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We analyze the dynamics of heterogeneous granular particles immersed in a bath of thermalized particles,
which are candidates for granular motors, with a mechanical approach. We first apply the method to the
previously introduced asymmetric piston and show that it gives the exact drift velocity in the Brownian limit.
We also obtain results for the efficiency of the motor and compare with numerical simulations. Finally, we
introduce a chiral rotor model and discuss opportunities for observing a real granular motor.
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I. INTRODUCTION

Brownian ratchets, which are devices that extract work
from a thermal bath, have fascinated scientists for nearly a
century �1,2�. In order to function a ratchet must break both
time and spatial symmetries. The former occurs whenever
detailed balance does not apply and spatial symmetry may be
broken by intrinsic asymmetry of the object or an external
force. For an extensive review of recent developments and
applications, see Ref. �3�. The fact that time-reversal symme-
try is automatically broken in systems of inelastic particles
prompted several groups to propose simple models of granu-
lar ratchets that are coupled to only one thermal bath at a
given temperature.

Cleuren and Eichhorn �4�, and independently Costantini et
al. �5�, showed that an asymmetric granular particle in a
homogeneous bath of particles displays a drift velocity that is
proportional to 1−�, where � is the coefficient of restitution
characterizing the collisions between the tagged particle �of
mass M� and the bath particles �of mass m�. Costantini et al.
�6� proposed possibly the simplest model of a granular motor
consisting of an asymmetric piston composed of two materi-
als with different inelasticities. The piston, which is con-
strained to move along a line, is immersed in a bath of elastic
particles. The asymmetry leads to a violation of detailed bal-
ance and to a net drift. Starting from the Boltzmann equa-
tion, Costantini et al. proposed a phenomenological approach
based on the evolution of the first three moments of the
velocity distribution. Although their theory is in good agree-
ment with numerical simulation results in some cases, it is
somewhat unwieldy and, more importantly, it breaks down in
the limit of large piston mass. Here, we propose a much
simpler mechanical approach that gives the average force on
the particle when it is moving at a given velocity. This leads
directly to an exact expression for steady-state drift velocity
in the limit of large piston mass.

We apply the method to the asymmetric piston as well as
to a new model motor, namely, a chiral rotor �7�, which is
more interesting from an experimental perspective. As an
application of the method, we calculate the efficiency of
these motors in the Brownian limit. The efficiency at nonzero
power was first considered by Curzon and Ahlborn �8� and
later generalized by van den Broeck �9�. The efficiency
of Brownian motors has also been discussed �10,11�, but

there are no published results for the efficiency of granular
motors.

II. MODEL

The asymmetric piston of mass M and length L is com-
posed of two different materials with coefficients of restitu-
tion �L and �R on the left- and right-hand sides, respectively,
and is constrained to move along a line. The chiral rotor is
also heterogeneous but is constrained to rotate about a fixed
point �see Fig. 1�. Both devices are immersed in a two-
dimensional granular gas at a density � composed of struc-
tureless particles each of mass m and whose velocity distri-
bution is given by ��v�. We let vx and vy denote the
components of the gas particle’s velocity perpendicular and
parallel to the surface of the motor, respectively. The granu-
lar temperature of the bath is defined as TB=m�vx

2�=m�vy
2�.

We first focus on the piston. Following a collision with a
bath particle vy is conserved, while vx, denoted henceforth by
v, and the piston velocity V change as

�V�

v�
� = �V

v
� +

1 + �

1 + �
�v − V�� 1

− �
� , �1�

where � is chosen depending on the side, �L or �R, and
�=M /m. The granular temperature of the piston is given by
Tg=MŠ�V− �V��2

‹ where the average is over its velocity dis-
tribution f�V�.

