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Spectral properties of the reduced density matrix �RDM� of permutational invariant quantum many-body
systems are investigated. The RDM block diagonalization which accounts for all symmetries of the Hamil-
tonian is achieved. The analytical expression of the RDM spectrum is provided for arbitrary parameters and
rigorously proved in the thermodynamical limit. The existence of several sum rules and recurrence relations
among RDM eigenvalues is also demonstrated and the distribution function of RDM eigenvalues �including
degeneracies� characterized. In particular, we prove that the distribution function approaches a two-
dimensional Gaussian in the limit of large subsystem sizes n�1. As a physical application we discuss the von
Neumann entropy �VNE� of a block of size n for a system of hard-core bosons on a complete graph, as a
function of n and of the temperature T. The occurrence of a crossover of VNE from purely logarithmic
behavior at T=0 to a purely linear behavior in n for T�Tc, is demonstrated.
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I. INTRODUCTION

A great deal of interest is presently devoted to the study of
the entanglement properties of interacting quantum many-
body systems �1� due to their relevance for the newly devel-
oping technologies of quantum computation and quantum
cryptography �2�. Entanglement represents a key resource for
such fields because it provides information about how much
correlations present in a quantum state can be used to control
a quantum device �3,4�. This problem has been investigated
for several interesting systems of condensed matter physics,
including spin chains �5–13�, Hubbard �8,14,15� and pairing
models �16�, itinerant bosonic systems �17�, harmonic lat-
tices �18�, etc.

There are several different measures of entanglement, the
most famous one being the so called von Neumann entropy
�VNE� of a subsystem, also known as block or entanglement
entropy �3�. At zero temperature the VNE provides a mea-
sure of the maximal compression rate of a quantum informa-
tion in an ideal coding scheme. Recently, the VNE has been
used to detect quantum phase transitions and topological vs
quantum order, in strongly correlated systems �19,20�.

The calculation of the entanglement entropy involves the
knowledge of the so called reduced density matrix �RDM�, a
tool very useful to characterize quantum correlations. The
RDM contains complete information about an open quantum
system, i.e., a quantum systems in contact with its environ-
ment such as a thermal bath or another larger quantum sys-
tem of which it constitutes a part. The spectrum of the RDM
may reveal intrinsic, sometimes universal, properties of the
subsystem through its link with the VNE.

For a subsystem of size n the RDM is a 2n�2n matrix
and for large n the calculation of the spectrum becomes
a problem of exponential growing difficulty. Explicit calcu-
lations of the VNE have been performed for a number of
one-dimensional spin models �7–13,21,22�. Entanglement
entropy for antiferromagnetic–ferromagnetic alternating
Heisenberg chain has been investigated by density-matrix

renormalization-group method in �23� and for large block of
spins in the ground state of XY spin chain in �24�.

Especially relevant appears the connection between en-
tanglement entropy and quantum phase transitions �25�. In
the case of the antiferromagnetic Heisenberg spin chain with
anisotropy parameter, the VNE has been calculated in critical
phases by using the conformal field symmetry which governs
long-distance correlations in the system �8,26,27�. In this
context it has been shown that at the quantum critical point
the VNE for a subsystem of size n grows logarithmically
with n, with an universal prefactor which is equal to the
central charge of the underlying conformal field theory
�CFT� �5,6,8,25,28�.

Although a limiting distribution function can be calcu-
lated in the CFT case �see �29�� the analytic knowledge of
the RDM spectrum is practically unknown, and up to date no
analytical expressions of the RDM eigenvalues exist for ge-
neric interacting many body systems. To our knowledge, the
full spectrum of the RDM for arbitrary sizes n of the sub-
system has been calculated only for the very special case of
non interacting particles �free fermions or free bosons�, see,
e.g., �30–32�, or for small size subsystems �analytic expres-
sions of the RDM for a subsystem of n�6 spins have been
recently calculated for some special case of the antiferromag-
netic XXZ chain of odd length �33��.

Entanglement properties of many-body systems at finite
temperature have been investigated in �34�. The exact knowl-
edge of the RDM spectrum for arbitrary sizes of the sub-
system permits to study the thermodynamic properties of the
VNE and allows to shed some light on the interplay between
the quantum nature of the system and its thermodynamics
�35�. In particular, the scaling law of the VNE across a finite
temperature phase transition was recently investigated for a
system of hard-core bosons in Ref. �35�, where an analytical
expression of the RDM spectrum was provided without any
proof.

The aim of the present paper is to present a detailed in-
vestigation of the spectral properties of the RDM and VNE
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of permutational invariant quantum many-body systems. To
this regard, we use the symmetry of the system to achieve
the complete block diagonalization of the RDM. The analyti-
cal expression for the spectrum is provided for arbitrary pa-
rameters and rigorously proved in the thermodynamical
limit. The existence of several sum rules and recurrence re-
lations among RDM eigenvalues is also demonstrated. These
rules are very useful for developments of the RDM spectral
theory as well as for testing both analytical and numerical
results. The existence of particle-hole symmetry at half fill-
ing is discussed and the distribution function of RDM eigen-
values �including degeneracies� characterized. In particular,
we prove that the distribution function approaches a two-
dimensional Gaussian in the limit of large subsystem sizes.
As application, we consider the case of a system of N hard-
core bosons on a full graph which undergo a Bose-Einstein
condensation at T=Tc �36,37�. The VNE entropy of a block
of n hard-core bosons is computed as a function of n and of
the temperature T and the occurrence of a crossover from a
purely logarithmic behavior in n of the VNE at T=0,
to a purely linear �extensive� behavior for T�Tc, is
demonstrated.

The paper is organized as follows. In Sec. II, we introduce
our model Hamiltonians for permutational invariant quantum
many-body systems and give basic definitions to which our
analysis applies. In Sec. III, we show how the Hamiltonian
symmetries allow to block diagonalize the RDM for sub-
systems of arbitrary size. In Sec. IV, we discuss the implica-
tions of these symmetry properties on the eigenvalues of the
RDM and show the existence of several sum rules for RDM
eigenvalues. In Sec. V, we derive one step recursive relations
among RDM eigenvalues which arise from the tracing out
process of one site. Analytical expressions of the RDM ei-
genvalues for arbitrary parameter values are given in Sec.
VI, a proof of which is provided in the thermodynamical
limit. In Sec. VII, we show that the distribution function of
the RDM eigenvalues approaches a Gaussian distribution in
the limit of large block sizes. In Sec. VIII, we discuss prop-
erties of the von Neumann entropy for permutational invari-
ant systems while in Sec. IX, we apply our results to the
specific case of a system of hard-core bosons. For this case
we discuss the dependence of the VNE on temperature and
its scaling law across a phase transition to a Bose-Einstein
condensate occurring at a finite temperature. Finally, in Sec.
X, the main results of the paper are briefly summarized.

