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The phase behavior of confined nematogens is studied using the Lebwohl-Lasher model. For three-
dimensional systems the model is known to exhibit a discontinuous nematic-isotropic phase transition, whereas
the corresponding two-dimensional systems apparently show a continuous Berezinskii-Kosterlitz-Thouless-like
transition. In this paper, we study the phase transitions of the Lebwohl-Lasher model when confined between
planar slits of different widths in order to establish the behavior of intermediate situations between the pure
planar model and the three-dimensional system, and compare with previous estimates for the critical thickness,
i.e., the slit width at which the transition switches from continuous to discontinuous.
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I. INTRODUCTION

The Lebwohl-Lasher �LL� model �1–6� is a lattice model
of an anisotropic fluid. Each site of the lattice is occupied by
a uniaxial molecule. A molecule interacts exclusively with
molecules located at its nearest-neighbor �NN� sites. The to-
tal potential energy takes the form:

U = − ��
�ij�

P2�si · s j� , �1�

where � is the coupling parameter ���0�, si and s j are unit
vectors that indicate the orientation of the molecules in the
corresponding sites, P2 is the second degree Legendre poly-
nomial, and �ij� indicates that the sum is restricted to NN
pairs of sites. The LL model can be deemed as the lattice
version of the hard sphere Maier-Saupe �HSMS� fluid
�7–12�. Most of the simulation work on the LL model has
been carried out on simple cubic lattices for three-
dimensional �3D� systems, and square lattices for the two-
dimensional �2D� case, although some variations have also
been considered �6�.

A number of papers have been devoted to the analysis of
the phase diagram of the LL model using computer simula-
tion. The model in 3D has been found to exhibit a discon-
tinuous nematic-isotropic transition �2–5�. The planar
Lebwohl-Lasher �PLL� model, defined on a square lattice has
also been treated extensively using computer simulation
�13–17�. From this set of results it has been suggested that
the PLL model presents a topological defect driven continu-
ous transition of the Berezinskii-Kosterlitz-Thouless �BKT�
type �18,19�. Notice however, that some differences between
the transition of the PLL model and that of the two-
dimensional XY model �the paradigm for the topological
BKT behavior� have been recently reported �17�.

In this paper, we will pay attention to the nature of the
phase transitions of this system under confinement in a slit
pore, and will study the influence of the pore width on the
transition. Herein we will be dealing with slits formed by
neutral walls, by which the systems under consideration will
be, in fact, slab models. In this regard, rigorous results
�20–22� indicate that this type of models cannot support true
long range order at finite temperature �in common with bidi-
mensional systems �23��. This implies that in our context of

slab and planar systems, we may encounter phases with
quasi-long-range orientational order, which will be here re-
ferred to as quasinematics. From the point of view of simu-
lation, the LL model confined in slit pores was previously
studied by Cleaver and Allen �24�. They concluded that the
system has a critical thickness, Hc, below which there is no
bulklike transition. The existence of such a multicritical
point in the T-H plane �where T is the temperature and H is
the thickness of the slab� can be explained using theoretical
arguments �25–27�. Nonetheless, according to the theoretical
approach of Telo da Gama and Tarazona �26�, in the case of
neutral walls, one should expect Hc→�. Here, we will ad-
dress this issue resorting to simulation techniques, and ana-
lyzing the results obtained for system sizes much larger than
those considered in Ref. �24�. We will thus assess the bounds
proposed therein for such a possible critical thickness.

In close connection with this work, the effect of the con-
finement on the isotropic-nematic transition has been studied
in Ref. �12� for the HSMS model, where it was found that for
some temperatures the first order isotropic-nematic transition
can disappear when the system is confined in flat slits with
thickness below a certain width Hc�T�. For smaller values of
the pore width, H�Hc�T�, a BKT-like transition appears.
Nevertheless, in the HSMS model one has to deal with den-
sity fluctuations that are not present in the LL model, and this
could influence the phase behavior. Notice, that it is however
possible to introduce density fluctuations within a lattice
model, as it can be seen in the so-called Lebwohl-Lasher
lattice gas model �28�.

