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Detrending moving average algorithm for multifractals
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The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term
correlations of nonstationary time series and the long-range correlations of fractal surfaces, which contains a
parameter 6 determining the position of the detrending window. We develop multifractal detrending moving
average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-
dimensional multifractals, which is a generalization of the DMA method. The performance of the one-
dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with
analytical solutions for backward (0#=0), centered (#=0.5), and forward (#=1) detrending windows. We find
that the estimated multifractal scaling exponent 7{g) and the singularity spectrum f(a) are in good agreement
with the theoretical values. In addition, the backward MFDMA method has the best performance, which
provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered
MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outper-
forms the multifractal detrended fluctuation analysis. The one-dimensional backward MFDMA method is
applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature

is confirmed.
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I. INTRODUCTION

Fractals and multifractals are ubiquitous in natural and
social sciences [1-3]. There are a large number of methods
developed to characterize the properties of fractals and mul-
tifractals. The classic method is the Hurst analysis or res-
caled range analysis (R/S) for time series [4,5] and fractal
surfaces [6]. The wavelet transform module maxima method
is a more powerful tool to address the multifractality [7-11],
even for high-dimensional multifractal measures in the fields
of image technology and three-dimensional turbulence
[12-16]. Another popular method is the detrended fluctuation
analysis (DFA), which has the advantages of easy implemen-
tation and robust estimation even for short signals [17-19].
The DFA method was originally invented to study the long-
range dependence in coding and noncoding DNA nucleotides
sequence [20] and then applied to time series in various
fields [21-24]. The DFA algorithm was extended to analyze
the multifractal time series, which is termed as multifractal
detrended fluctuation analysis (MFDFA) [25]. These DFA
and MFDFA methods were also generalized to analyze high-
dimensional fractals and multifractals [26]. Moreover, based
on the DFA method, Podobnik and Stanley recently proposed
the method called detrended cross-correlation analysis to in-
vestigate the cross correlations between two time series [27],
which was generalized to analyze multifractal time series
[28].

A more recent method is based on the moving average or
mobile average technique [29], which was first proposed by
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Vandewalle and Ausloos to estimate the Hurst exponent of
self-affinity signals [30] and further developed to the de-
trending moving average (DMA) by considering the second-
order difference between the original signal and its moving
average function [31]. Because the DMA method can be eas-
ily implemented to estimate the correlation properties of
nonstationary series without any assumption, it is widely ap-
plied to the analysis of real-world time series [32-39] and
synthetic signals [40-42]. Recently, Carbone and co-workers
extended the one-dimensional DMA method to higher di-
mensions to estimate the Hurst exponents of higher-
dimensional fractals [43,44]. Extensive numerical experi-
ments unveil that the performance of the DMA method is
comparable to the DFA method with slightly different priori-
ties under different situations [41,45].

In this paper, we extend the DMA method to multifractal
detrending moving average (MFDMA), which is designed to
analyze multifractal time series and multifractal surfaces.
Further extensions to higher-dimensional versions are
straightforward. The performance of the MFDMA algorithms
is investigated using synthetic multifractal measures with
known multifractal properties. We also compare the perfor-
mance of MFDMA with MFDFA, and find that MFDMA is
superior to MFDFA for multifractal analysis.

The paper is organized as follows. In Sec. II, we describe
the algorithm of one-dimensional MFDMA and show the
results of numerical simulations. We also apply the one-
dimensional MFDMA to analyze the time series of intraday
Shanghai Stock Exchange Composite (SSEC) Index. In Sec.
III, we describe the algorithm of two-dimensional MFDMA
and report the results of numerical simulations as well. We
discuss and conclude in Sec. IV.
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II. ONE-DIMENSIONAL MULTIFRACTAL DETRENDING
MOVING AVERAGE ANALYSIS

A. Algorithm

Step 1. Consider a time series x(¢), where r=1,2,...,N.
We construct the sequence of cumulative sums

y(t)= 2 x(i), t=1,2,...,N. (1)
i=1

Step 2. Calculate the moving average function 3(¢) in a
moving window [37],

[(n=1)(1-0)]

f=- 3

I k= (n-1)6)

y(t=k), (2)

where n is the window size, |x] is the largest integer not
greater than x, [x] is the smallest integer not smaller than x,
and @ is the position parameter with the value varying in the
range [0,1]. Hence, the moving average function considers
[(n—1)(1-0)] data points in the past and |[(n—1)86] points in
the future. We consider three special cases in this paper. The
first case 6=0 refers to the backward moving average [41], in
which the moving average function ¥(7) is calculated over all
the past n—1 data points of the signal. The second case 6
=0.5 corresponds to the centered moving average [41],
where ¥(¢) contains half-past and half-future information in
each window. The third case #=1 is called the forward mov-
ing average, where 3(r) considers the trend of n—1 data
points in the future.

