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A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is intro-
duced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the
q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice
are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging
is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.

DOI: 10.1103/PhysRevE.82.011133 PACS number�s�: 02.50.Ey, 05.50.�q, 05.70.Ln, 75.10.Hk

I. INTRODUCTION

The model introduced originally by Glauber �1� is defined
on a one dimensional lattice where a one-spin-flip Markov-
ian stochastic process takes place. It simulates the dynamics
of a ferromagnetic Ising chain with first-neighbor interaction,
and the stationary state is described by the Gibbs measure
associated with the Ising Hamiltonian as a consequence of
obeying detailed balance. In stationary regime at nonzero
temperatures, the two-time functions like the autocorrelation
and response function, are time-translationally invariant and
connected through the fluctuation-dissipation theorem; fur-
thermore, the model displays a transient where aging is ob-
served �2�. At zero temperature, when the system becomes
critical, the fluctuation-dissipation ratio �which is related to
the effective temperature of the system �3�� assumes a non-
trivial value X�=1 /2.

When the model is extended to higher dimensions, and
called Glauber model, no analytical solution is available due
to the nonlinear structure of the transition rate. Nevertheless,
the linearized version of the Glauber model, proposed a few
years ago �4�, can be treated by analytical tools in any di-
mension. The linear Glauber model can be seen as the voter
model with noise, which displays a disordered �paramag-
netic� phase only; in the absence of noise, however, the sys-
tem becomes critical. The dynamics of linear Glauber model
was investigated by some of the authors in a previous paper
�5�. This model is microscopically irreversible, that is, it does
not obey detailed balance in the stationary state, for dimen-
sion d�1. Moreover, it has both the stationary and aging
regimes, with a nontrivial fluctuation-dissipation ratio X�

=1 /2 in the later regime as in the usual one-dimensional
Glauber case.

The fluctuation-dissipation relation was usually conceived
for systems that obey detailed balance �6,7�, and has been
generalized to include nonstationary regimes by the introduc-
tion of an effective temperature measuring the violation of
fluctuation-dissipation theorem ��8�, and references therein�.
Many works have confirmed this phenomenon for several
models �9–15�. Recent progress has suggested that it can also
be invoked for nonequilibrium models �5,16�, which does
not have an associated known Hamiltonian �see also this
issue in the context of kinetically constrained models
�17,18��. In �16�, the fluctuation-dissipation relations were

analyzed in a general class of models that exhibit up-down
symmetry which does not obey detailed balance.

The above mentioned works are closely related to the
question of universality in out-of-equilibrium processes �19�.
In equilibrium statistical mechanics, it is widely known that
the critical behavior of a system is governed by the fixed
point of the renormalization transformation, and it turns out
that only a few characteristics of the model are relevant to
determine its universality class.

In out-of-equilibrium dynamics, some of the problems re-
lated to universality may be addressed by the generalized
version of the fluctuation-dissipation theorem

R�t,t�� = X�t,t��
�

�t�
C�t,t�� , �1�

where R�t , t�� and C�t , t�� are the response function and au-
tocorrelation, respectively �see �20� for some recent results�.
The typical experimental situation under consideration is a
quench from a completely disordered state, which in revers-
ible systems corresponds to a high-temperature state, to the
critical point. The usual fluctuation-dissipation relation is
verified when the fluctuation-dissipation ratio X�t , t�� equals
unity. It was conjectured that X�t , t�� would depend function-
ally on C�t , t�� only �21�, but renormalization group analysis
�22� and numerical calculations �23� indicated that the
fluctuation-dissipation ratio is a function of t / t�. Further-
more, scaling arguments were casted to propose the
asymptotic behavior for the autocorrelation and response
function �10� at the critical temperature. This result sug-
gested that the quantity

X� = lim
t�→�

lim
t→�

X�t,t�� �2�

is universal due to its dependence to dynamical exponents
and the ratio of autocorrelation and response amplitudes,
which are conjectured to be universal �10�.

In this paper, we introduce and analyze a nonequilibrium
lattice model, which is a generalization of the nonequilib-
rium linear Glauber model to more than two states, which we
call linear q-state model. The model can be understood as the
linearized version of the dynamics associated to the equilib-
rium q-state Potts model. The dynamics of the model, as is
the case of any dynamics of the Potts model, is invariant
under the permutation of any two states. The model can also
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be understood as a q-state voter model with noise. In this
interpretation, a group of individuals are called to vote for
one of q candidates. A voter changes his opinion by choosing
randomly a neighbor individual and adopting the neighbor’s
opinion with probability � and remaining with his opinion
with probability 1−�, the noise. Without noise, it reduces to
the ordinary q-state voter model �24�. Similarly to the linear
Glauber model, the present linear q-state model displays a
paramagnetic phase whenever 0���1 and becomes critical
at �=1.

