E obtained from a pTF fit
with EMD calculations (Ref. [31]) as a function of temperature and
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C. Comparison with theoretical predictions

In this study, we found that a number of well known the-
oretical predictions are violated by the pressure and potential
energy behavior of the GCM fluid under shear. The mode-
coupling theory results of Kawasaki er al. [2,4] and Ernst er
al. [5] and thermodynamic fluctuation theory of Evans et al.
[25,42] suggest that both pressure and energy are nonanalyti-
cal functions of strain-rate. Contrary to this we found that the
pressure of the GCM fluid varies analytically independent of
the state point. This analytical dependence is consistent with
a Taylor series expansion of hydrostatic pressure as powers
of the strain-rate tensors [20]. Another interesting prediction
of mode-coupling theory is that the pressure and energy will
follow the same power law behavior. Since the pressure of
the GCM fluid is analytical and energy is state point depen-
dent the behavior of these quantities far from equilibrium
clearly contradicts the mode-coupling prediction. In addition,
EIT [12-14] predicts that both pressure and energy have a 7
dependency. This theoretical prediction is violated by the
energy behavior of the GCM fluid. We are not aware of any
other simple fluid that follows two different power law mod-
els for pressure and energy. The universal scaling behavior
[21,24] is a linear relationship between p and T and contains
a specific set of coefficients. It was obtained [21] from a
linear regression of both pressure and energy exponents as
function of p and 7. In contrast, for the GCM fluid, linear
regression fails to correlate both the pressure and energy ex-
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FIG. 9. Comparison of the relative percentage difference of po-
tential energies per particle obtained from simulation with the en-
ergies calculated from an pTF fit as a function of strain-rate for the
state points (p=0.1, 7=0.015) (®) and (p=0.4, T=0.1) (O).

ponents. Therefore, the hypothesis that the state point depen-
dent functional form of the power-law exponent « can be
expressed universally as a simple linear function of tempera-
ture and density for both pressure and energy [21,24] is also
violated by the GCM fluid because of the strong nonlinear
density dependence of the energy exponent. Note that this
behavior does not contradict the validity of the general pTF
form according to Eq. (3).

V. CONCLUSIONS

Extensive NEMD simulation data were examined to ob-
tain the accurate pressure and energy behavior of the GCM
fluid under shear. We assumed that the strain-rate dependent
pressure and energy observe simple power-law dependence.
We found that the pressure is analytic in strain-rate while the
energy shows a strong state point dependency. The two dif-
ferent power laws for pressure and energy contradict the
original mode-coupling prediction, which suggests the same
power-law exponent of 3/2. The results for the GCM fluid
contradict the hypothesis that the strain-rate exponent for
both pressure and energy can universally be represented by a
simple linear function of temperature and density.
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