Also related to the present work, a very recent article by
Fish and Vink �29� focuses on the effects of confinement on
a generalized version of the LL model, in which the angular-
dependent component of the interaction is ��si ·s j�p. These
authors analyze the behavior of the model for values of
p�8 �note that in the present instance p=2� for which they
show there is a well-defined critical thickness that vanishes
for large values of p when the phase transition becomes first
order even in the two-dimensional limit.

In summary, when going from the LL bulk behavior to
that of the confined system, we should be able to sort out
between various possible scenarios. First, the transition be-
tween that isotropic and nematic phase might be second or-
der, being the ordered phase not critical below the transition
temperature, with a finite and nonzero order parameter and a
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diverging susceptibility only at the critical point. This situa-
tion is in principle ruled out by the exact results that preclude
the existence of long range order �i.e., a nonvanishing order
parameter� in our model �20–22�. Another possibility, would
be the presence of a continuous BKT transition, in which
below the transition temperature the system exhibits quasi-
long-range orientational order �quasinematic phase with a
vanishing order parameter� and the susceptibility diverges at
all temperatures below the transition temperature. Some
subtle issues, regarding what a true BKT transition implies in
connection with the discussion of Ref. �17� will be addressed
in later sections of this paper. Finally, another alternative is
illustrated by the generalized XY and related models �30–34�,
which for sufficiently “sharp and narrow” interactions �34�
have been shown to undergo a first order transition between
the isotropic and quasinematic phases. It is thus, the aim of
this work to provide additional information in order to be
able to discern between those scenarios.

The rest of the paper is organized as follows; after this
introduction, in Sec. II we describe the simulation method-
ology and summarize the details of the calculations and sys-
tems under consideration. In Sec. III, we present our main
results and discuss our most relevant conclusions.

II. SIMULATION TECHNIQUES

We will deal with systems consisting of L�L�H sites.
Periodic boundary conditions �PBC� are applied on the x and
y directions, and the systems are confined by neutral walls in
the z direction. For a given slab thickness, H, results for
different values of L are taken into account in order to per-
form the finite-size scaling analysis. We have here studied
systems with H=1, 2, 3, 4, 5, 8, and 16. For each value of H
we have considered a series of L values, namely, L=10, 15,
20, 25, 30, 25, 40, 45, 50, 60, 80, 100, 120, 140, 160, and
200.

In addition we have also simulated various systems using
PBC in the three spatial directions. In particular, systems
with H=16 and different values of L, so as to analyze the
effects of the boundary conditions on the transitions. Fully
cubic systems L�L�L with PBC were also simulated in
order to represent the 3D bulk system. Obviously, we will
not be dealing here with “true” bulk systems, but we will use
the results of nonconfined isotropic periodic systems, after a
finite size scaling analysis is performed, as a good approxi-
mation to the bulk system results. For simplicity, these cor-
rected results will be referred to as “bulk” data.

We have performed Monte Carlo simulations combining
single particle Monte Carlo steps with cluster algorithms
�4,9,35� using multicluster moves �36,37�. For given values
of the system sizes, L, and H we performed independent
simulation runs at several temperatures close to the range
where the transitions are expected. The results were analyzed
using efficient reweighting procedures �36,38�. The simula-
tion procedures have been adapted from our previous works
to the simpler lattice system, and technical details can be
found elsewhere �9–11�. In order to locate the isotropic-
quasinematic transitions we monitored the largest eigen-
value, �+ of Saupe’s tensor �39�:

Q	
 =
1

2N
�
i=1

N

�3si
	si


 − �	
� . �2�

For a given system size, described by the lengths L and H we
can define pseudocritical temperatures, Tc�L ,H�, in terms of
the behavior of �+ as a function of the temperature, and also
in terms of the temperature dependence of the susceptibility,
this quantity being defined by means of the fluctuation of the
order parameter as

