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We continue the study of a particle �atom, molecule� undergoing an unbiased random walk on the Sierpinski
gasket, and obtain for the gasket and tower the eigenvalue spectrum of the associated stochastic master
equation. Analytic expressions for recurrence relations among the eigenvalues are derived. The recurrence
relations obtained are compared with those determined for two Euclidean lattices, the closed chain with an
absorbing site and a finite chain with an absorbing site at one end. We check and confirm the internal
consistency between the smallest eigenvalue and the mean walklength in each of the cases studied. Attention
is drawn to the relevance of the results obtained to a problem of electron transfer in proteins.
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I. INTRODUCTION

The original motivation for this study and earlier ones
�1,2� followed from an expository article by Hahn �3� on
“Geometry and Intuition.” There, Hahn first reviewed the
geometry of ordinary points, end points and branch points. In
that order, “a point on a curve is called an end point if there
are arbitrarily small neighborhoods surrounding it, each of
whose boundaries has only a single point in common with
the curve. A point on the curve that is not an end point is
called an ordinary point if it has arbitrarily small neighbor-
hoods each of whose boundaries has exactly two points in
common with the curve. A point on a curve is called a branch
point if the boundary of any of its arbitrarily small neighbor-
hoods has more than two points in common with the curve.
Intuition seems to indicate that it is impossible for a curve to
be made up of nothing but end points or branch points. As far
as end points are concern, this intuitive conviction has been
confirmed by logical analysis, but as regards branch points it
has been refuted. The Polish mathematician W. Sierpinski
proved in 1915 that there are curves all of whose points are
branch points.”

Hahn then reviewed Sierpinski’s construction of what to-
day is called the gasket, viz., inscribing equilateral triangles
within equilateral triangles and “erasing” the interior of the
inscribed triangle. “The points of the original equilateral tri-
angle that survive the infinitely numerous erasures can be
shown to form a curve all of whose points, with the excep-
tions of the vertex points of the original triangle, are branch
points.” In fact, by coalescing the three vertices into a single
point, all of the points of the resulting curve are branch

points. Hahn’s message was that “in geometrical questions,
even very simple and elementary ones, intuition is a wholly
unreliable guide.”

Consider first a curve defined by a discrete set of ordinary
points and two end points. Ergodic flows on the consequent
d=1 dimensional lattice can be studied using the theory of
finite Markov processes �4�. Specifically, for an unbiased
“random walk” problem on a closed chain �no end points�
having a single absorbing site, Montroll �5� in 1969 obtained
an analytic solution for the mean walklength �n�, viz.,

�n� = N�N + 1�/6. �1�

If, on the other hand, one places the absorbing site at one of
the end points, and imposes zero-flux boundary conditions at
the other, one obtains a slightly different analytic expression
for the mean walk length

�n� = N�2N − 1�/3 �2�

or, if the absorbing site is at an ordinary point and zero flux
conditions are imposed at both end points �6�,

�n� = N�N + 1�/3. �3�

Now, consider a curve, all of whose points are branch points
�except for the vertices, one of which is an absorbing site�,
i.e., the Sierpinski gasket. For an unbiased random walk on a
finite nth generation Sierpinski gasket embedded in Euclid-
ean dimension d=2, an exact formula was derived �1� for the
mean walk length T�n�. Then, in �2� an exact formula for T�n�

for the Sierpinski tower embedded in Euclidean dimension
d=3 was obtained. Also presented in �2� was the exact result
for the generalization to the case of an nth generation tower
embedded in an arbitrary number of Euclidean dimensions d,
viz.
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T�n� =
d��d + 1�n�d + 3�n+1 + �d + 2��d + 3�n − �d + 1�n�

�d + 2���d + 1�n+1 + d − 1�
.

�4�

The program followed to obtain these results took advantage
of the self-similarity of the gasket, introduced time scaling
on the gasket, and mobilized a decimation procedure.