The analysis of such model has two main aims. First, it
addresses the question raised in a previous result �5� about
the dynamical phenomena of aging and violation of fluctua-
tion dissipation for a class of systems that does not obey
detailed balance—recall that these problems were usually
studied through models that are described by a Hamiltonian.
Finally, there is an additional interest in considering a model
with a more general symmetry in order to verify its influence
on the �possibly� universal quantity cited above, since in
equilibrium statistical physics, symmetry plays a major role
in the critical behavior.

The equilibrium Potts model with q states has been used
to describe experimentally systems that display a number of
identical states or structures at low temperatures �25� such as
the adsorption of noble gases on graphite �25�. It has also
been used to describe biological cell sorting �26�. The non-
equilibrium model with many equivalent states such as the
one studied here may be relevant in the description of sys-
tems where microscopic reversibility is not ensured like
some biological phenomena�26�.

The layout of this paper is as follows. In Sec. II, the
nonequilibrium linear q-state model is defined and many
one-time functions are determined analytically The two-time
functions are calculated in Sec. III, where the fluctuation-
dissipation relations are carefully examined, and some dy-
namical exponents are calculated in Sec. IV The summary of
the main results and its discussions are found in the last
section.

II. LINEAR q-STATE MODEL

Consider a d-dimensional hypercubic lattice with N=Ld

sites and periodic boundary conditions. To each site i there is
a spin variable �i that takes the values 0 ,1 , . . . ,q−1. The
time evolution is governed by a one-site dynamics in which
the state of a given site i changes from �i to �i�=�i+�
modulo q, where � is one of the q states, and the states of the
other sites remain unchanged. The possible transitions are
then the ones in which the state �= ��1 ,�2 , . . . ,�i , . . . ,�N�
changes to the state �i,�= ��1 ,�2 , . . . ,�i� , . . . ,�N� where �i�
=�i+� modulo q. The corresponding transition rate is de-
noted by wi

���� and, for the nonequilibrium linear q-state
model, is defined by

wi
���� =

1 − �

q
+

�

2d
�

�

���i + �,�i+�� , �3�

where the summation is over the nearest neighbors and
��x ,y� is the Kronecker delta, which equals 1 if x=y and 0

otherwise and the parameter � takes values in the interval
0��	1. The time evolution of the probability P�� , t� of
finding the system at state � at time t is governed by the
master equation

d

dt
P��,t� = �

i
�
�

�wi
���i,−��P��i,−�,t� − wi

����P��,t�� ,

�4�

where the summation in � extends over the q states.
The probability of a spin at site j be at state, say 1, is

given by ���� j ,1��. Throughout this paper, the notation

�A���� = �
�

A���P��,t� �5�

will denote the average over spin configurations of the state
function A���. The equation of motion for ���� j ,1�� can be
written from the master Eq. �4� as

d

dt
���� j,1�� =

1 − �

q
− ���� j,1�� +

�

2d
�

�

���� j+�,1�� . �6�

It is also possible to describe the time evolution of
���� j ,1����k ,1��,

d

dt
���� j,1����k,1�� = �1 − �

q
	����� j,1�� + ����k,1���

− 2���� j,1����k,1��

+
�

2d
�

�

����� j+�,1����k,1��

+ ����k+�,1���� j,1���, j � k , �7�

which is closely related to the pair correlation. In order to
recover the results obtained by �4,5� for the linear Glauber
model, it is necessary to connect ��� j ,1� to an Ising spin
variable sj, that takes the values −1 or +1, through the rela-
tion

sj = 2��� j,1� − 1. �8�

As a last remark on the model, its irreversible property for
d
2 will be discussed. Consider, for instance, the four states
shown in Fig. 1 on a square lattice �d=2�. Suppose that the
system follows the sequence of states A, B, C, and D and
returns to the initial state A. If the interval between two suc-
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FIG. 1. A possible irreversible sequence for the bidimensional
q-state model �q
2�.
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cessive states is �t, the probability of occurrence of the se-
quence A→B→C→D→A can be calculated through the
transition rate wi �which is wi