FIG. 1. �Color online� Granular motors. Left: the asymmetric
piston; right: the chiral rotor. Both motors are constructed from
materials with different coefficients of restitution and are immersed
in a bath of thermalized particles. The asymmetric piston acquires a
net drift velocity along a line, while the chiral rotor acquires a net
rotation around its axis.
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Intuitively, one expects the motor effect to be greatest
when 	�L−�R	 is maximum, which corresponds to �R=0,
�L=1 �or the inverse� since this results in the greatest differ-
ence in momentum transfer to each side. The parameter
space of the model can be reduced by virtue of the fact that
a system with 0��R��L�1 and mass M is equivalent
to the one characterized by �R� =0, 0��L��1, and M�, a
feature occurring in several other tracer problems �12–14�.
�The explicit relationships are ��= ��−�R� / �1+�R� ,
�L�= ��L−�R� / �1+�R�.�

III. MECHANICAL APPROACH

The instantaneous impulse exerted on the piston of veloc-
ity V by a collision with a bath particle of velocity v on the
right-hand side is

IR =
M

1 + �
�1 + �R��V − v�, v � V , �2�

with a similar equation involving �L for a collision on the
left-hand side. Assuming that successive collisions between
bath particles and the granular tracer are uncorrelated, the
pressure is obtained by averaging on different collisions at a
given velocity of the granular piston V that consists of inte-
grating the impulse times the rate that the specified face col-
lides with a particle moving with a velocity v,

P�V� =
M�

1 + �



0

	

dy y2��1 + �L���V + y� − �1 + �R���V − y�� .

�3�

For a Gaussian bath velocity distribution, ��v�
= �1 /�2
vth�exp�−v2 / �2vth

2 ��, where vth=�TB /m, we obtain
the explicit expression

P�U� =
�Mvth

2

4�1 + �����L − �R��1 + U2�

− �2 + �L + �R�
�1 + U2�erf� U
�2
�

+� 2



Ue−U2/2�� , �4�

where we have introduced the dimensionless velocity U
=V /vth. We anticipate �and justify below� that in the limit
�→	, where the piston velocity fluctuations go to zero, the
solution of P�U�=0 gives the exact mean drift velocity U�.
The result of Costantini et al. �6�, U�= ���L−�R� /4�2+�L

+�R���2
, however, underestimates the exact solution, e.g.,
for �R=0, �L=1, U�=0.217 02, while their estimate is
0.2089, or a difference of 3.7%. We compare these results
with numerical simulations of the model using the Gillespie
approach �equivalent results can be obtained by a direct
simulation Monte Carlo �DSMC� method �15��. Figure 2,
which shows in a logarithmic-linear plot the mass depen-
dence of the mean velocity, confirms that our approach pro-
vides the correct description in the limit of large piston mass.

We now demonstrate that the result for the mean drift
velocity is consistent with the Boltzmann equation for the
asymmetric piston. This may be written as



0

	

dy yf�V −
1 + �L

1 + �
y���V +

� − �L

1 + �
y�

+ 

0

	

dy yf�V +
1 + �R

1 + �
y���V −

� − �R

1 + �
y�

= f�V�

0

	

dy y���V + y� + ��V − y�� . �5�

Introducing the drift velocity in the Brownian limit, V�, and
the variable transformation z= �V−V�� /� and expanding the
distribution function F�z� in powers of �, we obtain at first
order



0

	

dy y2��1 + �L���V� + y� − �1 + �R���V� − y�� = 0,

�6�

which is consistent with the mechanical approach �Eq. �3��,
while at second order we obtain a Fokker-Planck equation
for the piston velocity distribution,

Tg

m

d2F�z�
dz2 + z

dF�z�
dz

+ F�z� = 0, �7�

where Tg /m is given by
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FIG. 2. �Color online� Dimensionless steady-state velocity U as
a function of the mass ratio �=M /m for �L=1 and �R=0. Circles
correspond to simulation results, the solid line shows the exact so-
lution in the Brownian limit �solution of P�U�=0 with P�U� given
by Eq. �4��, and the dashed straight line corresponds to the Brown-
ian limit given in �6�. The dashed-dotted and dotted lines corre-
spond to the first-order �Eq. �12�� and second-order �Eq. �13�� cor-
rections for finite mass ratios. The inset shows results for the rotor;
see text.
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Tg

m
=



0

	

dy y3��1 + �R�2��V� − y� + �1 + �L�2��V� + y��

4

0

	

dy y��1 + �R���V� − y� + �1 + �L���V� + y��
.