� = N���+
2� − ��+�2�/kBT . �3�

In practice, we consider two criteria to determine the pseudo-
critical points, namely the temperature at which �, as defined
in Eq. �3�, is maximum, and the temperature that gives the
largest value of �d�+ /dT�. Then, one can use the pseudocriti-
cal temperatures to extrapolate the transition temperature in
the thermodynamic limit �L→��. Following the usual prac-
tice �13,14�, we have used both the expected scaling for BKT
transitions �14,40�,

Tc�L� = Tc +
a1

�a2 + ln L�2 , �4�

and the scaling equation of second-order transitions �13,14�:

Tc�L� = Tc + a1L−1/. �5�

Notice that we have not used the loci of maxima of the
excess heat capacity per particle, cv, as an additional crite-
rion to define pseudocritical temperatures. This alternative
was used in �24�, but most likely is not a good choice for
systems that might exhibit a BKT-like transition �e.g., for
small values of H�. In such a case, the maximum in cv is not
well defined and does not diverge with increasing sample
sizes. Therefore it is not obvious that its location signals the
presence of a phase transition. It is worth mentioning that we
have implicitly assumed in Eq. �4� an exponential divergence
of the correlation length ��ebt, with =1 /2; this value of 
is known to be appropriate for the XY model �14,19,40�. We
decided to use =1 /2 following Ref. �14�, due to the fact
that a sensible fitting of the simulation results to a nonlinear
equation involving four adjustable parameters would require
both a much larger range of values of L and very precise
simulation results.

III. SIMULATION RESULTS

In Figs. 1–4, we depict the temperature dependence of �+,
�, d�+ /dT and cv, for different system sizes and pore widths.
It can be seen that the dependence of these properties on L is
qualitatively similar for the three slit widths considered in
the figures. For a given slit width, the susceptibility � di-
verges with L both at the temperature corresponding to the
maximum and below. The curves of ��+� as a function of T
exhibit an inflection point, and the derivative of �+ with re-
spect to T seems to diverge at a given critical temperature. It
is to be stressed that the values of �+ below the apparent
transition temperature decrease with increasing sample sizes,
in contrast with the expected behavior from first and second
order transitions. On the other hand, the heat capacity exhib-
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its a maximum which does not diverge with L. The behavior
of all these properties around the transition temperature re-
sembles that of a topological BKT transition, and it is clearly
different from what one should expect in the presence of a
weak first order transition. A second order transition might
exhibit nondivergent heat capacity curves �with negative 	
exponent�, but the decrease of �+ and divergence of � below
the pseudocritical Tc�L ,H�, fit better into the picture of a
continuous phase change which shares a number of features
with the continuous BKT transition. For the sake of compari-
son, in Fig. 5 we summarize the results of simulations for
unconfined systems using cubic boxes of different sizes with
full PBC. It seems evident that the qualitative behavior of the

confined system is quite different from that of the bulk,
which is known to present a weak first order isotropic-
nematic transition �4�.