II. MODEL AND BASIC DEFINITIONS

Let us consider a system of hardcore bosons described by
the following permutational invariant Hamiltonian

H = −
1

L
�
i,j

L

bi
+bj + �

i=1

L

bi
+bi, �1�

where bi
† ,bi, denote creation and annihilation operators sat-

isfying the deformed Heisenberg algebra: �bi ,bj�=0,
�bi

+ ,bj
+�=0, and �bi ,bj

+�= �1−2bj
+bi��ij �37�. Due to the on-

site Fermi-like commutation relations, double occupancy is
not allowed: the action of bi

+ and bi on the single particle

Fock space being bi
+�0�= �1�; bi�1�= �0�; bi�0�=bi

+�1�=0. Us-
ing the transformation Sk

+=Sk
x+ iSk

y =bk
+ /2, Sk

−=Sk
x− iSk

y =bk /2,
Sk

z =1 /2−bk
+bk, the Hamiltonian Eq. �1� can be rewritten in

terms of spin 1/2 operators as

H = −
1

4L
�S2 − Sz�Sz − 1�� + �L

2
− Sz	 . �2�

Here S
�Sx ,Sy ,Sz� , S�= 1
2�i=1

L �i
�, with �i

� Pauli matrices
acting on subspace i of the Hilbert space factorized as tensor
product of L subspaces �1

L
�C2. Note that H is invariant un-

der the action of the symmetric group SL and conserves the
total spin polarization Sz, �H ,Sz�=0 �in the language of hard-
core bosons Sz
L−2N, with N=�i=1

L bi
+bi the total number

operator�. We remark that besides these Hamiltonians, our
results will apply to other models which are invariant under
the action of the symmetric group SL, such as the isotropic
Lipkin-Meshkov-Glick �LMG� model �38,39�, Curie-Weiss
Hamiltonian, etc.

The unit vectors �	L,N,r���1
L

�C2, with N spins down
�e.g., of polarization �L−N� /2�, associated to filled Young
tableaux �YT� of type �L−r ,r
�N�, form a complete set of
eigenstates of H

H�	L,N,r� = EL,N,r�	L,N,r� ,

EL,N,r = r +
1

L
�N�N − 1� − r�r − 1�� ,

Sz�	L,N,r� = �L − 2N��	L,N,r� . �3�

Here and in the following we denote with the symbol
�L−r ,r
�N� a two rows YT with L−r boxes �sites� in the first
row and r in the second, filled with N quanta �N spins up, in
the present context�. Typical filled YTs are depicted in Fig. 1
�see �37� for more details�. Note that N=0,1 , . . . ,L deter-
mines possible values of total spin polarization �L−N� /2 and
r takes values r=0,1 , . . . ,max�N ,L−N�. The degeneracy of
an eigenvalue EL,N,r is given by the dimension of the respec-
tive YT, e.g.

degL,r = �L

r
	 − � L

r − 1
	 . �4�

The global density matrix, 
L,N,r, �e.g., the density matrix
of the full system=subsystem+environment� is defined as

(a) (b)
1 · 1 1 1 0 0
0 · 0 0 → 1 · 1 1 1 0

0 · 0 0
1 · 1 1 1 0 0
0 · 0 0 → 1 · 1 1 0 0

0 · 0 0

(c) (d)
1 · 1 1 1 0 0
0 · 0 0 → 1 · 1 1 1 0

0 · 0
1 · 1 1 1 0 0
0 · 0 0 → 1 · 1 1 0 0

0 · 0

FIG. 1. Filled YTs involved in the one step reduction
�n→�n−1. Panels a�,b�, correspond to eigenvalues �n−1,k−p,s−q

n,k,s with
q=0 and p=0, p=1, respectively. Panels c�,d�, correspond to eigen-
values �n−1,k−p,s−q

n,k,s with q=1 and p=0, p=1, respectively.
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L,N,r =
1

degL,r
�
u=1

degL,r

�	u��	u� =
1

degL,r
�L,N,r �5�

with the set of vectors �	u�, u=1, . . .degL,r, forming an or-
thonormal basis in the eigenspace of H with eigenvalue
EL,N,r. The matrix �L,N,r acts on the Hilbert space �1

L
�C2 and

satisfies the following properties �see �40��:
�i� �L,N,r has degL,r nonzero eigenvalues all equal to 1 and

trace Tr�L,N,r=degL,r equal to the dimension of the corre-
sponding YT;

�ii� ��L,N,r�2=�L,N,r;
�iii� �� , Pij�=0 for any i , j, with Pij operators permuting

the subspaces i and j in the product �1
L

�C2.
Our main interest is not on 
L,N,r but on the RDM of a

subsystem of n sites, �n, obtained from 
L,N,r by tracing out
L−n sites �degrees of freedom�:

�n = TrL−n
L,N,r �6�

�for notational convenience the dependence of �n on L ,N ,r
will be omitted�. Since �n is a density matrix, its eigenvalues
are real and nonnegative and its trace is equal to 1. More-
over, due to the property �iii�, �n does not depend on the
particular choice of the n sites, and satisfies the property �iii�
in its subspace: ��n , Pij�=0 for any i , j. In the following sec-
tions we discuss RDM properties which are directly linked to
Hamiltonian symmetries.

III. RDM BLOCK DIAGONALIZATION

To characterize the spectral properties of the RDM we
take advantage of the permutational invariance of the Hamil-
tonian by exploiting the decomposition of �n into irreducible
representations �irreps� of the symmetric Sn �permutation
group of n objects�. Let us consider an initial state associated
to a Young tableau of SL of type �L−r ,r
�N� with
0�r
 �L /2� where �x� denotes the integer part of x. Note
that, due to the symmetry and antisymmetry of a YT with
respect to rows and columns, respectively, this state can exist
only if N�r. After making trace with respect to L−n sites
one obtains states associated to filled YTs of Sn of type
�n−s ,s
�k� with k=0,1 , . . . ,n and s=0,1 , . . . ,k. The conser-
vation of the total spin polarization Sz �number of particles
for hard-core bosons� implies that �n has n+1 blocks Bk
distinguished by the value of the spin polarization �n−k� /2.
On the other hand, the invariance of the Hamiltonian under
permutations implies that each block Bk can be further
diagonalized into k+1 sub-blocks associated to filled
YTs of type �n−s ,s
�k� with s compatible with the filling,
e.g., s=0,1 , . . . ,min�k ,n−k�. Thus, for example, blocks
B0 ,B1 ,B2, etc. have the form

B0 = � �0 · · · · · 0

B1 =

(
1 0 · · · · 0

1 0 · · · 0
0

)

B2 = , etc . ,

⎛
⎝ 1 1 0 · · 0

1 1 0 · · 0
0

1 1 0 · 0
0 0

⎞
⎠

where 1 and 0 in the YTs denote, respectively, spin up �par-
ticle� and spin down �hole� for spin models �respectively,
hard-core bosons�. The dimension of each block, dim�Bk�, is
given by the dimension of the Hilbert space of k spins up on
n sites, e.g., � n

k �. Each filled YT of type �n−s ,s
�k� in the
block Bk contributes to the �n spectrum with one degenerated
eigenvalue whose degeneracy is equal to the dimension
degn,s of the YT:

degn,s = �n

s
	 − � n

s − 1
	 .

Notice that the sum of the degeneracies of all eigenvalues of
a block is equal to the dimension of the block

dim�Bk� 
 �
s=0

k

degn,s = �
s=0

k �n

s
	 − � n

s − 1
	 = �n

k
	 �7�

and the sum of the dimensions of all blocks appearing in �n
gives the full dimension of the Hilbert space

�
k=0

n

dim�Bk� = �
k=0

n �n

k
	 = 2n.