�8�

Reverting to the original variables, one obtains f�V�
�e−M�V − V��2/2Tg. Equation �8� shows that in the Brownian
limit the temperature of heterogeneous granular particles de-
pends on the moments of bath velocity function, whereas the
temperature does not depend on the bath for homogeneous
granular particles �4,5,16,17�. It gives Tg /TB=0.734 60. . . for
a Gaussian bath.

For the piston, the dependence of the mean drift velocity
on the mass ratio is nontrivial. As the mass ratio decreases,
the drift velocity first increases and then decreases after
reaching a maximum for ��0.7. This implies that the fluc-
tuating force first makes a positive contribution, but then
starts to oppose the motion. It may be more difficult to con-
firm the behavior for ��1 experimentally. First, experimen-
tal realizations of light pistons in a bath of heavy particles
are likely to be much more difficult to achieve than the in-
verse. Second, it may be difficult to minimize the effect of
recollisions, which are not accounted for in the theory.

We now show how to obtain systematic corrections to our
Brownian limit prediction for finite mass ratios. We suppose
that in, addition to the fluctuating force resulting from colli-
sions with the bath particles, the motor is subject to a con-
stant external pressure Pext. The average of the net pressure
performed over all possible velocities of the granular piston
is equal to zero in the stationary state. Since the successive
collisions are assumed uncorrelated, this condition can be
expressed as

�Pnet�V�� = 

−	

	

dVf�V�P�V� + Pext = 0. �9�

It is convenient to rewrite this as �Pnet�V��= P��V��+ Pf
+ Pext=0, where P��V�� is the mean pressure when the piston
is moving with a constant velocity, �V�, and Pf is the mean
pressure resulting from the fluctuations of the velocity
around the mean value, �V�. Now by expanding P�V� about
V�, where P�V��=0, one builds an approximate expression
for �V�. Hence, to lowest order the drift velocity is given by

�V� = V� −

1

2
P��V����V − V��2� + Pext

P��V��
. �10�

Since M��V−V��2��Tg, we have that in the Brownian limit,
�→	,

�V� = V� − Pext/P��V�� + O�1/�� . �11�

To obtain the first-order correction to the Brownian limit, we
use Eq. �10� to obtain

�V� � V� −
1

2

P��V��
P��V��

Tg

M
, �12�

where Tg, P��V��, and P��V�� are functions of �L and �R.
Figure 2 shows that, for �R=0, �L=1, the first-order correc-
tion provides a good description for �
5. Unfortunately, it
predicts a rapid increase in �V� as � decreases below this
value. We attempt to improve the correction by truncating
the expansion of Pf at third order. Then by approximating
��V−V��3��3��V−V��2���V−V���, we obtain

�V� � V� −
1

2

P��V��
Tg

M

P��V�� +
1

2
P��V��

Tg

M

. �13�

This approximation no longer diverges in the limit of small
mass ratio, but saturates at a finite mean velocity and pro-
vides an accurate analytical expression when compared with
the simulation data down to moderate mass ratio. The de-
crease in the mean velocity for small mass ratio is not ob-
tained to this approximation, and it is unlikely that this re-
gime can be captured with a perturbative expansion in mass
ratio since, in the small mass ratio limit, the velocity distri-
bution becomes strongly non-Gaussian. In any case, as noted
above, the model neglecting recollisions probably provides a
poor physical description in this regime.

The behavior shown in Fig. 2 is qualitatively similar for
other values of the coefficients of restitution. The position of
the maximum shifts slightly, but not much. For example, for
�L=0.5, �R=0 it occurs at �=0.4. The quality of the per-
turbative expansions is also similar to the one shown.