Step 3. Detrend the signal series by removing the moving
average function ¥(i) from y(/) and obtain the residual se-
quence €(i) through

e(i) = y(i) - 5(), 3)

where n—|[(n-1)0l=i=N-[(n-1)0|.

Step 4. The residual series €(i) is divided into N, disjoint
segments with the same size n, where N,=|N/n-1]. Each
segment can be denoted by €, such that €,(i)=€(l+i) for 1
=i=n, where [=(v—1)n. The root-mean-square function
F,(n) with the segment size n can be calculated by

F3(n) = iE (). (4)
i=1

Step 5. The gth-order overall fluctuation function F,(n) is
determined as follows:

1 N, 1/q
F,(n)= ]72 Fin) [ (5)
nv=1

where g can take any real value except for g=0. When ¢
=0, we have

Nll
InLFo(n)] =~ 3 ol )] (6)

nv=1

according to L’Hospital’s rule.
Step 6. Varying the values of segment size n, we can
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determine the power-law relation between the function F’ q(n)
and the size scale n, which reads

F,(n) ~ ", (7)

According to the standard multifractal formalism, the multi-
fractal scaling exponent 7(g) can be used to characterize the
multifractal nature, which reads

7(q) = qh(q) - Dy, (®)

where Dy is the fractal dimension of the geometric support of
the multifractal measure [25]. For time series analysis, we
have D,=1. If the scaling exponent function 7(g) is a non-
linear function of ¢, the signal has multifractal nature. It is
easy to obtain the singularity strength function a(g) and the
multifractal spectrum f(«) via the Legendre transform [46]

alg) =dr(q)ldq,

flg)=qa-1(q). 9)

B. Numerical experiments

In the numerical experiments, we generate one-
dimensional multifractal measure to investigate the perfor-
mance of MFDMA, which is compared with MFDFA. We
apply the p model, a multiplicative cascading process, to
synthesize the multifractal measure [47]. Start from a mea-
sure u uniformly distributed on an interval [0,1]. In the first
step, the measure is redistributed on the intervals wu, ;=up,
to the first half and w;,=up,=u(l-p;) to the second half.
One partitions it into two sublines with the same length. In
the (k+1)th step, the measure u;; on each of the 2* line
segments is redistributed into two parts, where 2
=y 1 and gy 2= My 2. We repeat the procedure for 14
times and finally generate the one-dimensional multifractal
measure with the length 2'%. In this paper, we present the
results when the parameters are p;=0.3 and p,=0.7. The
results for other parameters are qualitatively the same.

We calculate the fluctuation function F,(n) of the syn-
thetical multifractal measure using the MFDMA and
MFDFA methods and present the fluctuation function F(n)
in Fig. 1(a). We find that the function F,(n) well scales with
the scale size n. Using the least-squares fitting method, we
obtain the slopes i(g) for MFDMA (6=0, 6=0.5, and 6=1)
and MFDFA, respectively, which are illustrated in Table I. It
is found from the table that the error bars of the three
MFDMA algorithms are all smaller than the MFDFA
method, which implies that it is easier to determine the scal-
ing ranges for the MFDMA algorithms. In most cases, the
algorithms underestimate the /(g) values and the backward
MFDMA approach gives the best estimates. There is an in-
teresting feature in Fig. 1(a) showing evident logarithmic-
periodic oscillations in the MFDFA F(n) curves, which is
intrinsic for the multifractal binomial measure [48].