These equalities show the consistency of the above block
decomposition of the RDM. The fact that Bk is block diago-
nal with respect to the Sn irreps which are compatible with
the filling k of the block, implies that the RDM �n has the
form

�n = �
k=0

n

Bk = �
k=0

n

�
s=0

min�k,n−k�

Bk,s = �
k=0

n

�
s=0

min�k,n−k�

�n,k,s
L,N,r�n,k,s,

�8�

where Bk,s denote the sub-block �n ,n−s
�k� of the block Bk
spanned by the symmetrized basis

�n,k,s = �
u=0

degn,s

�nks,u��nsk,u� , �9�

which accounts for the degeneracy degn,s of the �n eigen-
value �n,k,s

L,N,r with respect to �n−s ,s
�k� states �here and in the
following we denote the eigenvalues of �n by �n,k,s

L,N,r to dis-
play the full dependence on parameters�.

IV. SUM RULES

The block diagonalization of the previous section implies
a number of general properties for the spectrum of the RDM
which can be presented in the form of the sum rules listed
below.

�i� Sum rule with respect to s. The first sum rule can be
derived by observing that

Tr�Bk� = �
s=0

min�k,n−k�

�n,k,s
L,N,r degn,s = w�Bk��n

k
	 , �10�

where w�Bk� is the weight of the block
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w�Bk� =
�L − n

N − k
	

�L

N
	 . �11�

Note that w�Bk� is just the correct probability factor one ex-
pects for states with k spins up on n sites obtained by elimi-
nating L−n sites and N−k spins up from the initial state. The
block weight w�Bk�, indeed, is just the ratio between the
number of these states and the dimension � L

N � of the whole
Hilbert space for N spins up on L sites. Equations �10� and
�11�, then lead to the first sum rule for the eigenvalues

�
s=0

min�k,n−k�

�n,k,s
L,N,r degn,s =

�L − n

N − k
	

�L

N
	 �n

k
	 . �12�

It is worth to note that this expression is fully consistent with
the normalization condition of �n:

Tr��n� = �
k=0

n

Tr�Bk� = �
k=0

n �n

k
	�L − n

N − k
	

�L

N
	 = 1.

From Eqs. �7� and �12�, we infer that the eigenvalues must
have the form

�n,k,s
L,N,r = w�Bk��n,k,s

L,N,r, �13�

with w�Bk� given by Eq. �11� and with �n,k,s
L,N,r denoting the

weight of the sub-block Bk,s �i.e., the number of different
ways the states of the sub-block with fixed k and s can arise
from a filled YT �L−r ,r
N after tracing out L−n sites and
N−k spin up�. Notice that Eqs. �12� and �13�, imply that the
weights of the sub-blocks Bk,s must satisfy the following nor-
malization condition

�
s=0

min�k,n−k�

�n,k,s
L,N,r degn,s = �n

k
	 . �14�

�ii� Sum rule with respect to k. A second sum rule can be
derived by computing the splitting of a given irreps of SL
into irreps of Sn by using group’s representation theory �41�.
To this regard we remark that a representation �L−r ,r
,
which is irreducible for the group SL is obviously reducible
for its subgroup Sn and the problem of computing how
many Sn states one gets from the original SL state,
arises. This amounts to compute the decomposition of the
SL irrep of type �L−r ,r
 into irreps of Sn of type
�n−s ,s
 , 0
s
 �n /2�, a problem which is encountered in
quantum mechanics in connection with the splitting of levels
induced by a perturbation. The decomposition of an arbitrary
representation of SL with characters � into irreps of Sn with
characters �s, follows from the following property of group
representation theory �41�

ns =
1

R
�
i=1

g

gi��i
s���i,

where g is the number of different inequivalent irreps of Sn,
gi the size of the ith conjugacy class and R the order of Sn.
For case of YTs with only two rows one can show that ns is

ns = �L − n

r − s
	 − � L − n

r + s − n − 1
	 .

Notice that the splitting of the initial irreps �L−r ,r
 implies
that

�
s=0

n

ns degn,s = degL,r

and the block decomposition of the RDM implies that

�
k=s

n−s

�n,k,s
L,N,r =

ns

degL,r
=
�L − n

r − s
	 − � L − n

r + s − n − 1
	

degL,r
, �15�

with s=0, . . . , � n
2 �. Equation �15� can be easily understood if

one notice that by multiplying both sides by the degeneracy
of the eigenvalue degn,s one obtains on the left hand side the
sum of all the eigenvalues associated with a tableau of a
given type �n−s ,s
 and on the right hand side the number of
states of symmetry n−s ,s divided by the number of states of
symmetry �L−r ,r
, this being just the correct weight one
would expect from the splitting of the initial tableau
�L−r ,r
 into tableaux of type �n−s ,s
. The sum rule is in-
deed a direct consequence of the splitting of the irreps of SL
into irreps of Sn discussed above.

As a simple application of Eq. �15�, we can derive the
analytical expression of the eigenvalues of the RDM corre-
sponding to sub-block of the block k=n /2 belonging to the
irreps � n

2 , n
2 
 �we assume here n even�. Since k=n /2 repre-

sents the maximal value of the filling permitted by the Sn

symmetry, there exists only one filled YT of type � n+1
2 , n−1

2 

in the block decomposition of �n. Equation �15� for
k=s=n /2 then gives �see also case ii� of Appendix B�:

�n,n/2,n/2
L,N,r =

�L − n

r − n
2
	 − � L − n

r − n
2 − 1

	
�L

r
	 − � L

r − 1
	 . �16�

�ii� Particle-hole exchange and sum rule with respect to N.
We now discuss a general property of the RDM eigenvalues
which is related to the exchange of spins up with spins down,
a property which we also refer to as particle-hole exchange.
This property allows to relate eigenvalues of the blocks Bk
with the ones of the block Bn−k for fixed N ,L ,r ,n ,s, as well
as, between N and L−N eigenvalues for fixed L ,r ,r ,s ,k
�these relations permits to reduce the computation of the
spectrum up to half-filling�. To this regard, we note that
blocks Bk and Bn−k differ only for having the number of spin
up and spin down exchanged. Since the dimensions of the
Hilbert spaces of the blocks are the same, the equality of the
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normalization conditions implies the equalities of the corre-
sponding weights in the blocks, e.g., weights must be invari-
ant under the particle-hole exchange �e.g., k→n−k�:

�n,k,s
L,N,r = �n,n−k,s

L,N,r . �17�

A similar equation is obtained when the particle-hole ex-
change is applied on the initial state �e.g., N→L−N�:

�n,k,s
L,N,r = �n,k,s

L,L−N,r. �18�

From the last two equations we also get that �n,k,s
L,N,r=�n,n−k,s

L,L−N,r.
These equalities, together with Eqs. �11� and �13�, imply that
eigenvalues of the block k with a fixed s ,N are related to the
ones of the block n−k with for the same value of s, N, as
well to eigenvalues with the same k, s, but with the initial
number of particle N replaced by L−N, by the following
relations:

�n,n−k,s
L,N,r =

� L − n

N − n + k
	

�L − n

N − k
	 �n,k,s

L,N,r, �19�

�n,k,s
L,L−N,r =

� L − n

L − N − k
	

�L − n

N − k
	 �n,k,s

L,N,r. �20�

Note from these equations that at half-fillings, i.e., for
k=n /2 or N=L /2 or both, the particle-hole exchange intro-
duces additional degeneracies in the RDM spectrum and be-
comes an exact symmetry of the system. Equations �19� and
�20�, together with the sum rule Eq. �15�, can be used to
derive the analytical expressions for the eigenvalues corre-
sponding to the filled YTs of type � n+1

2 , n−1
2 
 �in this case n is

odd�. To this regard we remark that this Sn symmetry allows
two values of the filling: k= n−1

2 and k= n+1
2 , so that from Eq.