�=0���� as

P�A → B → C → D → A�

= P�A
D�P�D
C�P�C
B�P�B
A�P�A�

= �1 − �

q
+ 3

�

2d
	2�1 − �

q
+ 2

�

2d
	�1 − �

q
	 . �9�

This result is not necessarily equal to the probability of ob-
serving the reversed sequence A→D→C→B→A, which is

P�A → D → C → B → A�

= P�A
B�P�B
C�P�C
D�P�D
A�P�A�

= �1 − �

q
+ 4

�

2d
	�1 − �

q
+ 2

�

2d
	�1 − �

q
+ 1

�

2d
	2

.

�10�

The existence of a sequence of states that is not reversible
implies that the system is irreversible. A generalization of
this result to higher dimensions is obtained by, for instance,
filling the sites created by the introduction of more dimen-
sions with spins �̃ where �̃�0,1 �this is the situation when
q�2; the case q=2 was already discussed in �5��. The argu-
ment above can also be invoked to show that the model is
reversible in the one-dimensional case.

A. Site magnetization

The definition of the site magnetization will be guided by
some constraints. At a fully ordered state, where the spin is at
state, say � j =1, one should have ���� j ,1��=1, while at dis-
ordered state, where the spin is at any one of the q state with
equal probability, the condition ���� j ,1��=1 /q should be
satisfied. This leads to a natural definition of an ordered pa-
rameter � jmj /N, where the site magnetization is defined by

mj�t� =
q

q − 1
���� j,1�� −

1

q − 1
. �11�

The above definition leads to

d

dt
mj�t� = − mj�t� +

�

2d
�

�

mj+��t� , �12�

which is the time evolution of the site magnetization.
The Eq. �12� can be solved by the usual methods by in-

troducing, for instance, the Fourier transform

mp
F�t� = �

j

mj�t�e−ijp, �13�

and its inverse

mj�t� =
1

N
�

p

mp
F�t�eijp, �14�

where the summation in p is over the sites of the first Bril-
louin zone, in which each component of the vector p takes
values inside the interval between −� and �. The solution of
the differential Eq. �12� is then

mj�t� = �
�

 j−��t − t��m��t�� , �15�

where

 j�t� =
1

N
�

p

eijp−f��p�t, �16�

and

f��p� = 1 −
�

d
�
i=1

d

cos pi, �17�

for a d-dimensional hypercubic lattice with coordination
number z=2d. For a homogeneous initial condition mj�t��
=m0 for any j, it is straightforward that the site magnetiza-
tion is constant �mj�t�=m0� for �=1. On the other hand, the
condition ��1 implies mj�t�=m0e−�1−���t−t��, which means
that the magnetization decays to zero for sufficiently long
time. The time correlation length �̄, defined by m=m0e−t/�̄,
diverges as �̄��1−��−��, from which �� =1. Moreover, the
static magnetization M =limt→�� jmj�t� /N is always zero for
��1 and is a non-zero constant �if m0�0� at criticality
��=1�; this jump in the magnetization implies �=0.

B. Pair correlation

The definition of pair correlation qj,k�t� for spins at j and
k will be gauged to obey the following requirements: �i�
qj,j�t�=1 for any j, �ii� qj,k�t�=0, j�k, for the paramagnetic
state �iii� qj,k�t�=1, j�k, for the ordered state. These condi-
tions leads to a natural definition for the pair correlation,
which is

qj,k�t� =
q2

q − 1
���� j,1����k,1�� −

q

2
�mj�t� + mk�t�� −

1

q − 1
,

�18�

and is the only one where the pair correlation qj,k�t� is linear
to ���� j ,1����k ,1��. Its time evolution,

d

dt
qj,k�t� = − 2qj,k�t� +

�

2d
�

�

�qj+�,k�t� + qk+�,j�t��

−
1

2
�1 − ���q − 2��mj�t� + mk�t��, j � k ,

�19�

is obtained from the master Eq. �4� and from Eq. �7�.
From now on, it will be assumed that the pair correlation

qj,k�t� depends on sites j and k through their difference r= j
−k only �note that qr�t�=q−r�t��. Moreover, the system will
be assumed to be in a random initial state �see �27–29� for
other possibilities�, such that the evolution process can be
understood as a quench from �=1 /q to a ��1 /q, which
implies mj�t�=0 for any t. This condition leads to