We plot the multifractal scaling exponents 7{(¢g) obtained
from MFDMA (0=0, 6=0.5, and #=1) and MFDFA in Fig.
1(b). The theoretical formula of 7(g) of the multifractal mea-
sure generated by the p model discussed above can be ex-
pressed by [46]
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FIG. 1. (Color online) Multifractal analysis of the one-dimensional multifractal binomial measure using the three MFDMA algorithms
and the MFDFA approach. (a) Power-law dependence of the fluctuation functions F,(n) with respect to the scale n for g=—4, ¢=0, and g=4.
The straight lines are the best power-law fits to the data. The results have been translated vertically for better visibility. (b) Multifractal mass
exponents 7(g) obtained from the MFDMA and MFDFA methods with the theoretical curve shown as a solid line. (¢) Differences Ar(g)
between the estimated mass exponents and their theoretical values for the four algorithms. (d) Multifractal spectra f(«) with respect to the
singularity strength « for the four methods. The continuous curve is the theoretical multifractal spectrum.

In(p{ + p9)
Tnlg)=-————,

In2 (10)

which has been illustrated in Fig. 1(b) as well. In order to
quantitatively evaluate the performance of MFDMA and
MFDFA, we calculate the relative estimation errors of the
numerical values of 7(g) in reference to the corresponding
theoretical values 7(q),

At(g) = 7(q) — T(q), (11)

which are shown in Fig. 1(c). When 0<g¢=4, all the four
methods underestimate the 7{(¢g) exponents. In contrast, when

-4=¢<0, these methods overestimate the scaling expo-
nents with a few exceptions for the backward MFDMA case.
It is evident that the backward MFDMA method (6=0) gives
the most accurate estimation of the exponents, the forward
MFDMA method (#=1) has the second best performance,
and the centered MFDMA method (6=0.5) performs worst.
We stress that both the backward and the forward MFDMA
methods outperform the MFDFA approach.

According to the Legendre transform, we can numerically
calculate the singularity strength functions a(g) and the mul-
tifractal spectrum functions f(a) with Eq. (9) for the four
methods, which are depicted in Fig. 1(d). We also show the

TABLE 1. The MFDMA exponents h(q) for g=-4, =2, 0, 2, and 4 of the one-dimensional synthetic
multifractal measure with the parameters p;=0.3 and p,=0.7 using the MFDMA (6=0, #=0.5, and 6=1) and
MFDFA methods. The numbers in the parentheses are the standard errors of the regression coefficient

estimates using the ¢ test at the 5% significance level.

MFDMA
q 6=0 6=0.5 =1 MFDFA Analytical
-4 1.505(4) 1.401(12) 1.496(2) 1.490(17) 1.499
-2 1.354(3) 1.249(8) 1.337(4) 1.326(9) 1.359
0 1.114(4) 1.022(5) 1.096(5) 1.074(6) 1.126
2 0.874(6) 0.788(3) 0.859(5) 0.804(11) 0.893
4 0.749(9) 0.667(4) 0.736(6) 0.670(15) 0.753
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FIG. 2. (Color online) Multifractal analysis of the 5 min return time series of the SSEC Index using the backward MFDMA method. (a)
Power-law dependence of the fluctuation functions F(n) with respect to the scale n. The solid lines are the least-squares fits to the data. The
results corresponding to g=—4, g=-2, g=0, g=2, and g=4 have been translated vertically for clarity. (b) Multifractal spectra f(«) of the raw
return series of the SSEC Index and its shuffled series. Inset: multifractal scaling exponents 7(¢g) as a function of q.

theoretical singularity spectrum as a continuous curve for
comparison, where the singularity strength function a(g) can
be calculated as follows:

pinp,+pinp,

a =— , 12
1(q) o+ pl)in 2 (12)
and the multifractal spectrum is
gp{Inp,+qgpjinp, In(pf+pj
fulg) == e (13)

(p?+p9HIn2 In2

It also shows that the order of the algorithm performance is
the following: backward MFDMA, forward MFDMA,
MFDFA, and centered MFDMA. We also apply the four
methods to the synthetic signals with different sample sizes
(2'° and 2'8) and obtain similar results.