�15� we get

�n,n−1/2,n−1/2
L,N,r + �n,n+1/2,n−1/2

L,N,r =

� L − n

r − n−1
2
	 − � L − n

r + n−1
2 − 1

	
degL,r

.

�21�

On the other hand from Eq. �19� we have

�n,n+1/2,n−1/2
L,N,r =

� L − n

N − n+1
2
	

� L − n

N − n−1
2
	�n,n−1/2,n−1/2

L,N,r .

Substituting this expression into Eq. �21� we obtain

�n,n−1/2,n−1/2
L,N,r =

2N − n − 1

2�L − n − 1�

� L − n

r − n−1
2
	 − � L − n

r + n−1
2 − 1

	
degL,r

.

For arbitrary fillings Eqs. �19� and �20� also allow to write
the following general identities

�n,k,s
L,L−N,r = �n,n−k,s

L,N,r .

From this equation we see that eigenvalues of the reduced
density matrices �n for N initial particles coincide with the
ones of L−N initial particles up to an exchange of particles
with holes �k↔n−k�. In view of these equalities the average
with respect to the filling of the eigenvalues of �n associated
with a YT of type �n−s ,s
 can be computed equivalently in
two different manner, e.g., either with respect to N, for fixed
L ,r ,n ,k, or with respect to k, for fixed L ,N ,r ,n, e.g.,

1

L − 2r + 1 �
N=r

L−r

�n,k,s
L,N,r =

1

n − 2s + 1�
k=s

n−s

�n,k,s
L,N,r.

Substitution of Eq. �15� in the right hand side of the above
equation leads to the sum rule of the RDM eigenvalues with
respect to N

�
N=r

L−r

�n,k,s
L,N,r =

L − 2r + 1

n − 2s + 1

�L − n

r − s
	 − � L − n

r + s − n − 1
	

degL,r
. �22�

V. ONE STEP RDM REDUCTION

In this section, we discuss recursion relations which allow
to link eigenvalues of �n−m to those of �n for arbitrary n and
m. In this respect, we consider the one step reduction
�n=
n,k,s→�n−1=Tr1��n�. After tracing out one site we obtain

Tr1�
n,k,s� = �
p=0,1

q=0,1

�n−1,k−p,s−q
n,k,s �n−1,k−p,s−q, �23�

with �n,k,s given by Eq. �9�. Note that the eigenvalues at the
initial step are given by �n,k�,s�

n,k,s =1 /degn,s�k,k��s,s� and that
after a single trace operation the numbers k� ,s�, can decrease
at most by one unity. Moreover, from Tr��n−1,k,s�=1 we have

�
p=0,1

q=0,1

degn−1,s−q�n−1,k−p,s−q
n,k,s = 1. �24�

One can show �see Appendix A� that the eigenvalues in-
volved in the one step reduction of the RDM are given by

�n−1,k−p,s−q
n,k,s degn−1,s−q =�

degn−1,s

degn,s

n − s − k

n − 2s
if

p = 0

q = 0
,

degn−1,s

degn,s

k − s

n − 2s
if

p = 1

q = 0
,

degn−1,s−1

degn,s

k − s + 1

n − 2s + 2
if

p = 0

q = 1
,

degn−1,s−1

degn,s

n − k − s + 1

n − 2s + 2
if

p = 1

q = 1
.

�
�25�

Schematically, one step reduction is depicted in Fig. 1. Re-
lations Eq. �25� imply the existence of recursive relations
among the eigenvalues of the RDMs which can be deter-
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mined as follows. A link between �n and �n−1 can be obtained
by noting that from Eq. �8� �n can be written as

�n = �
k,s

�n,k,s�n,k,s = �
k,s

�n,k,s degn,s �n,k,s, �26�

where we introduced �n,k,s as a shortcut notation for �n,k,s
L,N,r.

The RDM �n−1 is obtained from �n by tracing out one site
from it, using Eq. �23�, as

�n−1 = Tr1��n� = �
k,s

�n,k,sTr1��n,k,s�

= �
k,s

�n,k,s degn,s �
p=0,1

q=0,1

�n−1,k−p,s−q
n,k,s �n−1,k−p,s−q,

with �n−1,k−p,s−q
n,k,s given by Eq. �25�. Changing the order of the

summations and rescaling indices k and s by p and q, respec-
tively, we obtain

�n−1 = �
k,s

�
p=0,1

q=0,1

�n,k+p,s+q degn,s+q �n−1,k,s
n,k+p,s+q�n−1,k,s.

On the other hand, from Eq. �26� �n−1 is also given by
�n−1=�k,s�n−1,k,s�n−1,k,s and a comparison with the above ex-
pression gives

�n−1,k,s = �
p=0,1

q=0,1

degn,s+q �n−1,k,s
n,k+p,s+q�n,k+p,s+q

for any k ,s. By substituting the eigenvalues �n−1,k,s
n,k+p,s+q from

Eq. �25� we obtain the following recurrence relation for the
RDM eigenvalues:

�n − 2s��n−1,k,s = �n − s − k��n,k,s + �k − s��n,k,s+1

+ �k + 1 − s��n,k+1,s

+ �n − k − s − 1��n,k+1,s+1. �27�

This equation allows a complete determination of all RDM
eigenvalues. Indeed the recursive application of Eq. �27� to
the initial global density matrix eigenvalues for L sites Eq.
�5�, which are known due to property �i� in Sec. II, generates
all other eigenvalues for the RDM �n for n=L−1,L−2, . . .
etc. down to n=1. We remark that ascending relations �e.g.,
from n→n+1→ . . .L� for RDM eigenvalues can also be de-
rived by using, in addition to Eq. �27�, extra relations coming
from the sum rule Eq. �12�, these allowing to solve for a
complete set of algebraic equations for all step-up eigenval-
ues �we omit details for brevity�.

VI. RDM EIGENVALUES

The results of this section are summarized by the follow-
ing statement about the analytical expression of the RDM
eigenvalues:

The eigenvalues of the reduced density matrix �n of the
eigenstates of H with N particles belonging to the irreps of
SL characterized by YTs of type �L−r ,r
, with r

min�N , �L−N�� are given by

�n,k,s
L,N,r =

�L − n

N − k
	

�L

N
	 �

i=0

k−s �k − s

i
	�n − k − s

i
	

��
j=0

k−i

�− 1� j

�s

j
	

�L − N

j + i
	� N

j + i
	

��
m=0

j+i

�− 1�m�L − N − r

j + i − m
	� N − r

j + i − m
	� r

m
	 , �28�

with k ,s, quantum numbers taking the values
k=0,1 , . . . ,min�n ,N�, and s=0,1 , . . . ,min�k ,n−k�. The
corresponding degeneracies are given by degn,s= � n

s �− � n
s−1 �.