d

dt
qr�t� = − 2qr�t� +

�

d
�

�

qr+��t�, r � 0. �20�

The above equation, which is valid for r�0 only, should be
modified to comprise the case r=0, for which q0�t�=1. By
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using a previously introduced method �4�, we write the Eq.
�20� in the form

d

dt
qr�t� = − 2qr�t� +

�

d
�

�

qr+��t� + b�t��r,0, �21�

which is now valid for any r, including the case r=0, pro-
vided b�t� be chosen to ensure q0�t�=1 �note that if r�0,
then Eq. �21� recovers Eq. �20��. Formally, this means that
the function b�t� should satisfy

b�t� =
d

dt
q0�t� + 2q0�t� −

�

d
�

�

q��t� = 2 −
�

d
�

�

q��t� .

�22�

Since the system was assumed to be in a completed dis-
ordered initial condition, then qr�0�=�r,0 and the equation of
motion for the pair correlation Eq. �21� can be written as

sqr
L�s� + 2qr

L�s� −
�

d
�

�

qr+�
L �s� = �bL�s� + 1��r,0, �23�

where

qr
L�s� = 

0

�

dte−stqr�t� �24�

is the Laplace transform of qr�t� �similar formula connects
bL�s� and b�t��.

The Eq. �23� can be solved by introducing the Green
function

Gr
L�s,�� =

1

N
�

p

eirp

s + 2f��p�
, �25�

where f is defined in Eq. �17�, that satisfies

sGr
L�s,�� + 2Gr

L�s,�� −
�

d
�

�

Gr+�
L �s,�� = �r,0. �26�

Hence, the solution of the nonhomogeneous differential Eq.
�23� is computed as

qr
L�s� = �

r�

Gr−r�
L �s,���1 + bL�s���r�,0 = �1 + bL�s��Gr

L�s,�� .

�27�

The function bL�s� is fixed remembering that the condition
q0�t�=1, or q0�s�=1 /s, should be satisfied. It is easy to see
that

bL�s� =
1

sG0
L�s,��

− 1, �28�

which implies

qr
L�s� =

1

s

Gr
L�s,��

G0
L�s,��

. �29�

The stationary value for the pair correlation is obtained
through the Laplace final value theorem

qr��� = lim
t→�

qr�t� = lim
s→0

sqr
L�s� =

Gr
L�0,��

G0
L�0,��

. �30�

In the same fashion, the stationary value for b�t� can be
calculated as

b��� = lim
t→�

b�t� = lim
s→0

sbL�s� =
1

G0
L�0,��

. �31�

C. Susceptibility

In this work, the susceptibility is defined through the �spa-
tial� variance

��t� = �
r

�����0,1����r,1�� − ����0,1������r,1���

= �q − 1

q2 	�
r

qr�t� , �32�

where the random initial condition is being assumed. Starting
from a disordered state �mj�0�=0 for any j� and assuming
��1, the stationary susceptibility,

���� = lim
t→�

��t� =
q − 1

2q2�1 − ��
1

G0
L�0,��

, �33�

is obtained by invoking the previous result Eq. �30�. In a
hypercubic lattice, one has

G0
L�0,��

� �
1

2
� d

2��
	d/2

�1 −
d

2
	�1 − ��d−2/2, 0 � d � 2,

−
1

2��
ln�1 − �� , d = 2, �

�34�

as ��1, and lim�→1 G0
L�0,���� for d�2. Therefore, the

stationary susceptibility is

����

� �
�q − 1

q2 	�2�

d
	d/2 1

�1 −
d

2
	 �1 − ��−d/2,

0 � d � 2,

���q − 1

q2 	 �1 − ��−1

�− ln�1 − ���
, d = 2,

��q − 1

2q2 	 1

G0
L�0,����1 − ��−1, d � 2,

�
�35�

from which the exponent � is obtained: the susceptibility
diverges algebraically with exponent d /2 for 0�d�2 and 1
for d
2 with logarithmic corrections for d=2.
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III. TWO-TIME AUTOCORRELATION
AND RESPONSE FUNCTIONS

A. Two-time functions

The analytical form for the autocorrelation and response
function will be determined in this subsection in order to
analyze the stationary and aging dynamical regimes. The
two-time autocorrelation is defined as