Recalling that the mean walk length �n� is the first mo-
ment of an underlying probability distribution function, the
question posed in this study is whether one can obtain ana-
lytic results for the full distribution function. While the gen-
eral problem is challenging, a particular case yields to exact
analysis, and this is the subject of the present contribution. In
particular, we consider the transient behavior of a random
walker on a chain with a set of ordinary points bracketed by
end points, versus a chain with multiple branch points �the
Sierpinski gasket�. Proceeding from the stochastic master
equation, we obtain numerically exact results for the eigen-
value spectrum, and explore whether these eigenvalues sat-
isfy a recurrence relation.

To study the dynamics, we proceed from the probability
distribution function �n�t� describing system’s evolution. If i
denotes the initial state of the system, and �n�t� is the prob-
ability of being in a specific, intermediate state n at time t,
then the stochastic master equation is

d�n�t�
dt

= − �
m

N

Gnm�m�t� . �5�

solved subject to the initial condition

�n�t = 0� = �n,i. �6�

In Eq. �5�, Gnm is the transition rate of the probability to the
state n from the state m. The G matrix is linked to the N
�N Markov transition probability matrix P with elements
pnm defined via the relation

Gnm = �n,m − pnm. �7�

Here, pnm is the probability that the random walker, condi-
tional on being in state m at time t will be in the state n in the
next step, until the terminal state is reached. The transition
probability is equal to one divided by the coordination num-
ber of the starting site.

The plan of this paper is the following. In Sec. II we
consider first the Sierpinski gasket and determine exact ex-
pressions for the recurrence relations satisfied by the eigen-
values of the gasket and tower. The analytic approach taken
was inspired by a seminal paper published in 1983 by
Domany, Alexander, Bensimon, and Kadanoff �7� on “Solu-
tions to the Schroedinger equation on some fractal lattices.”
We sketch their procedure, and highlight the particular stage
in their program where we specialize to the classical, gasket
problem.

We note that the method and results obtained by Domany
et al. �7� in 1983 were subsequently discovered indepen-
dently and/or mobilized in obtaining important results on
several related problems. Although not intended to be inclu-
sive, we draw attention to the work of Cosenza and Kapral
�8� on the exact spectrum of the dual Sierpinski gasket.

These authors obtained important results on the stability and
bifurcations of spatially synchronized, periodic states on the
Sierpinski gasket. Also relevant is the work of Agliari, Blu-
men and Muelken �9� on the coherent propagation of quan-
tum walks, where the formal relationship between the
Schrödinger equation and the classical master equation was
exploited to study the problem of electronic energy transfer
through the photosynthetic antenna system. Methods intro-
duced in �7,8�, and in a recent study by Agliari �10�, could
have been tailored to the problem at hand; that we have not
done so is because our intent here was to stay as close as
possible to the formal methods introduced in �7�.

To place the results obtained in Sec. II in a slightly more
general context, we take up in Secs. III and IV the problem
of the closed chain and the finite chain, and obtain analytic
expressions for the spectrum of eigenvalues for each. In the
concluding Sec. V we review the results obtained and com-
ment on their relevance to a specific experimental problem
under active investigation today: electron transfer in the pro-
tein, azurin.

II. SIERPINSKI GASKET

To illustrate the approach taken in this study we proceed
by showing how the spectrum of the transition matrix of a
Sierpinski gasket SGn of order n is related to that of the
previous one. Consider for example the case n=2. SG2 has
six vertices, numbered 1 to 6, and we will assume throughout
that the sink is at vertex 1 �see Fig. 1�. The transition matrix
P2 for the sites other than the sink is thus

P2 = �
1 − 1/4 − 1/4 − 1/4 0

− 1/4 1 0 − 1/4 − 1/4
− 1/2 0 1 − 1/2 0

− 1/4 − 1/4 − 1/4 1 − 1/4
0 − 1/2 0 − 1/2 1

	 . �8�

The gasket SG3 can now be obtained by adding vertices 7 to
15 as shown in Fig. 1. Let � be the set of the original verti-
ces, and � the set of the added vertices.