Equation �28� was given also in �35� without a proof.
Here, we remark that it satisfies all properties derived in the
previous section as one can easily check by using a symbolic
program. In particular, Eq. �28� satisfies the one step recur-
rence relation Eq. �27� from which the full RDM spectrum
can be obtained �by iterations� for arbitrary parameter values.
In the following we provide a proof of this fact in the ther-
modynamic limit, e.g., when the system size L gets infinitely
large L→�, but the ratios N /L, r /L remain finite:

lim
L→�

N

L
= p, lim

L→�

r

L
= � . �29�

This limit is particularly important for characterizing the ex-
istence of phase transitions. In our case, the infinite system
described by the Hamiltonian Eq. �1� undergoes a Bose-
Einstein condensation at finite temperature Tc �see Sec. IX�.
In the thermodynamic limit the RDM eigenvalues Eq. �28�
simplify to �see Appendix B�

�n,k,s
p,� = pn−kqk�1 − ��s�

i=0

k−s

�i�k − s

i
	�n − k − s

i
	 , �30�

=pn−kqk�1 − ��s
2F1�− k + s,k − n + s;1;�� , �31�

where 2F1�a ,b ;c ;z� is the Gauss hypergeometric function,
�n,k,s

p,� 
 limL→� �n,k,s
L,N,r, q=1− p and the new parameter � is

given by

� =
�p − ���q − ��

pq
. �32�

Substituting Eq. �31� into Eq. �27� and dividing by
pn−k−1qk�1−��s we have that the recursion relation in the
thermodynamic limit becomes

�a + b�Fa,b+1 = bpFa,b + �a − 1�qFa−1,b+1 + ap�1 − ��Fa+1,b+1

+ �b + 1�q�1 − ��Fa,b+2, �33�

where Fa,b+1 is a shorthand notation for 2F1�a ,b ;1 ;�� with
a=−k+s and b=k+s−n. Notice that in the context of the
RDM spectrum, a and b in Eq. �33� are negative integers and
the hypergeometric sum has always a finite number of terms
Eq. �30�. Equation �33�, however, is valid for arbitrary a ,b,
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i.e., for generic infinite hypergeometric series within their
convergence radius. The proof of Eq. �33� follows from the
Gauss contiguous relation between hypergeometric functions
�44�

�b − c�2F1�a,b − 1;c;�� + a�1 − ��2F1�a + 1,b;c;��

= �a + b − c�2F1�a,b;c;�� , �34�

from which the following two identities are obtained:

�a + b�Fa,b+1 = bFa,b + a�1 − ��Fa+1,b+1,

�a + b − 1�Fa,b = �a − 1�Fa−1,b + b�1 − ��Fa,b+1.

Note that the first identity follows by substituting c=1 and
b→b+1 in Eq. �34�, while the second identity follows by
setting c=1 in Eq. �34�, interchanging a and b and using the
symmetry of 2F1 with respect to the first two arguments. By
shifting the argument b→b+1 in the second identity, and
substituting them into Eq. �33� we have that the right-hand
side of this equation becomes �p+q��a+b�Fa,b+1 and, since
p+q=1, it coincides with the left hand side. This concludes
the proof of Eq. �28� in the thermodynamic limit.

In Fig. 2, we have depicted the spectrum of the RDM
obtained from Eq. �28� for the case n=6, L→� and com-
pared it with the limiting expression Eq. �30� for different
values of the p. We also remark that for the limiting case
�=0, �=1 Eq. �30� reproduces the result �n,k= pn−kqk� n

k � ob-
tained in �12�.

VII. SPECTRAL DISTRIBUTION FUNCTION

In this section we characterize the distribution function of
the RDM eigenvalues in the limit of large subsystem sizes n.
In particular, we show that the following statement is valid:

The distribution function of the RDM eigenvalues Eq. �30�
taken with their degeneracies, Q�k ,s�=�n,k,s

p,� degn,s, in the
limit of large n �n�1� asymptotically approaches the two-
dimensional Gaussian distribution with mean �k /n�=q,
�s /n�=�:

Q�k,s� � Qmaxe
−��s − n��2/2C+�k − nq�2/2D+�s−n���k−nq�/B�,

�35�

with

Qmax =
1 − 2�

2�n���1 − ���p − ���q − ��
,

B−1 =
�1 − 2���p − q�
n�p − ���q − ��

, D−1 =
�1 − 2��2

n�p − ���q − ��
, �36�

C−1 =
1

n��1 − ��
+

�p − q�2

n�p − ���q − ��
. �37�

We split the proof of this statement into two parts: in the
first part we show that the maximum of Q occurs at the point
�kmax /n=q+O� 1

n � ,smax /n=�+O� 1
n �� while in the second one

we evaluate the amplitude Qmax=Q�kmax,smax� and the be-

havior of Q around the maximum. The first part, being more
technical, is relegated to Appendix C and assumed for
granted in the following. We also fix parameters p ,�, as in
Eqs. �29� and �32� and concentrate on the dependence of Q
on parameters k /n ,s /n, assuming n�1, neglecting all finite
size corrections of order O� 1

n �. Using the thermodynamic ex-
pression of the eigenvalues in Eq. �30�, we write Q in the
form

Q�k,s� = P�
i=0

k−s

�i�M

i
	�K

i
	 �38�

with M =k−s, K=n−k−s and P given by

P = pn−kqk�1 − ��sdegn,s = �n

s
	n − 2s + 1

n − s + 1
pn−kqk�1 − ��s.

�39�

To evaluate the amplitude Qmax and the behavior of
Q�k /n ,s /n� around this point, we use the well known Gauss-
ian approximation of the binomial distribution

�Z

i
	�i�Z−i �

1
�2��2

exp�−
�i − Z��2

2�2 � ,

with 0��=1−��1 and �2=Z���1, together with the fact
�proven in Appendix C� that the major contribution to the
sum in Eq. �38� for k=kmax, s=smax, is obtained for i= imax
given by Eq. �C4�. This allows to approximate the sum in Eq.
�38� as

�
i=0

k−s

�i�i�M0

i
	�i�M0−i�K0

i
	�i�K0−i

� �
i=0

k−s
�i�i

�2��M0

2 �2��K0

2
e−�i − M0��2/2�M0

2
e−�i − K0��2/2�K0

2
,

�40�

with �i=1 / ��i�M0−i�i�K0−i�, �M0

2 =M0���1, �K0

2 =K0���1,
and M0, K0, �, �, �, and � given in Appendix C Using Eq.
�32� we find that the term

�i�i =
�1 − ��M0+K0−2i

pK0−iqM0−i � �p − ���q − ���1 − ��i

pq�q − ���p − �� �i

=
�1 − ��K0+M0

pK0qM0
=

�1 − ��n�1−2��

pn�p−��qn�q−��

does not depend on i, so that the sum Eq. �40� can be ap-
proximated with an integral �use �i=0

k−s . . . �n�0
q−�. . .dx� as

n�
0

q−� e−�i − M0��2/2�M0

2
e−�i − K0��2/2�K0

2

�2��M0

2 �2��K0

2
dx =

1

�2�n
�p−���q−��
�1−���1−��

,

where in the last step we used the fact that since
xm= �p−���q−�� / �1−�� is inside the segment �0,q−��, for
n�1 the integration interval can be extended to the whole
real axis. Collecting terms together, we have
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�
i=0

kmax−smax

�i�M0

i
	�K0

i
	 �

�1 − ��n�1−2��

pn�p−��qn�q−���2�n
�p−���q−��
�1−���1−��

.