C�t,t�� = lim
N→�

1

N�
j

����� j�t�,1���� j�t��,1��

− ���� j�t�,1������ j�t��,1��� , �36�

with the two-time correlation

���� j�t�,1���� j�t��,1��

= �
�

�
��

��� j�t�,1�P��,t
��,t����� j��t��,1�P���,t�� ,

�37�

where P�� , t 
�� , t�� is the conditional probability of finding
the configuration � at time t given the configuration �� at an
earlier time t�. Noting that

���� j�t�,1�� = �
�

��� j�t�,1�P��,t
��,t�� �38�

with the condition at time t� being ���� j�t�� ,1��
=��� j��t�� ,1�, and invoking the definition Eq. �11� and Eq.
�15�, it is possible to show that

C�t,t�� = lim
N→�

�q − 1

q2 	�
j

 j�t − t��qj�t�� , �39�

for the disordered initial condition.
On the other hand, if one assumes an arbitrary initial con-

dition, one has

C�t,t�� = lim
N→�

��q − 1

q2 	�
j

 j�t − t��qj�t��

+
�q − 1��q − 2�

q2

1

N
�

j

mj�t�

− �q − 1

q
	2 1

N
�

j

mj�t�mj�t��� . �40�

The evaluation of response function requires the presence
of a �small� perturbation on the system. In the analysis of
stochastic models, the introduction of an external field modi-
fies the one-spin-flip rate to

wj
h��� = wj���ehj���j,1�

= �1 − �

q
	��� j,1� +

hj�

2d
�

�

��� j+�,1����1,1� + O�hj
2� ,

�41�

where a Taylor’s expansion was performed in the last step.
Performing similar calculations of Sec. II A, it is possible

to show that

dmj�t�
dt

= − mj�t� +
�

2d
�

�

mj+��t� +
1

2q
b�t�hj�t� , �42�

assuming again disordered initial condition, when mj�t�
=O�hj�. The solution of this differential equation, which can
be obtained following the same previous ideas, is

mj�t� =
1

2q
�

k


0

t

dt� j−k�t − t��hk�t��b�t�� . �43�

The above result, Eq. �43�, is sufficient to evaluate the two-
time response function

R�t,t�� = lim
N→�

1

N�
j
������ j�t�,1��

�hj�t��
�

h↓0

= �q − 1

q
	 lim

N→�

1

N�
j
� �mj�t�

�hj�t��
�

h↓0

= �q − 1

2q2 	0�t − t��b�t�� . �44�

It is worth to stress that the formula �44� for the autore-
sponse function is obtained even assuming an arbitrary initial
condition.

B. Stationary regime

The stationary regime can be realized when both the wait-
ing time �t�� and observational time �t� grow with the con-
straint that �= t− t�
0 is fixed. In this limit, and assuming
disordered initial condition, the autocorrelation,

C�t,t�� = C��� =
1

G0
L�0,��

 ddp

�2��d

e−f��p��

2f��p�
, �45�

and the response function,

R�t,t�� = R��� = �q − 1

2q2 	 0���
G0

L�0,��
, �46�

are functions of the time difference � only, and they are
related to the usual form of the fluctuation-dissipation rela-
tion R���=�t�C���, as expected in a stationary regime.

C. Aging regime

The aging scenario can be seen when both the observa-
tional time �t� and waiting time �t�� are made large without
the difference �= t− t� being fixed. In the stationary regime,
where the difference �= t− t� was fixed, the limit t�→� made
the function qr�t�� in Eq. �39� and b�t�� in Eq. �44� time
independent. This is not the case in the aging regime, where
both autocorrelation and response function depend on t and
t� independently. More precisely, the transient is observed if
t� t�, and this condition can be realized if the limit t→� is
taken before the limit t�→�. Assuming disordered initial
condition, and from previous results, it can be shown at criti-
cality �=1 that in this regime the autocorrelation function
behaves as
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C�t,t�� � ��q − 1

q2 	2d/2+1

d

sin��d

2
	

�
�t − t��−d/2t�d/2,

0 � d � 2

2�q − 1

q2 	 t�

�t − t��ln t�
, d = 2

�q − 1

q2 	� d

2�
	d/2 1

G0
L�0,1�

�t − t��−d/2t�, d � 2
� �47�

and the response function is asymptotically equal to

R�t,t�� � ��q − 1

2q2 	2d/2
sin��d

2
	

�
�t − t��−d/2t�d/2−1,

0 � d � 2

2�q − 1

2q2 	 1

�t − t��ln t�
, d = 2

�q − 1

2q2 	� d

2�
	d/2 1

G0
L�0,1�

�t − t��−d/2, d � 2
� . �48�

The above results agree with the scaling C�t , t��
� t�−bfC�t / t�� and R�t , t��� t�−1−afR�t / t�� �30�, where a=b
= �d−2+�� /z �see Table I�, and fC and fR are scaling func-
tions that behave as fC/R�t / t���AC/R�t / t��−�/z for t / t���.