FIG. 1. Sierpinski Gasket of orders n=2 and n=3.
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Writing the eigenvalue problem for the transition matrix
P3 in block form


P�,� P�,�

P�,� P�,�
�
u�

u�
� = �3
u�

u�
� �9�

leads to

P�,�u� + P�,�u� = �3u�, �10�

P�,�u� + P�,�u� = �3u�, �11�

and finally gives

�P�� + P����3 − P���−1P���u� = �3u�. �12�

As there are no transitions between sites belonging to the �
sublattice, P�� reduces to the identity matrix, and further-
more the 9�9 matrix P�� is block diagonal, each block
being the same 3�3 matrix corresponding to transitions
within the inserted triangles. One finds

P3 = P�� + P����3 − P���−1P�� = �
p q q q 0

q p 0 q q

2q 0 p 2q 0

q q q p q

0 2q 0 2q p
	 ,

�13�

where

p =
8�3

2 − 12�3 + 3

8�3
2 − 14�3 + 5

, q =
1

4

2�3 − 3

8�3
2 − 14�3 + 5

. �14�

It will be noticed that this matrix is very similar to P2. In fact
it is simply

P3 = �p + 4q�I5 − 4qP2, �15�

where I5 is the 5�5 identity matrix. Consequently the spec-
trum ��3 of the transition matrix P3 is related to that of P2
by

�3 =
8�3

2 − 10�3 − �2�3 − 3��2

8�3
2 − 14�3 + 5

. �16�

Multiplying the left-hand side of this equation by the de-
nominator of the right-hand side leads to

�3�8�3
2 − 14�3 + 5� = 8�3

2 − 10�3 − �2�3 − 3��2. �17�

Expanding the left-hand side now gives

8�3
3 − 14�3

2 + 5�3 = 8�3
2 − 10�3 − �2�3 − 3��2, �18�

and transposing terms from the left-to the right-hand side we
obtain

8�3
3 − 14�3

2 + 5�3 − 8�3
2 + 10�3 + �2�3 − 3��2 = 0, �19�

or, on collecting terms of same power,

8�3
3 − 22�3

2 + 15�3 + �2�3 − 3��2 = 0. �20�

We now notice that

8�3
3 − 22�3

2 + 15�3 = �2�3 − 3��4�3
2 − 5�3� , �21�

so the equation for �3 reads

�2�3 − 3��4�3
2 − 5�3 + �2� = 0. �22�

So that part of the spectrum of P3 which is related to the one
of P2 is provided by the roots of

4�3
2 − 5�3 + �2 = 0, �23�

which are given by,

�3 =
5 � �25 − 16�2

8
. �24�

Thus from the five values for �2, namely
�3 /4,3 /2,3 /2, �5��17� /8 one finds ten values for �3, re-
spectively,

5 � �13

8
,
3

4
,
1

2
,
3

4
,
1

2
,
5 � �15 � 2�17

8
, �25�

but the values of 1/2 are spurious since they correspond to a
noninvertible matrix �3− P�,�. The remaining six eigenval-
ues are to be found among those singular values for which
the analysis breaks down, namely 3/2 �q=0� and 5/4 �p and
q not defined�.

It now remains to show that in general one always has the
recurrence

4�n+1
2 − 5�n+1 + �n = 0 → �n+1 =

5 � �25 − 16�n

8
. �26�

For all values of n, the Sierpinski gasket of order n+1 can
be obtained by inserting three further vertices on the edges of
each “cell” of SGn. Focusing on one such cell and calling
�= �1,2 ,3 the vertices of SGn and �= �9,8 ,7
��1� ,2� ,3� the additional set �see Fig. 1�, it is clear that the
contribution to the transition matrix Pn+1 can be written in
block form, with

�P�,��i,j = �i,j , �27�

�P�,��i,j = �P�,�� j,i = −
1

4
�1 − �i,j� , �28�

�P�,��i,j = �i,j −
1

4
�1 − �i,j� . �29�

Therefore

�P�� + P����n − P���−1P���i,j

= �
k,l=1

3

�P���i,k��n − P���k,l
−1�P���l,i, �30�

and since

��n − P���−1 = ��n − 1 1/4 1/4
1/4 �n − 1 1/4
1/4 1/4 �n − 1

	
−1

, �31�

it follows that
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��n − P���k,l
−1 = �−

1

4��n − 1/2���n − 5/4�
if k � l

�n − 3/4
��n − 1/2���n − 5/4�

if k = l� .