C. Application to intraday SSEC Index time series

We now apply the one-dimensional backward MFDMA
method to the study of the multifractal properties of 5 min
return series of the SSEC Index within the time period from
January 2003 to April 2008. The number of data points is
about 10°. In Fig. 2(a), we present the fluctuation function
F,(n) with respect to the scale n. It is found that the function
F q(n) and the scale n have a sound power-law relation. The
MFDMA exponents h(g) can be estimated by the slopes of
the straight lines illustrated in Fig. 2(a) for different ¢’s.
Using the least-squares fitting method, we have h(—4)
=0.660 = 0.005, h(-2)=0.624+0.002, h(0)=0.5910.001,
h(2)=0.531=0.003, and h(4)=0.493 =0.008. Since h(2) is
close to 0.5, it is confirmed that the return time series of the
SSEC Index is almost uncorrelated, which is consistent with
the earlier empirical results.

Figure 2(b) shows the multifractal spectrum f(«) of return
series of the SSEC Index. The strength of multifractality can
be characterized by the span of the multifractal singularity
strength function, that is, A= a,.— amin- If Ac is large, the
return series owns multifractality, while the return series is
almost monofractal if Aa gets close to zero. We observe in
the figure that Aa=0.72-0.39=0.33, which means that the

return series of the SSEC Index has multifractal nature. The
nonlinearity of the 7(g) curve in the inset confirms the pres-
ence of multifractality in the return series.

We shuffle the return time series and reconstruct a surro-
gate index. We then perform backward MFDMA analysis of
the surrogate index. The results are also illustrated in Fig.
2(b). We find that the singularity spectrum shrinks much and
the 7(g) function is almost linear, which implies that the
fat-tailedness of the returns plays a minor role in producing
the observed multifractality and the correlation structure is
the main cause of multifractality. This observation is quite
interesting since it is different from the conclusion that the
fat-tailedness of the returns is the main origin of multifrac-
tality according to the MFDFA method [49].

III. TWO-DIMENSIONAL MULTIFRACTAL DETRENDING
MOVING AVERAGE ANALYSIS

A. Algorithm

The two-dimensional MFDMA algorithm is used to inves-
tigate possible multifractal properties of surfaces, which can
be denoted by a two-dimensional matrix X(i;,i;) with i,
=1,2,...,Nyand i,=1,2,...,N,. The algorithm is described
as follows:

Step 1. Calculate the sum Y(i,i,) in a sliding window
with size n; X n,, where ny<i;=<N,—-|(n,-1)6,] and n,=<i,
=N,—|(n,—1)6,]. The two position parameters 6, and 6,
vary in the range [0,1]. Specifically, we extract a submatrix
Z(uy,uy) with size n; Xn, from the matrix X, where i;—n,
+1=u,;=i,and i,—n,+1=u,=i,. We can calculate the sum
Y(iy,i,) of Z as follows:

Y(inin) = 2 2 Z(j1nd)- (14)
Ji1=1 jp=1

Step 2. Determine the moving average function Y(i,,i,),
where n,<i;=N,;—[(n,-1)60,] and n,<i,=N,-[(n,—1)6,].
We first extract a submatrix W(k,,k,) with size n; X n, from
the matrix X, where k;—[(n,-1)(1-0)]=k =k,
+H(n =161 and k~[(n,=1)(1-0) 1=k, =<k, +[(n,~1)6,].
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Then we calculate the cumulative sum W(m,,m,) of W,

mymy
Wim,my) = 2, 2 W(dy,dy), (15)
dy=1 dy=1

where 1=m;=n; and 1=m,=n,. The moving average

function Y| (11 ,i;) can be calculated as follows;
. 1 42
Y(ipi)=—— 2 X Wimp,my). (16)
112 m=1 my=1
Step 3. Detrend the matrix by removing the moving aver-

age function Y(i,,i,) from Y(i;,i,) and obtain the residual
matrix €(i;,i,) as follows:

€liy,ip) = Y(iy,ip) = Y(ipiy), (17)

where n,<i;<N,—-|(n;-1)6,] and n,<i,<N,—|(n,-1)6,].