Returning to the confined system, in Table I we gather the
results for the estimates of its transition temperatures for dif-
ferent slit widths calculated using the two aforementioned
definitions of the pseudocritical temperatures, and the two
scaling laws. The results for H=1 agree with those reported
in Ref. �14�, but differ slightly from those reported in Ref.
�13� using the scaling laws of second-order transitions. The
results of the table show that the estimates of the transition
temperature are conditioned by the scaling law used in the
extrapolation to the thermodynamic limit. However, the re-
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FIG. 1. �Color online� Order parameter �+ as a function of the
temperature for different system widths, H=1,4 ,16, and different
systems sizes, L. Symbols denote the result of different simulation
runs, and lines represent the results of the reweighting analysis. The
legends in the figures indicate the different values of L.
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FIG. 2. �Color online� Order parameter susceptibility, � as a
function of the temperature for different system widths, H
=1,4 ,16, and different systems sizes, L. Symbols and lines as in
Fig. 1.
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FIG. 3. �Color online� Absolute value of the derivative of the
nematic order parameter with respect to the temperature, �d�+ /dT�
as a function of the temperature for different system widths, H
=1,4 ,16, and different systems sizes, L. Symbols and lines as in
Fig. 1.
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different systems sizes, L. Symbols and lines as in Fig. 1.
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sults hardly depend, within error bars, on the particular defi-
nition of the pseudocritical temperature. The variation of the
transition temperature with H is monotonic, and the transi-
tion temperatures approach smoothly the bulk value as H
increases. This is more clearly seen in Fig. 6, where one
can appreciate the quasilinear dependence of Tc �as calcu-
lated from Eq. �4�� on 1 /H. This Kelvin-like scaling of the
transition temperature leads to an extrapolated value
limH→� Tc�H�=1.123�0.005 that agrees rather well with the
bulk value Tc=1.1225�1�, which we have obtained using cu-
bic systems with full PBC, and in accordance with the results
of Priezjev and Pelcovits �4�. Note, however that the Kelvin
scaling only applies strictly to first-order phase transitions. In
the case of second order transitions, correction terms must be
incorporated �41–43�. From our discussion it is clear that in
our case a first-order phase transition is ruled out, so devia-
tions from linearity could in principle be ascribed to the con-
tinuous character of the transition. It is worth stressing that
Tc estimates become independent of the scaling relation used
as H increases. This is an indication, that even if the transi-
tion can still be cast into the BKT-like type for growing H,
its scaling behavior is gradually switching to that of a regular
order-disorder transition.

We also include in Table I the estimates of the scaling
exponent for the maximum of the susceptibility, � /, which
can be drawn from the scaling relation:

�max�L� 	 L�/. �6�

The results of this exponent depend on the pore width, and
constitute further evidence that no first-order transition ap-
pears for the system sizes considered. One should expect in
this latter instance a scaling of the type �max�L�	HL2, well
away from the values obtained here for any width. Inciden-
tally, in the H=1 case the value is relatively close to the
two-dimensional Ising critical exponent �44�, � /=7 /4, and
in agreement with the value reported by Kunz and Zumbach
�14� � /=1.72�0.05. For larger slit widths, the value of
� / decreases, what further deviates from the limiting be-
havior of a first order transition when H→��� /=2�. This
implies that in the range 0�H�� one should expect a non-
monotonic behavior of � /, as was already found in the con-
fined HSMS fluid �12� and it is a clear indication that H
=16 is still far away from the first order transition limit. This
situation is in contrast with the results recently reported by
Fish and Vink �29� for the generalized LL model with p=8.
In this case the angular interaction is much narrower than
that of the simple LL model and bears some resemblance
with the q-state Potts model �32,34� �with q�
p�. Fish and
Vink found that � / grows from 1.63 in the two-dimensional
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TABLE I. Estimates of the isotropic-quasinematic transition temperature in the thermodynamic limit,
using different prescription of the pseudocritical temperatures and scaling laws �see the text for details�; and
scaling exponents � / for the maxima of the susceptibility �. The transition temperature in the bulk system
is TN−I=1.1225�1�. Error bars across the table are shown between parentheses in units of the last figure and
correspond to a confidence level of 95%.