In the aging regime, the fluctuation-dissipation theorem is
not expected to hold anymore. The fluctuation-dissipation
ratio

X�t,t�� =
R�t,t��

�t�C�t,t��
, �49�

which measures the distance of the model to the stationary
state �when X�t , t��=1�, has the following limit:

X��,t�� = lim
t→�

X�t,t�� =
b�t��/2

b�t�� − �1 − ����t��
, �50�

where b�t� and ��t� are given, respectively, by Eqs. �31� and
�33�. This result implies

X� = lim
t�→�

�lim
t→�

X�t,t��� = �1, � � 1,

1

2
, � = 1,� �51�

which is identical to the Ising case �5�.
The previous result has considered disordered initial con-

dition, which assumes mj�t=0�=0 for every site j. If one
starts from an arbitrary initial condition, it is possible to
show that �now using Eqs. �40� and �44��

X��,t�� = lim
N→�� b�t��/2

b�t�� − �1 − ���
j

qj�t��� , �52�

which shows that a similar formula for X�� , t�� is obtained
even for an arbitrary initial condition. The fluctuation-
dissipation ratio X� is identical to Eq. �51�; other non-trivial
values for this ratio �for nonzero magnetization as initial con-
dition� can be found, for instance, in �27–29�.

IV. DYNAMICAL EXPONENTS

A. Dynamical exponent �

From the solution of Eq. �12�,

mj�t� = m0e−�1−��t, �53�

one sees that at the critical point �=1 the magnetization is
constant and does not vary with time. This implies the expo-
nent �, defined through mj�t��m0t� �31� in the short-time

TABLE I. Critical exponents for the nonequilibrium linear
q-state model.

Exponent 0�d	2 d�2

� d /2 1

z 2 2

� d d

� 0 0

Exponent 0�d	2 d�2

� 0 0

�� 1 1

�� 1/2 1/2

� d /2 1

� 2−d 0
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regime, to be zero. It is possible also to calculate this expo-
nent by means of the time correlation of the total magneti-
zation �32�.

B. Dynamical exponent � Õz

At the critical point �=1, one may calculate the dynami-
cal exponents � and z, defined through C�t ,0�� t−�/z. From
Eq. �39�, it is immediate that

C�t,0� = �q − 1

q2 	�
j

 j�t�qj�0� . �54�

The qr�0� can be evaluated by invoking Eq. �29� and the
Laplace initial value theorem

qr�0� = lim
t�→0+

qr�t�� = lim
s→�

sqr
L�s� = �r,0. �55�

In the thermodynamic limit, this result implies

C�t,0� = �q − 1

q2 	e−t�I0��

d
t	�d

� �q − 1

q2 	 e−�1−��t

�2��/d�d/2 t−d/2,

�56�

where I0�x� is the modified Bessel function of order 0 and the
last passage is obtained in the asymptotic limit t�1. The
autocorrelation decays exponentially for ��1; nevertheless,
if �=1, one sees that

�

z
=

d

2
. �57�

C. Dynamical exponent �

Another dynamical exponent of interest is �, defined
through ��t�� t�. From the results obtained in Sec. II B, the
Laplace transform of the susceptibility can be written as

�L�s� = �q − 1

q2 	 1

s2G0
L�s,��

. �58�

The asymptotic behavior of the �dynamical� susceptibility
��t� for large times corresponds to the Laplace antitransform
of �L�s� when s�0. In this regime, one can evaluate the
Green function at criticality as

G0
L�s,1� � ��

d

4�
	d/2

�1 −
d

2
	sd−2/2, 0 � d � 2,

−
1

2�
ln s , d = 2,

G0
L�0,1� , d � 2,

�
�59�

which yields

��t�

� �
2

d
�q − 1

q2 	�4�

d
	d−2 1

�d

2
	�1 −

d

2
	 td−2,

0 � d � 2,

2��q − 1

q2 	 t

ln t
, d = 2,

�q − 1

q2 	 1

G0
L�0,1�

t , d � 2,
�

�60�

showing that

� = �d

2
, 0 � d � 2,

1, d 
 2,
� �61�

with logarithmic corrections for d=2.