Equation �36� follows by substituting the above expression
with kmax=nq, smax=n� in the definition of Q and using
Stirling formula for degn,s. Assuming that the behavior of
Q�k ,s� in proximity of the maximum can be approximated
by the equation obtained from Eq. �C6� by removing the
point evaluation and integrating, we get Eq. �35� with the
coefficients given by Eq. �37�. For consistency we check
that the above expression of Q leads to the correct normal-
ization of �, e.g., Tr���=�Q�k ,s�=1. Using the identity

�−�
� �−�

� exp�− 1
2�Aijxixj�=2� /det�A� and the expressions Eqs.

�36� and �37�, we get

Tr��� = � Q�k,s� = n2�
−�

� �
−�

�

Q�nx,ny�dxdy

= Qmax
2�

n2�CD − B2
= 1.

This conclude the proof of Eq. �35�.

VIII. VON-NEUMANN ENTROPY

The exact knowledge of the RDM spectrum allows to
calculate the von Neumann entropy as

1.0 0.8 0.6 0.4 0.2 0.0
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η
FIG. 2. Top Left panel. Eigenvalues Eq. �30� of the density matrix as function of �, for n=6, L→� , p=0.4. Thick lines show the

�n+1� eigenvalues with s=0 which survive at �=0 �the remaining 2n−n−1 eigenvalues vanish in this limit�. Top Right Panel. The same as
in the top left panel but for p=0.5 �half filling�. Thick lines show n eigenvalues with s=0 �each being double degenerate�, and the thick
broken line shows the only nondegenerate eigenvalue with k=3, s=0. The number of different curves is reduced to n /2+1 due to the
particle-hole symmetry Eq. �18� present at half-filling. Bottom Left Panel. Close up of the top right panel. Pairs of numbers �k ,s� mark
different eigenvalues �k,s. All eigenvalues have an additional degeneracy �due to particle-hole symmetry� except those of the block k=3.
Bottom Right Panel. Comparison of the eigenvalues for finite and infinite L, for n=6: shown are the RDM eigenvalues of the block k=3 and
s=0,1 ,2 ,3 �groups of curves from top to bottom�. Solid lines correspond to the thermodynamic limit 30�, while circles, dotted and dashed
lines correspond to L=10, 50, and 100 �Eq. �28��, respectively. Parameters: p=0.5.
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S�n� = − Tr��n log �n� = − � degk,s �n,k,s
L,N,r log �n,k,s

L,N,r.

It is instructive to investigate the thermodynamic limit of
large n�1 and infinite L, for which we can use the approxi-
mation Eq. �35�. We obtain �see �35� for details�

S�n� = − �
k=0

n

�
s=0

min�k,n−k�

Q�k,s�log2
Q�k,s�
deg �ks

. �41�

Substituting the sums with the integrals and using the nor-
malization �Q�k ,s�=1 and Eq. �35�, we obtain

S�n� � − n�� log2 � − �1 − ��log2�1 − ��� +
1

2
log2 n + R�p,��

�42�

with R�p ,�� a smoothly varying function of p ,� �see right
panel of Fig. 3�. For special cases for which Eq. �35� cannot
be applied, S�n� is given by different expressions �see subsec-
tion below�. It is interesting to note that the extensive term,
which gives the major contribution in the large n limit, co-
incides with the Boltzmann microcanonical entropy obtained
in the limit L→� , r /L→�, as

lim
n→�

S�n�

n
= lim

L→�

1

L
log�degL,r� �43�

=� log2 � − �1 − ��log2�1 − �� . �44�

Here we have used the Stirling formula to estimate the de-
generacy of eigenvalues as degL,r� 1−2�

�1−��L−r+1�r .

In Fig. 3 we compare the VNE obtained by using the
exact expressions of the RDM eigenvalues in Eq. �28� with
the one obtained in the thermodynamic limit as function of n
for different values of � / p using the constant R�p ,�� in Eq.
�42� as fitting parameter. In the right panel of this figure the
dependence of R�p ,�� on p for different values of � is de-
picted. Note that for given �, the const R has its maximum at
p=0.5 and is symmetric around this value with p allowed to

vary from � to 1−�, this being a consequence of the
particle-hole symmetry. Also note that the estimate Eq. �35�
diverges in the points �=0, and �p−���q−��=0 �see Eq.
�36��. These special cases are therefore considered separately
below.

�i� Case �=limL→�
r
L =0. Here we shall consider the ex-

tremal case, r=0, for which the state of the large system is a
pure symmetric state. For r=0, and finite L, the RDM spec-
trum for �n consists of only n+1 nonzero nondegenerate ei-
genvalues and is given by the hypergeometric distribution
�n,k,s

L,N,0=�s,0� n
k �� L−n

N−k � / � L
N �. In the thermodynamic limit Eq. �29�

it becomes �we omit here index s=0 for brevity�
�k=qkpn−k� n

k �. The von-Neumann entropy is readily calcu-
lated, noting that for npq�1

�k �
1

�2�npq
exp�−

�k − nq�2

2npq
� .

Replacing the sum ��k log2 �k with the integral over real
axis, we obtain

S�n� =
1

2
log2 n +

1

2
log2 2�epq . �45�

In the finite system of size L, the first term in the above will
be replaced by 1

2 log2
n�L−n�

L , see �12�. Note also that for sym-
metric states leading to the von Neumann entropy Eq. �45�,
other measures of entanglement, related to the distance to the
closest separable state, can also be computed �42,43�.

�ii� Case �p−���q−��=0. Because of the particle-hole
symmetry, it is enough to consider the case p−�=limN−r

L
=0. Also here we shall consider the extremal case
N=r, and start from finite system of size L. For N=r the
eigenvalues of the block k do not depend on s and are given
by
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FIG. 3. Left: Von Neumann entropy in the thermodynamic limit, as function of n for p=0.5, and different �. Data sets �top to bottom�
correspond to � / p=0.001, 0.2, 0.5, 0.7, 0.9, and 0.999. Continuous curves correspond to the analytic prediction Eq. �42� with R as fitting
parameter while dots refer to direct calculations of VNE using the exact expressions of the RDM eigenvalues. Right: Behavior of R�p ,�� in
Eq. �42� as a function of p for different �=0, 0.02, 0.1, 0.2, 0.3, and 0.4 �data sets from top to bottom�.
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�n,k,s
L,N,r=N =

�L − n

N − k
	

�L

N
	 .

In the thermodynamic limit we have �k,s=qkpn−k. Since the
eigenvalues do not depend on s, each eigenvalue qkpn−k has
degeneracy � n

k �. The VNE then is �note that �=min�p ,q��

S�n� = − �
k=0

n �n

k
	qkpn−k log2 qkpn−k

= n�� log2 � − �1 − ��log2�1 − ��� , �46�

the sum being exact for arbitrary n.