�32�

Consequently

�P�� + P����n − P���−1P���i,j

= �
1

16

�n − 3/2
��n − 1/2���n − 5/4�

if i � j

1 +
1

8

�n − 1

��n − 1/2���n − 5/4�
if i = j� . �33�

However when the full transition matrix P is evaluated for
the complete gasket, it must be borne in mind that each �
vertex belongs to two cells, with two exceptions: the lower
left vertex �for example, vertex 4 in Fig. 1, and given the
generic label A in what follows�, and the lower right vertex
�e.g., vertex 6 in Fig. 1, and given the generic label B�. In
other words the above expressions are correct for the nondi-
agonal terms �different values for i and j determine one cell�,
but for the diagonal terms one obtains

�P�� + P����n − P���−1P���i,i = 1 +
1

4

�n − 1

��n − 1/2���n − 5/4�
.

�34�

Consequently it is again possible to relate the spectra ��n+1
and ��n with a scaling and transition which are exactly those
found in the case n=2, provided it can be shown that this
transformation is also valid for the vertices A and B. An
unexpected result occurs at this step of the analysis, where a
special feature of sites A and B emerges, a feature different
from the role of these sites in �7�. In �7� sites A and B are
fixed by the boundary conditions, but in the present case they
belong to the set of variables. Note that A belongs to only
one triangle �see Fig. 1�. For vertex A, the P�,� matrix is
unchanged, but

PA,1 = PA,3 = − 1/2, P1,A = P3,A = − 1/4 �35�

and

�P�� + P����n − P���−1P���A,A �36�

=1 + �
k=1,3

�
l=1,3

�P���A,k���n − P���−1�k,l�P���l,A �37�

=1 +
1

8

− 2

1

4��n − 1/2���n − 5/4�
+ 2

�n − 3/4
��n − 1/2���n − 5/4��

�38�

=1 +
1

4

�n − 1

��n − 1/2���n − 5/4�
. �39�

As to the nondiagonal elements they are equal to

�P�� + P����n − P���−1P���A,1 �40�

=1 + �
k=1,3

�
l=1,3

�P���A,k���n − P���−1�k,l�P���l,A �41�

=
1

8

− 3

1

4��n − 1/2���n − 5/4�
+

�n − 3/4
��n − 1/2���n − 5/4��

�42�

=
1

8

�n − 3/2
��n − 1/2���n − 5/4�

, �43�

and it will be noticed that both the scaling and the translation
are the same for these corner vertices A and B as for all the
sites of the gasket. Armed with the recurrence relation for the
eigenvalues of the Sierpinski gasket given in Eq. �26�, one
can reproduce the values displayed in Table I for the first five
generations of the Sierpinski gasket, obtained via exact nu-
merical solution of Eq. �5� subject to Eq. �6�.

Turning to the Sierpinski tower, numerically exact values
for the eigenvalues were obtained for the first three genera-
tions of the tower. In following the above program, every-
thing goes through as for the gasket, including the factors for
the sites in the corner of the base. The recurrence relation for
the eigenvalues in the Sierpinski tower reads

�n+1 =
3 � �9 − 6�n

6
. �44�

The first generation, N=4 tower has as eigenvalues 1/3 and
4/3 �2 �where the braces � indicate the degeneracy of the
eigenvalue�, and these give for the N=10 tower, respectively,

TABLE I. Eigenvalues for the df =ln 3 / ln 2 Sierpinski gasket of
N sites.

N �

3 1/2, 3/2

6 3/4, 3/2 �2, 5 /8� �1 /8��17

15 3/4 �2, 5/4, 3/2 �5, 5 /8� �1 /8��13,

5 /8� �1 /8��15�2�17

42 3/4 �5, 5/4 �4, 3/2 �14,
5 /8� �1 /8��5,

5 /8� �1 /8��13, �2,
5 /8� �1 /8��15�2�13,

5 /8� �1 /8��15�2�15�2�17

123 3/4 �14, 5/4 �13, 3/2 �41,
5 /8� �1 /8��5�4,
5 /8� �1 /8��13�5,

5 /8� �1 /8��15�2�5,

5 /8� �1 /8��15�2�13 �2,
5 /8� �1 /8��15�2�15�2�13,

5 /8� �1 /8��15�2�15�2�15�2�17
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1/2 �
�7

6
,

2

3
and

1

3
�45�

but the last value must be rejected as it would involve a
singularity in the recurrence. Then for the N=34 tower, the
first pair gives

1

2
�

�6 � �7

6
�46�

and 2/3 gives

1

2
�

�5

6
�47�

and so on as shown in Table II.