D. Dynamical exponent z

The exponent z, defined by the behavior of the correlation
length ���1−��−��/z will be estimated through the spatial
correlation, which can be casted as

qr�t = �� =
Gr

L�0,��
G0

L�0,��

= � d

2��
	d−2��

d
	d−2/42d−2/4�1 − ��d−2/4

G0�0,��rd−2/2

�Kd−2/2�r�2�1 − ��d
�

	 , �62�

where K��z� is the Macdonald’s function, which behaves as

K��z� � �
2�−1���

z� , 
z
 � 1 and � � 0,

ln�2

z
	 , 
z
 � 1 and � = 0,

e−z

�2�z
, 
z
 � 1.

� �63�

Therefore, for large distances, the correlation decays expo-
nentially as e−r/�, where

� =� �

2d
�1 − ��−1/2 �64�

is associated to the correlation length. On the other hand,
when the system is near criticality in the sense that r��, one
has
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qr�t = �� � �
�d − 2

2
	

�2 − d

2
	

1

�r/2��d−2 , 0 � d � 2,

ln�r/2��
ln��2�/2��

, d = 2,

d

4�d/2�

�d − 2

2
	

G0�0,��
1

rd−2 ,
d � 2,

�
�65�

from which it is possible to see that the exponent � �33� is
equal to zero for d�2 and is equal to 2−d if 0�d	2. From
Eq. �64�, the exponent �� �defined by ���1−��−��� is equal
to 1/2, while the dynamical exponent z=�� /�� is then z=2
�since �� =1, as seen in Sec. II A�.

Collecting the previous results �see Secs. II A, II C, and
IV B–IV D�, the Table I is obtained. One should recall that
for d�2, one has �=1 and �=1 �the other exponents remain
unchanged�. These values for the exponents satisfy the rela-
tions �z= �d−2� /�� and �z= �d−��. It is worth mentioning
that these exponents are in agreement with the universality
class of the voter model �34,35�.

V. CONCLUSIONS

This paper has established a number of exact calculations
for the dynamical and static behavior of the d-dimensional
nonequilibrium linear q-state lattice model, which is a gen-
eralization of the nonequilibrium linear Glauber model. This
model is fully symmetric in the sense that it is invariant
under the permutation among all the q states, having the
same symmetry of the equilibrium Potts model. Although the
analytical form of many functions are now distinct from the
linear Glauber model, many similarities were reported in this
paper. The stationary and aging regimes were both character-
ized, with the usual fluctuation-dissipation relation satisfied
in the former regime and violated in the later regime at the
criticality �=1. The fluctuation-dissipation ratio X� indicates
that the dynamical behavior of the present model is similar to
the linear Glauber model with Ising spins, which is just a
particular case �q=2�, and thus independent of the number of
states q.

When �=1, we recover the voter model with q state and
in this case the system finds itself in the critical state. From
the results for the correlation functions it is possible to gen-
eralize a result already known for the case q=2 about the
stationary states. In one and two dimensions the only pos-
sible stationary states are the ones in which all the sites of the
lattice are in one of the q absorbing states, which one de-
pends on the initial configuration. This statements seems to
be in contradiction with the result Eq. �53� which says that
the magnetization remains constant. To understand this it suf-
fices to remember the meaning of choosing an initial condi-
tion with magnetization m0. This means that one should con-
sider several initial configurations whose average gives the
magnetization m0. Each one of these configuration will reach

one of the q absorbing states. The averages over these ab-
sorbing states will give an average m which according to Eq.
�53� should equal m0. In three or more dimensions there are
other states stationary states besides the q absorbing states.
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APPENDIX

In this appendix �and also in the main text�, the Landau
notation was adopted:

�i� if f�x�=O�g�x�� �assuming g�x��0�, then there exists
x0 such that 
f�x�
�Ag�x� for some constant A if x�x0.

�ii� if f�x�=o�g�x�� �assuming g�x��0�, then
limx→� f�x� /g�x�=0.