We now exploit the above development to obtain the ef-
ficiency of the motor. If the external pressure in Eq. �9� is
nonzero, work is being done by, or on, the piston. The power
is given by

Ẇ = PextL�V� . �14�

In the Brownian limit we can estimate the average drift ve-
locity using Eq. �11�. Alternatively, we can take �V� as the
independent variable,

Ẇ = P��V��L�V� , �15�

with P�V� given by Eq. �4�. Of course, this approach is only
valid in the Brownian limit. In general this has a parabolic
form and is maximum for 0�V�V�. When the velocity is
greater than V� the power is negative, implying that it is
necessary to drive the piston externally in order to maintain
the velocity. The energy dissipated when a bath particle col-
lides with the piston is �E=− 1

2
M

1+� �1−�2��V−v�2, where �
=�R ,�L depending on the side. So the rate of energy dissi-
pation due to collisions on, e.g., the right-hand side is

ĖR�V� = �L

−	

V

�E�V,v��V − v���v�dv . �16�

The efficiency, or the fraction of the dissipated energy that
is converted into work, is
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���L,�R,V� =
Ẇ

	Ė	
, �17�

where Ė= ĖR+ ĖL. For an arbitrary bath distribution in the
Brownian limit we find that

�

2V
=



0

	

dy y2��1 + �L���V + y� − �1 + �R���V − y��



0

	

dy y3��1 − �L
2���V + y� + �1 − �R

2���V − y��
.

�18�

Figure 3 shows the efficiency calculated from the simula-
tions. The results indicate that the efficiency increases with
increasing piston mass and in the Brownian limit approaches
that computed from Eq. �18� with a Gaussian distribution.
We conclude that the efficiency is maximum in the Brownian
limit. The inset shows the maximum efficiency as a function
of �L in this limit. This is virtually indistinguishable from the
efficiency at maximum power. The exact maximum value,
which occurs for �L=1 is 5.528%, while the efficiency at

maximum power is 100 / �3+48 /
�=5.471%.

IV. CHIRAL ROTOR

Let us now consider the chiral rotor �see Fig. 1�. The
collision equations are

���

v�
� = ��

v
� +

1 + �

I + mx2 �v − �x��mx

− I
� , �19�

where � is the angular velocity, I is the moment of inertia,
and −L /2�x�L /2 is the algebraic distance of impact from
the center. The granular temperature of the rotor is given by
Tg= IŠ��− ����2

‹.
Evaluation of the torque requires an integral over x, in

addition to the bath particle velocity distribution, i.e.,

���� = 2M�

0

L/2

dx

0

	

dy
xy2

1 +
mx2

I

���1 + �L���x� + y� − �1 + �R���x� − y�� .

�20�

As with the piston, we obtain the mean angular velocity in
the Brownian limit, mL2 / I→	, by setting the torque equal to
zero. The result, as well as simulations, for finite ratios is
shown in the inset in Fig. 2. Note that, unlike the piston, we
do not observe a maximum as the moment of inertia de-
creases. As for the piston, this region is less interesting
physically for the reasons discussed above.

For the asymmetric rotor in the Brownian limit, we find a
maximum efficiency of 4.32%. This mechanical analysis in-
dicates that heterogeneous granular particles are able to pro-
duce significant noise rectification, even in the Brownian
limit. Provided that the solid friction about the axis can be
controlled, the chiral rotor should be a good candidate for an
experimental realization of a Brownian granular motor. Fi-
nally, strong inelasticity may induce some inhomogeneities
in the bath particle distribution. While this effect is not easy
to treat analytically, it is likely to be weak at low bath den-
sities. Preliminary molecular-dynamics simulations of this
system seem to confirm this expectation and the validity of
the Boltzmann equation approach for rotors heavier than a
bath particle �7�. After completing this work, we became
aware of an experimental realization of a granular rotor simi-
lar to the one studied here �18�.
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FIG. 3. �Color online� The efficiency as a function of the mean
drift velocity for a system with �R=0, �L=1. The solid curves
show simulation results for �=1,2 ,5 ,10 �from bottom to top�,
while the dashed line shows the theoretical prediction in the Brown-
ian limit. The inset shows the maximum efficiency and efficiency at
maximum power, both in the Brownian limit, as a function of �L for
a system with �R=0. The maximum efficiency is slightly larger but
is indistinguishable from the efficiency at maximum power on the
scale of the plot.
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