H 1 2 3 4 5 8 16

Tc ��, Eq. �4�� 0.514�2� 0.772�4� 0.889�3� 0.963�3� 1.000�2� 1.062�1� 1.104�1�
Tc ��d�+ /dT�, Eq. �4�� 0.508�4� 0.764�7� 0.889�5� 0.956�4� 0.999�3� 1.062�2� 1.104�1�
Tc ��, Eq. �5�� 0.536�3� 0.782�3� 0.905�3� 0.973�3� 1.010�2� 1.067�1� 1.105�1�
Tc ��d�+ /dT�, Eq. �5�� 0.531�4� 0.786�5� 0.906�4� 0.969�3� 1.008�2� 1.067�1� 1.105�1�
� / 1.69�2� 1.65�3� 1.63�3� 1.59�3� 1.60�4� 1.49�3� 1.40�7�
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FIG. 6. �Color online� Pore width dependence of the transition
temperatures estimated using the scaling law Eq. �4�. The result of
a linear fit to 1 /H is represented by a solid line. Values taken from
Refs. �2,4,14� are also included for comparison. Note that the bib-
liographic values and those of this work fall on top of each other
and can hardly be distinguished.
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limit approaching � /→2 as the critical Hc is reached and
the continuous transition develops into a first order transi-
tion. We assume that as p decreases Hc increases �as ob-
served in Ref. �29� for p�8�, to the point that for p=2 the
determination of the critical thickness is well beyond our
present computational capabilities. On the other hand, it is to
be noticed the fairly regular dependence of Tc�H� on the pore
with.

From all this evidence, and in particular, from the size
dependence of the order parameter and the susceptibility, one
can conclude that the isotropic-quasinematic transitions
found for all the confined systems under scrutiny �1�H
�16� do not fit in the picture of first or second order phase
changes, and share some resemblance with the continuous
BKT transition. The results also indicate that the possible
critical thickness Hc of the Lebwohl-Lasher model, if exists,
must appear for Hc�16. Therefore, the value of Hc reported
in Ref. �24� is most likely underestimated. It is possible to
further analyze the effects of dimensionality on the transition
if the walls in the z direction are replaced by PBC, but still
dealing with the z direction on a different footing as com-
pared with the x and y directions. More precisely, we will
consider a series of systems of L�L�H sites with PBC on
all three directions and for H=2, 4, and 16. This anisotropic
LL model is expected to enhance the correlations of the nem-
atogen orientations in the z direction, and eventually lead to
the phase behavior of the bulk system as predicted by theo-
retical arguments �25�. Interestingly, we have found that the
anisotropic LL model with H=2, and H=4 also exhibits
BKT-like transitions similar to those of the corresponding
confined LL system occurring at slightly higher tempera-
tures. Moreover, the same behavior is found for H=16; the
system with PBC clearly shows a dependence of cv

max with L
inconsistent with a first order transition. This can be appre-
ciated in Fig. 7, where we present the results for the value of
the maximum of the excess heat capacity per molecule, cv

max

for both systems. It can be seen that for both confined, and

PBC systems cv
max does not diverge. In the same figure we

include the result for cubic systems H=L with PBC �bulk LL
model�; in this case the expected scaling behavior, cv

max	N,
of a first-order transition is observed. From the results of cv

max

it is possible to compute the latent heat, �E of the transition
�45�:

cv
max�N� = c� +

��E�2

4kBTc
2 N , �7�

where c� is related with the specific heats of the two phases
�45�. By fitting the results for L�25 we get �E /�
=0.0584�0.0013.

In the discussion above, we have purposefully avoided an
explicit reference to the questions recently raised by Paredes
et al. �17,46� as to the existence of a true BKT transition in
the PLL model. After performing a finite-size scaling analy-
sis of the simulation results at temperatures around and be-
low the estimates of the transition temperature found in the
literature, Paredes et al. �17,46� conclude that the PLL lacks
a true topological transition. Using results for several system
sizes, they infer that the L dependence of the order parameter
distribution for T�TBKT does not follow the expected scal-
ing for a line of critical points. In particular, they argue that
the lack of crossing of the Binder cumulant �45,47,48� curves
for different system sizes at a fixed temperature is a strong
evidence of the absence of quasi long range order in the PLL
model. In order to gain some extra insight into this problem,
we have performed series of simulations with a broad range
of system sizes at three temperatures: T�=0.50 �slightly be-
low the range of our Tc estimates�, T�=0.54 �slightly above�,
and T�=0.60. The so-called Binder cumulant, g4 can be de-
fined as �48�

g4 =
��+

4�
��+

2�2 . �8�

It is well established �45� that for second order transitions at
the critical temperature g4 reaches �for large system sizes� a
critical value �different from those corresponding to ordered
and disordered phases� which becomes independent on the
system size, g4�L ,Tc�=g4