III. CLOSED CHAIN

Consider a linear chain of N sites, with a single deep trap
and subject to periodic boundary conditions. Reported in
Table III is the set ��i determined via numerical solution of
the stochastic master equation, Eq. �5�, for lattices up to N
=13 sites. As is evident, there appears to be a repetition of
�certain� eigenvalues for small lattices that reappear for
larger ones, suggesting the possible existence of an underly-
ing recurrence relation.

The results presented in Table III are given in integer
format, except for the values for N=11 and N=13. In these
two cases, polynomial representations for the eigenvalues are
obtained �see Table IV� which then can be used to determine
the eigenvalues in decimal format. Specifically, one solves
for the roots of the equation

PN�w� = 0. �48�

In general, the analytic procedure for obtaining the eigen-
values of the stochastic master equation �by diagonalizing
the fundamental matrix of the theory of Markov processes�
proceeds first through such polynomial representations. In
some �though certainly not all� cases, representation of the

TABLE II. Eigenvalues for the df =ln 4 / ln 2 Sierpinski tower of
N sites.

N �

4 1/3, 4/3 �2
10 2/3 �2, 4/3 �5, 1 /2��7 /6

34 2/3 �5, 1 �3, 4/3 �17, 1 /2��5 /6�2,
1 /2��6��7 /6

TABLE III. Eigenvalues for a linear chain of N sites subject to
periodic boundary conditions.

N �

3 1/2, 3/2

4 1, 1��2

5 3 /4� �1 /4��5, 5 /4� �1 /4��5

6 1, 1/2, 3/2, 1��3

7 �1 /12��28+i84�3�1/3+ �7 /3��28+i84�3�−1/3+5 /6,

−�1 /24��28+i84�3�1/3− �7 /6��28+i84�3�−1/3+5 /6

��1 /4�i�3��1 /6��28+i84�3�1/3− �14 /3��28
+i84�3�−1/3�,
�1 /12��−28+i84�3�1/3+ �7 /3��−28+i84�3�−1/3

+7 /6,

−�1 /24��−28+i84�3�1/3− �7 /6��−28+i84�3�−1/3

+7 /6

��1 /4�i�3��1 /6��−28+i84�3�1/3− �14 /3��−28
+i84�3�−1/3�

8 1, 1��2, 1� �1 /2��2+�2, 1� �1 /2��2−�2

9 1/2, 3/2,

�1 /4��−4+i4�3�1/3+ �−4+i4�3�−1/3+1,

−�1 /8��−4+i4�3�1/3− �1 /2��−4+i4�3�−1/3+1

��1 /4�i�3��1 /2��−4+i4�3�1/3−2�−4+i4�3�−1/3�,
�1 /4��4+i4�3�1/3+ �4+i4�3�−1/3+1,

−�1 /8��4+i4�3�1/3− �1 /2��4+i4�3�−1/3+1

��1 /4�i�3��1 /2��4+i4�3�1/3−2�4+i4�3�−1/3�
10 1, 3 /4� �1 /4��5, 5 /4� �1 /4��5,

1� �1 /4��10+2�5, 1� �1 /4��10−2�5

11 Table IV

12 1, 1/2, 3/2, 1� �1 /2��2, 1� �1 /2��3,

1� �1 /4��6� �1 /4��2

13 Table IV

TABLE IV. Polynomial representations of the data in Table
III.