IX. APPLICATION TO HARDCORE BOSONS

As an application of the above results in this section we
discuss the VNE as a function of the temperature for a sys-
tem of hard-core bosons described by the Hamiltonian Eq.
�1�. Our interest in this system resides in the fact that it
exhibits a phase transition to a Bose-Einstein condensate
�BEC� of hard-core bosons at T=Tc�0 �36,37�. The above
RDM analytical results provide a nearly unique opportunity
to investigate the interplay between quantum and thermody-
namical properties. This problem has been also recently in-
vestigated in �35� to which we refer for details.

The occurrence of a Bose-Einstein condensation in this
system can be inferred directly from the free energy per site
F /L=�min /� where

�min = �p2 + min
���0,min�p,q��

�����1 − �� + � log � + �1 − ��log�1 − ��� ,

�47�

up to corrections of the order O�L−1�. The extremum condi-
tion for �min leads to the equation

������ =
1

�1 − 2���
ln�1 − ��

�� 	 , �48�

This expression shows the existence of a phase transition to
BEC at Tc�p�= ����p��−1, with the density of particles in the
condensate phase given by �36�

�c = �p − �������q − ������ �49�

below Tc and �c=0 above Tc �see Fig. 4�. Remarkably, the
rescaled condensate density, �c / �pq�, playing the role of or-
der parameter which changes from 1 at T=0 to 0 at T=Tc, is
equal to the parameter � in Eq. �32� which determines RDM
eigenvalues �see Eq. �31�, e.g., we have that �c / �pq�=��.

To characterize the scaling law of the VNE across the
phase transition to hard-core BEC, we consider the thermal
VNE for a block of size n defined as

S�n���� = Tr��n���log2 �n���� , �50�

where

�n��� =
1

Z
�
r=0

N

e−�ErTrL−n��L,N,r�

denotes the thermal RDM. For each given � the major con-
tribution to the expression for S�n���� Eq. �50� comes from
terms with given r /L=�� ratio, minimizing �min in Eq. �47�.
For zero temperature T=0, the S�n���� is given by the expres-
sion Eq. �45�. Above the critical temperature T�Tc the
S�n���� is given by Eq. �46�. Note that the expression Eq. �46�
coincides with the Gibbs entropy obtained from the spectrum
of the whole system Eq. �3� in the thermodynamic limit
E�L ,� , p� /L��−�2+ p2, as

SGibbs =
1

L
lim
L→�

��E − F�
L

, �51�

where F /L=�min /� and �min is given by Eq. �47�. Inserting
the expressions for E and F into Eq. �51� we obtain Gibbs
entropy

SGibbs = − � log � − �1 − ��log�1 − �� .

For intermediate temperatures 0�T�Tc, the entropy S�n����
is given in the thermodynamic limit by the general expres-
sion Eq. �42� which includes both the Gibbs contribution
proportional to n and the quantum T=0 contribution propor-
tional to log n �45�.

Combining these results together we have �35�

S�n� =�
1

2
log n +

1

2
log2 2�epq for T = 0,

SGibbsn +
1

2
log n + R�p,�� for 0 � T � Tc,

SGibbsn for T � Tc,
�

which clearly show the crossover from the pure quantum
�T=0� regime to classical thermodynamics �T�Tc�.

X. CONCLUSIONS

In this paper, we have presented a detailed investigation
of the spectral properties of the RDM and of the VNE of
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FIG. 4. The density of the Bose-Einstein condensate for the
hardcore bosons versus temperature �dimensionless�, for different
p=0.5, 0.3, and 0.1 �from top to bottom�.
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permutational invariant quantum many-body systems for ar-
bitrary parameters. To this regard we have used the irreduc-
ible representations of the symmetric group Sn and the con-
servation of the number of particles �Sz for the case of spins�
to achieve the complete block diagonalization of the RDM
for arbitrary initial states, sizes of the subsystem, symmetry
properties and filling factors. An analytical expression for the
RDM spectrum has been rigorously proved in the thermody-
namical limit. Several sum rules and recurrence relations
which are linked to symmetry properties and are satisfied by
the RDM eigenvalues for arbitrary parameters, were consid-
ered. Particle-hole exchange and the half-filling symmetry
were also discussed. The distribution function of RDM ei-
genvalues has been investigated in the thermodynamical
limit for which we proved that it approaches a Gaussian as
the size n of the block increases.

As a specific application we considered the case of a sys-
tem of N hard-core bosons with infinite range interactions
which undergo a Bose-Einstein condensation at T=Tc. For
this system we investigated the thermal RDM and the VNE
as a function of the block size and of the temperature, show-
ing the existence of a crossover from �quantum� logarithmic
behavior of the VNE at T=0 to a purely �classical� linear one
for T�Tc.

The results of this paper show that, in spite of their
infinite-range interactions, permutational invariant systems
have very interesting and nontrivial RDM and VNE proper-
ties which allow to investigate the entanglement in the sys-
tem from purely quantum behavior to classical thermody-
namics. A challenging problem for the future will be to
investigate implications of our results for RDM and VNE of
many-body systems with finite range interactions, taking ad-
vantage of the fact that any finite symmetry group �like the
cyclic group of translational invariant systems� is a subgroup
of the permutation group.
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APPENDIX A: ONE STEP RDM REDUCTION
EIGENVALUES

In this appendix we compute the eigenvalues involved in
the one step RDM reduction of Sec. V The �-s are
determined by recursive application of the sum rules
Eqs. �15� and �22� to sectors k=s ,s+1, . . . ,n−s. Suppose we
know all �n−1,k,s�

n,k,s for a given sector k. Going from k to
k+1, the sum rule Eq. �22� gives �apply the sum for case
L→n ,N→k+1,r→s ,n→n−1,k→k ,s→s��

�n−1,k,s�
n,k,s + �n−1,k,s�

n,k+1,s =
k − 2s + 1

n − 2s�

1

degn,s
, for s� = s,s − 1,

�A1�

from which �n−1,k,s�
n,k+1,s is determined. Similarly, from the sum

rule Eq. �15� we can determine eigenvalues �n−1,k+1,s�
n,k+1,s of the

k+1 sector via

�n−1,k,s�
n,k,s + �n−1,k−1,s�

n,k,s =
1

degn,s
, for s� = s,s − 1. �A2�

To start the recursive procedure the knowledge of �n−1,k,s
n,k,s in

the sector k=s is required. These are easily obtained by ob-
serving that Eq. �23� for the sector k=s involves only three
contributions, e.g.,

Tr1
n,k=s,s = �n−1,s,s
n,s,s �n−1,s,s + �n−1,s,s−1

n,s,s �n−1,s,s−1

+ �n−1,s−1,s−1
n,s,s �n−1,s−1,s−1.

because a filled YT of type �n−s−1,s
�k=s−1� cannot exist.
Then, the identity Eq. �A2� applied for s�=s gives
�n−1,s,s

n,s,s = 1
degn,s

, while the identity Eq. �A1� applied for
k=s−1 and s�=s−1 gives �n−1,s−1,s−1

n,s,s = n−2s+1
n−2s+2

1
degn,s

.
Finally, since the sum of all eigenvalues in the sector
is 1, we obtain the remaining term as �n−1,s,s−1

n,s,s degn−1,s−1

=1−degn−1,s �n−1,s,s
n,s,s −degn−1,s−1 �n−1,s−1,s−1

n,s,s = 1
n−2s+2

degn−1,s−1

degn,s

�notice that the normalization of the eigenvalues follows
from the identity degn,s=degn−1,s+degn−1,s−1�. Alternatively,
the unknown coefficient �n−1,s,s−1

n,s,s can also be determined us-
ing the Eq. �A2� for s�=s−1. Having determined the �-s of
the sector k=s one can determine the ones of sector k=s+1
etc. Iterating the procedure, leads to the final expressions in
Eq. �25�.