�c�. According to the usual descrip-
tion of the topological transitions, below TBKT there should
be a line of critical points, and therefore at a fixed tempera-
ture g4�L ;T� should approach a critical value g4

c�T� as L
→�. This value must be different from those of the isotropic
�g4�3 /2� and nematic �g4�1� phases. From this point of
view one can expect that plotting g4 as a function of T, the
curves with different values of L should merge for T�TBKT.
Of course, finite size effects could eventually lead to a small
degree of crossing �see Ref. �17��. Therefore, from our point
of view the absence of crossing between the g4�T� curves
with different values of L must not be regarded as a signature
of lack of criticality. In Figs. 8 and 9 we show the results of
g4 as a function of the system size for T�=0.50 and T�

=0.54, and T=0.60. The results seem to be compatible with
the presence of a BKT-like transition in the PLL model. For
large system sizes, at T=0.54, and T=0.60 g4�L� seems to
approach to the expected value for the isotropic phase �g4
�3 /2�, whereas for T=0.50 �with system sizes up to
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L=896� the values of g4�L� apparently converge toward a
critical value as L→�.

Another point raised by Paredes et al. �17� concerns the
apparent violation of the hyperscaling relation of the critical
exponents, 2
 /+� /=d �where d is the space dimension-
ality�. In the case of a BKT transition, the exponent  is not
defined, but the exponent ratios can still be calculated �49�.
According to Ref. �17�. in the case of the PLL this relation is
only fulfilled within a 3% accuracy, one order of magnitude
less than in the case of the XY model. In our case, calcula-
tions carried out at T�=0.50 �below the transition tempera-
ture� also indicate deviations around 5%, somewhat larger
than the statistical uncertainties. Interestingly, previous cal-
culations performed at the transition temperature for the con-
tinuum HSMS model �11� agree with the hyperscaling be-
havior within a 0.7% error. Moreover, using an alternative
definition of the susceptibility for temperatures above
Tc�H ,L� �45,50,51�

� = N��+
2�/kBT ,

we found that the hyperscaling relation is appropriately ful-
filled.