P3=4w2−8w+3

P4=8w3−24w2+20w−4

P5=16w4−64w3+84w2−40w+5

P6=32w5−160w4+288w3−224w2+70w−6

P7=64w6−384w5+880w4−960w3+504w2−112w+7

P8=128w7−896w6+2496w5−3520w4+2640w3−1008w2+168w−8

P9 = 256w8 − 2048w7 + 6720w6 − 11648w5 + 11440w4 − 6336w3

+ 1848w2 − 240w + 9

P10 = 512w9 − 4608w8 + 17408w7 − 35840w6 + 43680w5 − 32032w4

+ 13728w3 − 3168w2 + 330w − 10

P11 = 1024w10 − 10240w9 + 43776w8 − 104448w7 + 152320w6

− 139776w5 + 80080w4 − 27456w3 + 5148w2 − 440w + 11

P12 = 2048w11 − 22528w10 + 107520w9 − 291840w8 + 496128w7

− 548352w5 − 183040w4 + 51480w3 − 8008w2 + 572w − 12

P13 = 4096w12 − 49152w11 + 259072w10 − 788480w9 + 1532160w8

− 1984512w7 + 1736448w6 − 1018368w5 + 388960w4

− 91520w3 + 12012w2 − 728w + 13
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eigenvalues in integer format can be obtained, as displayed
in Table III.

The key to uncovering recurrence relations for this Eu-
clidean lattice trapping problem resides in the polynomial
representations given in Table IV. These results can be used
to construct a general expression for the polynomial PN+1�w�,
valid for arbitrary N,

PN+1�w� = 2NwN −
2N−1�2N�wN−1

1!

+
2N−2�2N − 1��2N − 2�wN−1

2!

−
2N−3�2N − 2��2N − 3��2N − 4�wN−3

3!

+
2N−4�2N − 3��2N − 4��2N − 5��2N − 6�wN−4

4!

− /+ . . . . �49�

As will now be shown explicitly, this expression can be re-
cast into the following exact, closed form

PN+1�w� = � 1

w�2 − w��
1/2

sin
�2N + 2�arccos�w

2
�1/2� .

�50�

With periodic boundary conditions �site N+1 identified
with site 1�, the absorbing site can always be labeled 1, so
the N�N transition matrix reads

�
0

1

2
0 . . . . . .

1

2

0 − 1
1

2
. . . . . . 0

0
1

2
− 1

1

2
. . . 0

] ] � . . . . . . ]

] ] � . . . . . . ]

0 0 . . .
1

2
− 1

1

2

0 0 . . . 0
1

2
− 1

� , �51�

and after removing a factor � �corresponding to the station-
ary state�, the �N−1�� �N−1� characteristic determinant will
be

	N−1�− �� = �
− 1 + �

1

2
. . . . . . 0

1

2
− 1 + �

1

2
. . . 0

] � . . . . . . ]

] � . . . . . . ]

0 . . .
1

2
− 1 + �

1

2

0 . . . 0
1

2
− 1 + �

� .

�52�

Notice that if one inserts �=1+cos 
 into the last determi-
nant, one has

	N−1 =
1

2N−1�
2 cos 
 1 . . . . . . 0

1 2 cos 
 1 . . . 0

] � . . . . . . ]

] � . . . . . . ]

0 . . . 1 2 cos 
 1

0 . . . 0 1 2 cos 


� .

�53�

This tridiagonal Toeplitz determinant is equal to the Cheby-
shev polynomial �see Ref. �11��

UN−1�cos 
� =
sin N


sin 

. �54�

The previous, closed form expression for P�w� follows by
writing the determinant, Eq. �52�, as

PN�w� = 2N−1�
− 1 + w

1

2
. . . . . . 0

1

2
− 1 + w

1

2
. . . 0

] � . . . . . . ]

] � . . . . . . ]

0 . . .
1

2
− 1 + w

1

2

0 . . . 0
1

2
− 1 + w

� ,

�55�

and setting

w = 2 cos2 t �56�

so that
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PN = �
2 cos 2t 1 . . . . . . 0

1 2 cos 2t 1 . . . 0

] � . . . . . . ]

] � . . . . . . ]

0 . . . 1 2 cos 2t 1

0 . . . 0 1 2 cos 2t

� .