APPENDIX B: LIMITING CASES OF RDM EIGENVALUES

Different limiting cases of Eq. �28� are computed below.
�i� Case r=0. From Eq. �28� we see that the sums on m

and on j contribute only with the terms m=0 and j=0 and
eigenvalues reduce to

�n,k,0
L,N,0 =

�L − n

N − k
	

�L

N
	 �

i=0

k �k

i
	�n − k

i
	 =

�L − n

N − k
	

�L

N
	 �n

k
	 .

This is the same expression obtained for symmetric states in
�12�.

�ii� Case k=s=n /2 �n even�. The sum on i in Eq. �28�
contributes only with i=0 and �n,n/2,n/2

L,N,r reduces to

� L − n

N − n/2 	
�L

N
	 �

j=0

k �− 1� j� n
2

j
	

�L − N

j
	�N

j
	

��
m=0

j

�− 1�m�L − N − r

j − m
	�N − r

j − m
	� r

m
	 .
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The double sum in this expression is evaluated as
� L
N �

� L−n
N−n/2 �

� L−n
r−n/2 �−� L−n

r−n/2−1 �

�L
r �−� L

r−1 �
and the result in Eq. �16� is obtained.

�iii� Case L→�. In this case there is only the term m=0
which contributes to the m sum in Eq. �28� �other terms will
vanish in the limit� so that limL→� �n,k,s

L,N,r becomes:

�L − n

N − k
	

�L

N
	 �

i=0

k−s �k − s

i
	�n − k − s

i
	

��
j=0

k−i

�− 1� j�s

j
	�

L − N − r

j + i
	�N − r

j + i
	

�L − N

j + i
	� N

j + i
	

� pkqn−k�
i=0

k−s �k − s

i
	�n − k − s

i
	�− 1�i�

j=i

k

�− 1� j� s

j − i
	� j ,

�B1�

where we used

�L − n

N − k
	

�L

N
	 � pkqn−k,

�L − N − r

j
	�N − r

j
	

�L − N

j
	�N

j
	 � � j ,

with p ,� given by Eqs. �29� and �32�, respectively, and with
q=1− p. The last summation in Eq. �B1� can be explicitly
carried out as

�
j=i

k

�− 1� j� j� s

j − i
	 = �

u=0

k−i

�− ��u+i�s

u
	 = �− ��i�1 − ��s.

for any 0
 i
k−s. Substitution into Eq. �B1� gives

lim
L→�

�n,k,s
L,N,r = pkqn−k�1 − ��s�

i=0

k−s

�i�k − s

i
	�n − k − s

i
	 ,

this proving Eq. �30�.

APPENDIX C: MAXIMUM OF Q(k ,s)

In this appendix we prove that the maximum of
Q�k ,s�, Qmax, occurs at the point �kmax=nq , smax=n��, as-
suming n�1 and neglecting all finite size corrections of or-
der O� 1

n �. To this regard we use the thermodynamic expres-
sion of Q given in Eq. �38� and the following identities

�

�i
log�M

i
	 � log

M − i

i
,

�

�k
log�M

i
	 � M� log

M

M − i
,

�C1�

which directly follow from the Stirling formula. Observing
that �

�kF=F �
�k �log F�, we have can compute the derivative

with respect to k as

�Q

�k

 Q�

= Q
�

�k
log�P� + P�

i=0

k−s

�i�M

i
	�K

i
	 �

�k
log��M

i
	�K

i
	�

� Q log
q

p
+ P�

i=0

k−s

�i�M

i
	�K

i
	

��M� log
M

M − i
+ K� log

K

K − i
	

� Q�log
q

p
+ log

M

M − imax
− log

K

K − imax
	 , �C2�

with the prime denoting derivation with respect to k. In the
last passage we used M�= �

�k �k−s�=1, K�=−1 and the fact
that the logarithm is a slowly varying function to approxi-
mate the log terms in the sum with their values taken at the
point i= imax for which

�

�i
log��i�M

i
	�K

i
	� = 0.

From this, using Eq. �C1�, it follows that

imax
2 �− 1 + �� − ��M + K�imax + �MK = 0, �C3�

which gives, using Eq. �32�,

imax = �
npq

1 − �
= n

�p − ���q − ��
1 − �

. �C4�

It is convenient to introduce imax=M0�=K0� where the
subscript zero denotes �here and below� the evaluation
at the point �kmax=nq , smax=n��, e.g., M0=n�q−��,
K0=n�1−q−��=n�p−��. We then have

� M

M − imax
	

0
=

1

�
, � K

K − imax
	

0
=

1

�
,

with quantities �, �=1−�, �, and �=1−� given by

� =
p − �

1 − �
, � =

q

1 − �
, � =

q − �

1 − �
, � =

p

1 − �
.

�C5�

Thus, from Eq. �C2� we obtain

� �Q

�k
	

0
= Q0�log

q

p
+ log

�

�
	 = 0,

where Q0=Q�k=kmax,s=smax�
Qmax. Similarly, we find that

�Q

�s
= Q�log

n − s

s
+ log�1 − �� + O�1

n
	

− log
M

M − imax
− log

K

K − imax
� ,

with the term O� 1
n � arising from the differentiation of

the constant n−2s+1
n−s+1 , and where we have again used the

slowness of log function and �M
�s = �K

�s =−1. At the point
kmax=nq , smax=n� we have
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� �Q

�s
	

0
� Q0�log

1 − �

�
+ log

��1 − ��
pq

+ log����� = 0.

Having proved that k=nq , s=n� is an extremal point for
Q�k ,s�, we check the positiveness of the quadratic form
�
−� �2Q

�k2 �k2+2 �2Q
�k�s�k�s+ �2Q

�s2 �s2� at this point. We have

� �2Q

�k2 	
0

= Q0
�

�k
�log

q

p
+ log

M

M − imax
− log

K

K − imax
	

=
M�

M
−

�M − imax��
M − imax

−
K�

K
+

�K − imax��
K − imax

.

By differentiating Eq. �C3� with respect to k and to s and
using Eq. �C4�, we obtain

� �imax

�k
	

0
= p − q, � �imax

�s
	

0
= − 1 +

2pq

1 − �
,

which are needed for the second derivatives of Q. We find:

1

Q0
� �2Q

�k � s
	

0
=

1

Q0
� �2Q

�s � k
	

0
=

�1 − 2���p − q�
n�p − ���q − ��


 −
1

B
,

1

Q0
� �2Q

�s2 	
0

= −
1

n��1 − ��
−

�p − q�2

n�p − ���q − ��

 −

1

C
,

1

Q0
� �2Q

�k2 	
0

= −
�1 − 2��2

n�p − ���q − ��

 −

1

D
, �C6�

which coincide with the expressions given in Eq. �37�. More-
over, we see that C�0,D�0,CD−B2�0, this implying
that the above quadratic form � is positive definite and
�k=nq , s=n�� is a maximum.
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