Some additional information can be obtained from an
analysis of the percolation of the clusters constructed by the
simulation algorithm as a function of the temperature, so as
to evaluate the degree of correlation between the particle
orientations within the simulated samples. Let us recall that
the Swendsen-Wang-like �SW� algorithm applied in this
work belong to the class of rejection-free cluster methods,
and for some simple systems the temperature at which the
cluster percolation occurs corresponds to that of the phase
transition. This property was used by Tomita and Okabe �40�
to locate the BKT transitions of two-dimensional XY and
Potts-Clock models in two dimensions. For the PLL model
we have carried out multitemperature simulations using the
single tempering algorithm of Zhang and Ma �52�. In Fig. 10,
we present the results of the percolation probability, Xper,
defined as the fraction of configurations containing at least
one percolating cluster, for the 3D LL model with PBC. It
can be seen that the percolation threshold appears at a tem-
perature slightly above the nematic-isotropic transition tem-
perature. In addition. Xper�L ,T� shows a nonmonotonic be-
havior with T for large system sizes at temperatures close to
the thermodynamic transition. The behavior of Xper�L ,T� is
qualitatively similar for the PLL model �see Fig. 11�; and at
temperatures close to the TBKT estimates the curves for dif-
ferent system sizes show a clear tendency to merge. The
crossing of the curves for different system sizes observed for
large system size seem to indicate that the aforementioned
merging is not just a consequence of correlations induced by
the periodic boundary conditions. Moreover, in a similar per-
colation analysis carried out by us for the planar Heisenberg
model �3D spins on a plane�, the Xper�L ,T� curves for differ-
ent system sizes do not exhibit any crossing at finite tem-
peratures, but seemingly merge as T→0. This supports the
general view �33� that the 2D Heisenberg model does not
have a phase transition at T�0, and underlines the essen-
tially different phase behavior of the PLL model. In the ther-
modynamic limit, Fig. 10 seems to indicate that in the case
of the 3D LL model, there should be an abrupt change from
the nonpercolating state �Xper=0� to a fully percolating state
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�Xper=1� at a finite temperature, which fits into the picture of
a first order transition between the isotropic and a truly nem-
atic phase. In contrast, in Fig. 11, one finds that in the PLL
model, at least for the system sizes here considered, the fully
percolating state is only reached at T=0. Note, that by con-
struction, the SW cluster algorithm may yield Xper�1 for
finite temperatures even in the case of truly orientationaly
ordered states. The presence of the maximum after the first
crossing �occurring both in the 3D LL and PLL models for
finite sizes, but seemingly not present in the 3D Heisenberg
system� might then well be an effect of the cluster algorithm.
On the other hand, analyzing the size dependence of the
curves plotted in Fig. 11, one is tempted to assume that the
maxima will continue to grow and shift to lower T as L
increases, until finally Xper=1 is reached for a given sample
size. Whether this is really the case, and if so, Xper=1 is
reached at T�0 or not, cannot be assessed at present using
reasonable computer resources.

In any case, we believe that the percolation analysis
sketched above confirms that the PLL model indeed presents
a phase transition. It might be the case that we are not deal-
ing here with a strict BKT transition, if one takes into ac-
count the previous discussion on the hyperscaling relation,
but its phenomenology is closely related to that of the BKT
transition. On the other hand, the other anomalies in the
model’s scaling behavior found by Paredes et al. �17� could
be ascribed to finite size effects.

To conclude this discussion about the likelihood of a to-
pological transition for the PLL model, it is worth to com-

pare the phase behavior of the three-dimensional XY and LL
models. The three-dimensional XY model presents a continu-
ous transition �53� without a divergence in the specific heat,
whereas the three-dimensional LL model exhibits a first or-
der transition. Taking as a reference the critical behavior of
Potts models �54�, we would not expect in principle that the
PLL model had a weaker transition than that of the two-
dimensional XY model.

In summary, we have studied the order-disorder transition
for the confined LL model by means of Monte Carlo simu-
lation and finite-size scaling analysis. Our results indicate
that the critical pore width signaling the crossover between
bulk and 2D behavior must be larger than the values indi-
cated by previous simulations. The need for a reliable finite-
size scaling analysis on systems with larger widths, which
would imply simulations for much larger systems hampers
the estimation of Hc. In addition, our results for slitlike sys-
tems with full PBC �anisotropic LL model� suggest that if Hc
has a finite value, it will likely be much larger than H=16.
Moreover, the fact that the critical exponent relation � / for
the pore widths considered does not yet show any trend to
converge toward the expected behavior in a first order tran-
sition, is a further indication that we are very likely away
from the critical thickness. This might fit into the picture
drawn by Telo da Gama and Tarazona �26�, who suggest that
one should expect Hc→�. However, in Ref. �26� it is argued
that spin waves would destroy the ordered phase for any
finite H, but no BKT transition would occur. Our findings
suggest that an order-disorder phase transition with some
BKT-like features does indeed take place, as the divergence
of the susceptibility, its size dependence, the crossover of
percolation curves and the size dependence of the order pa-
rameter seem to evidence. It is worth pointing out that the
situation depicted here is in marked contrast with the abrupt
switch from continuous 2D melting behavior to discontinu-
ous first-order melting which has been argued to occur in
hard sphere colloidal models when going from monolayer to
bilayer systems �55�.
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