�57�

Then,

PN =
sin 2Nt

sin 2t
=

sin
2N arccos�w

2
�1/2�

2
w

2
�1 −

w

2
��1/2 �58�

which is just Eq. �50�.
Consequently the spectrum of the transition matrix for N

sites with periodic boundary conditions is given by

�N�k� = 1 + cos
k�

N
�k = 1,2, . . . N − 1� �59�

and the smallest of these is

�0 = 1 − cos
�

N
. �60�

IV. FINITE CHAIN WITH ABSORBING SITE
AT ONE END

The program described in the preceding section can be
mobilized for a walker on a d=1 Euclidean lattice of N sites,
with a confining boundary at one end of the chain and a deep
trap at the other. Though eigenvalues ��i can be determined
in integer format for a few lattices �Table V�, the precursor,
polynomial representations can be obtained for arbitrary N;
see Table VI. A series representation of these results, valid
for any N, can be generated,

FN+1�w� = 2NwN −
2N−1�2N − 1�wN−1

1!

+
2N−2�2N − 2��2N − 3�wN−2

2!

−
2N−3�2N − 3��2N − 4��2N − 5�WN−3

3!

+
2N−4�2N − 4��2N − 5��2N − 6��2N − 7�wN−4

4!

− /+ . . . �61�

and an exact, closed-form result can be written down, viz.

FN+1�w� = � 2

2 − w
�1/2

sin
�2N + 1�arccos�w

2
�1/2� .

�62�

In this case, with absorption at site 1, the transition matrix
becomes

TABLE V. Eigenvalues for a linear chain of N sites subject to
finite boundary conditions.

N �

3 3 /4� �1 /4��5

4 �1 /12��28+i84�3�1/3+ �7 /3��28+i84�3�−1/3+5 /6,

�1 /24��28+i84�3�1/3− �7 /6��28+i84�3�−1/3+5 /6,

��1 /4�i�3��1 /6��28+i84�3�1/3− �14 /3��28
+i84�3�−1/3�

5 1/2,

�1 /4��−4+i4�3�1/3+ �−4+i4�3�−1/3+1,

�−1 /8��−4+i4�3�1/3− �1 /2��−4+i4�3�−1/3+1,

��1 /4�i�3��1 /2��−4+i4�3�1/3−2�−4+i4�3�−1/3�
�5 See Table VI

TABLE VI. Polynomial representations of the data in Table
V.

F3=4w2−6w+1

F4=8w3−20w2+12w−1

F5=16w4−56w3+60w2−20w+1

F6=32w5−144w4+224w3−140w2+30w−1

F7=64w6−352w5+720w4−672w3+280w2−42w+1

F8=128w7−832w6+2112w5−2640w4+1680w3−504w2+56w−1

F9 = 256w8 − 1920w7 + 5824w6 − 9152w5 + 7920w4 − 3696w3

+ 840w2 − 72w + 1

F10 = 512w9 − 4352w8 + 15360w7 − 29120w6 + 32032w5 − 20592w4

+ 7392w3 − 1320w2 + 90w − 1

F11 = 1024w10 − 9728w9 + 39168w8 − 87040w7 + 116480w6

− 96096w5 + 48048w4 − 13728w3 + 1980w2 − 110w + 1

F12 = 2048w11 − 21504w10 + 97280w9 − 248064w8 + 391680w7

− 396032w6 + 256256w5 − 102960w4 + 24024w3 − 2860w2

+ 132w − 1

F13 = 4096w12 − 47104w11 + 236544w10 − 680960w9 + 1240320w8

− 1488384w7 + 1188096w6 − 622336w5 + 205920w4

− 40040w3 + 4004w2 − 156w + 1
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�
0

1

2
0 . . . . . . 0

0 − 1
1

2
. . . . . . 0

0
1

2
− 1

1

2
. . . 0

] ] � . . . . . . ]

] ] � . . . . . . ]

0 0 . . .
1

2
− 1

1

2

0 0 . . . 0
1

2
−

1

2

� , �63�

and the characteristic determinants 	N−1� are related to the
previous determinants 	 by �expand with respect to the last
row�

	N−1� = �−
1

2
+ ��	N−2 −

1

4
	N−3 �N = 2,3, . . .�

=
1

2N−2 sin 


�1

2
+ cos 
�sin�N − 1�
 −

1

2
sin�N − 2�
�

=
1

2N−1

sin�N −
1

2
�


sin



2

.