Step 4. The residual matrix e(i;,i,) is partitioned into
N, XNy, disjoint rectangle segments of the same size n;
Xny, where N, =|(Ny=n;(1+6,))/n] and N, =[(N,—ny(1
+6,))/n,). Bach segment can be denoted by € €0, such that
€ v, (I1,i) =€l +iy,l+iy) for 1=iy=n, and l<12§n2
where [,=(v,—1)n; and l,=(v,—1)n,. The detrended fluc-
tuation F, , (n;,ny) of segment €, , (i,i,) can be calcu-
lated as follows:

1 n] n2
(”1,712) —> E 2(i1,i2)~ (18)
N =1 iy=1

Step 5. The gth-order overall fluctuation function F,(n) is
calculated as follows:

N, N, lig

ny

T s EF,,] (nom)  (19)

n i ui=lvy=l

F,(n)=

where nzzé(n%nz) and ¢ can take any real values except
for g=0. When ¢=0, we have

Ny Ny,
ln[Fo(”)]—N , > 2 I[F, , (n.n)],  (20)
nyv=l vp=1

according to L’Hospital’s rule.

Step 6. Varying the segment sizes n; and n,, we are able
to determine the power-law relation between the fluctuation
function F,(n) and the scale n,

F,(n) ~ "9, (21)

In this paper, we particularly adopt n=n,=n, and 0=0,=6,
for the isotropic implementation of the two-dimensional
MFDMA algorithm. Applying Egs. (8) and (9), we can ob-
tain the multifractal scaling exponent 7(g), the singularity
strength function a(g), and the multifractal spectrum f(a),
respectively. For the two-dimensional multifractal measures,
we have D=2 in Eq. (8).

B. Numerical experiments

In order to investigate the performance of the two-
dimensional MFDMA methods, we adopt the multiplicative
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cascading process to synthesize the two-dimensional multi-
fractal measure. The process begins with a square, and we
partition it into four subsquares with the same size. We then
assign four proportions of measure py, p,, p3, and p, to them
(such that p,+p,+ps+p,s=1). Each subsquare is further par-
titioned into four smaller squares and the measure is reas-
signed with the same proportions. The procedure is repeated
ten times and we finally generate the two-dimensional mul-
tifractal measure with size 1024 X1024. In the paper, the
model parameters are p;=0.1, p,=0.2, p3=0.3, and p,=0.4.

In Fig. 3(a), we depict the fluctuation functions F,(n) of
the two-dimensional multifractal measure for three MEDMA
algorithms with #=0, #=0.5, and #=1 described in Sec.
III A and the two-dimensional MFDFA method [26]. We find
that every F,(n) function scales excellently as a power law of
n. Linear least-squares regressions of In[F,(g)] against In(n)
for each ¢ give the estimates of h(g). Table I shows the
resultant values of h(g) for g=—4, =2, 0, 2, and 4. Similar to
the results of the one-dimensional MFDMA and MFDFA
methods, we find that the three two-dimensional MFDMA
algorithms give better power-law scaling relations than the
MFDFA algorithm with smaller standard errors in the paren-
theses except for the forward MFDMA with =1 when
g=-4. Compared with the theoretical values in the last col-
umn of Table II, the backward MFDMA with 6=0 gives the
most accurate estimates and thus has the best performance.

In Fig. 3(b), we plot the multifractal scaling exponents
7(q) estimated from the three MFDMA algorithms and the
MFDFA method. The theoretical results are also shown for
comparison, which are calculated as follows:

In(p{ + p§ + p{+pf)
In2

Tinlg) =— (22)
According to Fig. 3(b), we find that the four 7(q) curves
estimated from the MFDMA and MFDFA methods are also
close to the theoretical values.

To have a better visibility, we plot the difference functions
A7(q)=1(q)—1(g) in Fig. 3(b). For positive values of g, the
algorithms underestimate the 7(¢g) values. It is clear that the
backward MFDMA with #=0 performs best, the forward
MFDMA with =1 performs worst, and the MFDFA outper-
forms the centered MFDMA with 6=0.5. For negative values
of ¢, most A7 values are larger than zero. We find that the
backward MFDMA has the best performance, the MFDFA
has the worse performance, and the performance of the cen-
tered and forward MFDMA methods are comparable to each
other. These findings are further confirmed by the results
illustrated in Fig. 3(d) for the multifractal spectra.