The spectrum corresponds thus to the values


k =
k�

N − 1
2

�k = 1,2, . . . ,N − 1� , �64�

and the smallest value of �k=1+cos 
k occurs for k=N−1,

�N = 1 + cos
�N − 1��

N − 1
2

= 1 − cos
�

2N − 1
. �65�

V. DISCUSSION AND CONCLUSIONS

In this study we have focused on the transient behavior of
a diffusing particle undergoing an unbiased random walk on
a lattice, all of whose points are branch points �with the
exception of three vertices� versus a lattice with a set of
ordinary points bracketed by end points. Analytic expres-
sions were obtained for the eigenvalues as a function of sys-
tem size N. Exact recurrence relations satisfied by the small-
est eigenvalue were derived.

To contextualize the results obtained, we take advantage
of the inverse relation between the first moment of the prob-
ability distribution function ��t�, i.e., the mean walk length
�n�, and the smallest eigenvalue �0 of the underlying sto-
chastic master equation, Eq. �5�, a relationship which be-
comes exact ��0=1 / �n�� in the limit of large system size �4�.
Phrasing the results obtained in terms of the system’s dimen-
sionality, previous studies �12–14� documented that for a

given system size N, the mean walklength before trapping on
the Sierpinski gasket, a two-dimensional uncountable set
with zero measure and Hausdorff dimension

df =
log 3

log 2
= 1.584 963 �66�

�also the fractal dimension of the T fractal; see �10��, was
distinctly larger than the value calculated for the triangular
lattice, a regular lattice of Euclidean dimension d=2. Fur-
ther, the walk length on the gasket was smaller than values
calculated for a d=1 regular lattice, Eq. �1� and Eqs. �2� and
�3�. Subsequently, it was demonstrated �15� that the �n� for
trapping on a triangular lattice of Euclidean dimension d=2
was smaller than the value of �n� calculated for the Sierpin-
ski tower, which has a Hausdorff dimension

df =
log 4

log 2
= 2. �67�

In light of the relationship between �n� and the smallest
eigenvalue �0, we can check whether the expressions ob-
tained for �0 in Secs. II–IV are consistent with earlier results
on �n�. First, from the equations for the smallest eigenvalue
for the closed chain and the finite chain with an absorbing
site at one end, the eigenvalue �0 for a finite chain of N sites
is always smaller than that for a closed chain having the
same number N of sites; this is consistent with Eq. �1� and
Eqs. �2� and �3� for the mean walk length, where �n� for the
periodic chain is always smaller than for the finite chain.

Second, for a given N, values of �0 for the Sierpinski
gasket �see Table I� are always smaller than the values cal-
culated using either Eqs. �60� and �65�. Again, consistency
with results reported earlier �see earlier paragraph� on the
mean walk length �n� for these cases is found.

Finally, in his 1969 paper, Montroll proved analytically
that for a given N, the higher the Euclidean dimensionality,
the smaller the mean walk length. Our results on the Sierpin-
ski gasket and tower, show that for a given N, the higher the
Hausdorff dimension of a fractal, the smaller the mean walk
length and the larger the smallest eigenvalue.

One motivation for considering the trapping problem on a
finite chain with an absorbing site at one end derives from a
problem in protein chemistry under active investigation to-
day. Electron transfer has been studied theoretically and ex-
perimentally over the last three decades �16–19�. In experi-
mental studies on proteins such as azurin �18,19�, an electron
moves along the backbone of the polypeptide chain until
being “trapped” at a localized reaction center. For distances
greater than 20 Å, electron transfer �ET� between a donor
�D� and acceptor �A� has been shown to proceed via a tun-
neling mechanism. Aspects of this problem can be treated as
a random walk on a finite chain with an absorbing site at one
end assuming there is a single �d=1� pathway between donor
and acceptor �20�. If, as is likely in the general case, multiple
pathways may be available, a lattice of higher dimension
would need to be considered. Rather than going to the next
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higher Euclidean dimension, it seems sensible to consider a
lattice with the Hausdorff dimensionality of the Sierpinski
gasket or the T fractal �10�. The results presented in this

study allow the dynamics of the electron transfer event to be
explored in this more general setting and this application will
be taken up in subsequent work.
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