IV. DISCUSSION AND CONCLUSION

In this paper, we have developed the detrending moving
average techniques to make them suitable for the analysis of
multifractal measures in one and two dimensions. Extensions
to higher dimensions are straightforward. The performance
of these MFDMA algorithms is tested based on numerical
experiments of synthetic multifractal measures with known
theoretical multifractal properties generated according to
multiplicative cascading processes. We also present the re-
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FIG. 3. (Color online) Multifractal analysis of the two-dimensional multifractal measure using the three MFDMA algorithms and the
MFDFA approach. (a) Power-law dependence of the fluctuation functions F,(n) with respect to the scale n for g=-4, g=0, and g=4. The
straight lines are the best power-law fits to the data. The results have been translated vertically for better visibility. (b) Multifractal mass
exponents 7(g) obtained from the MFDMA and MFDFA methods with the theoretical curve shown as a solid line. (¢) Differences Ar(g)
between the estimated mass exponents and their theoretical values for the four algorithms. (d) Multifractal spectra f(a) with respect to the
singularity strength « for the four methods. The continuous curve is the theoretical multifractal spectrum.

sults of MFDFA for comparison. Our main conclusion is that
the backward MFDMA with the parameter #=0 exhibits the
best performance when compared with the centered
MFDMA, forward MFDMA, and MFDFA, because it gives
better power-law scaling in the fluctuation functions and
more accurate estimates of the multifractal scaling exponents
and the singularity spectrum.

For the one-dimensional MFDMA version, we find that
MFDMA gives a more reliable regression in the log-log plot
of the fluctuation function F’ q(n) with respect to the scale n
than MFDFA. Comparing with the theoretical formulas of
7(q) and f(«), the backward MFDMA performs best, the

centered MFDMA performs worst, and the forward MFDMA
outperforms the MFDFA. The backward MFDMA with 6
=0 is applied to the analysis of the return time series of the
SSEC Index and confirms that the return series exhibits mul-
tifractal nature, which is not caused by the fat-tailedness of
the return distribution.

For the two-dimensional MFDMA version, we also find
that MFDMA gives a more reliable regression than MFDFA
when testing on the two-dimensional synthetic multifractal
measure. The estimates of 7(g) and f(a) well agree with the
theoretical values for the backward MFDMA with 6=0,
which is the best estimator. The centered and forward

TABLE II. The MFDMA exponents A(g) for g=—4, -2, 0, 2, and 4 of the two-dimensional synthetic
multifractal measure with the parameters p;=0.1, p,=0.2, p3=0.3, and p;=0.4 using the MFDMA (6=0,
0=0.5, and 6=1) and MFDFA methods. The numbers in the parentheses are the standard errors of the
regression coefficient estimates using the ¢ test at the 5% significance level.

MFDMA
q 6=0 0=0.5 6=1 MFDFA Analytical
-4 2.850(7) 2.857(11) 2.860(42) 2.780(20) 2.849
-2 2.534(6) 2.505(14) 2.503(22) 2.461(23) 2.577
0 2.114(10) 2.041(13) 2.017(15) 2.064(20) 2.176
2 1.829(19) 1.751(10) 1.720(10) 1.769(30) 1.869
4 1.688(25) 1.615(10) 1.586(11) 1.616(43) 1.705
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MFDMA methods with #=0.5 and 6=1 give a better estima-
tion than MFDFA in the negative range of ¢’s, while they are
worse than MFDFA for positive gq.

Technically, it is crucial to emphasize that the window
size (n for one-dimensional MFDMA or n; X n, for two-
dimensional MFDMA) used to determine the moving aver-

age function [5(i) for one-dimensional version or Y (i, ,i,) for
two-dimensional version] in step 2 must be identical to the
partitioning segment size in step 4. If the window size is not
equal to the segment size, the fluctuation function F(n) does
not show power-law dependence on the scale n, and the mul-
tifractal scaling exponent 7(¢g) and the multifractal spectrum
f(@) estimated from the MFDMA remarkably deviate from
the theoretical ones.

Finally, we would like to stress that there are tremendous
potential applications of the backward MFDMA method in
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multifractal analysis due to the better performance of this
algorithm compared with the extensively used MFDFA ap-
proach. The MFDMA algorithms are easy to implement [50].
Possible applications include time series (one dimensional),
fracture surfaces, landscapes, clouds, and many other images
possessing self-similar properties (two dimensional), tem-
perature and concentration fields (three dimensional), and
strange attractors in nonlinear dynamics (higher dimen-
sional).
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