1. Dynamical susceptibility (case d=2)

The asymptotic behavior of the dynamical susceptibility
is calculated through the Laplace antitransform

��t� =
1

2�i


c−i�

c+i�

dsest�L�s� , �66�

where c is real and larger than the real part of any pole of
�L�s�, given by Eq. �58�. Since the 0�d�2 and d�2 cases
are simpler, the evaluation of dynamical susceptibility will
be presented for d=2 only, which implies

�L�s� � 2��q − 1

q2 	 1

s2�− ln s�
. �67�

One should first consider the integral

B�t� =
1

2�i


c−i�

c+i�

ds
est

s�− ln s�
, �68�

where c and c̃ are real and larger than the real part of any
pole of the integrand. The function B�t� relates to ��t�
through

d

dt
��t� = 2��q − 1

q2 	B�t� . �69�

By using the contour shown in Fig. 2 and invoking the resi-
due theorem, the integral Eq. �68� can be casted in the form

B�t� = 
0

�

dr
e−rt

r�ln2 r + �2�
= Ba�t� + Bb�t� + Bc�t� , �70�

where

Ba�t� = 
0

1/t ln t

dr
e−rt

r�ln2 r + �2�
, �71�
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Bb�t� = 
t ln t/1

ln t/t

dr
e−rt

r�ln2 r + �2�
�72�

and

Bc�t� = 
ln t/t

�

dr
e−rt

r�ln2 r + �2�
. �73�

These three functions, Ba�t�, Bb�t�, and Bc�t� will be evalu-
ated separately.

a. Function Ba(t)

Since

Ba�t� = 
0

1/t ln t

dr
1

r�ln2 r + �2��1 + �
m=1

�
�− rt�m

m! � , �74�

and

�
0

1/t ln t

dr
1

r�ln2 r + �2� �
m=1

�
�− rt�m

m!
�

	 
0

1/t ln t

dr
1

r�ln2 r + �2� �
m=1

�

�rt�m

	 
0

1/t ln t

dr
1

r ln2 r �
m=1

� � 1

t ln t
t	m

	
1

ln t


0

1/t ln t

dr
1

r ln2 r

=
1

ln t

1

ln�t ln t�
= O� 1

ln2 t
	 , �75�

then

Ba�t� = 
0

1/t ln t

dr
1

r�ln2 r + �2�
+ O� 1

ln2 t
	

= 
−�

−1/� ln�t ln t� dy

��y2 + 1�
+ O� 1

ln2 t
	

= −
1

�
�arctan� 1

�
ln�t ln t�� −

�

2
� + O� 1

ln2 t
	 ,

�76�

where the change of variable r→e�y was performed in the
second line. For t�1, one has

Ba�t� =
1

ln�t ln t�
+ O� 1

ln2 t
	 =

1

ln t
+ O� ln�ln t�

ln2 t
	 .

�77�

b. Function Bb(t)

The function Bb�t� has the following upper bound:


Bb�t�
 = �
1/t ln t

ln t/t

dr
e−rt

r�ln2 r + �2�� 	
1

ln2 t


1/t ln t

ln t/t

dr
e−rt

r

=
1

ln2 t


1/ln t

ln t

du
e−u

u
	

e−1/ln t

ln2 t


1/ln t

ln t du

u

=
2e−1/ln t ln�ln t�

ln2 t
= O� ln�ln t�

ln2 t
	 . �78�

c. Function Bc(t)

The function Bc�t� has the following upper bound:


Bc�t�
 = �
ln t/t

�

dr
e−rt

r�ln2 r + �2�� 	
1

�2
ln t/t

�

dr
e−rt

r

	
1

�2

1
ln t

t


ln t/t

�

dre−rt =
1

�2t ln t
= O� 1

t ln t
	 . �79�

From Eqs. �70� and �77�–�79�, one finally has

B�t� =
1

ln t
+ O� ln�ln t�

ln2 t
� , �80�

which can be inserted in �69� to yield

��t� � 2��q − 1

q2 	 dtB�t�

= 2��q − 1

q2 	� dt� 1

ln t
−

1

ln2 t
	 + dt

1

ln2 t
�

� 2��q − 1

q2 	 t

ln t
�1 + o�1�� . �81�

2. Spatial correlation function

In the thermodynamic limit �N→��, the spatial correla-
tion function can be casted as

qr�t → �� =
Gr�0,��
G0�0,��

=
1

G0�0,���− �,��d

ddp

�2��d

eir�·p�

� + 2��1 −
1

d
�
i=1

d

cos pi	 ,

�82�

as seen in Sec. II B, and �=2�1−��. It is straightforward to
see also that

Re s

Im s

FIG. 2. Integration contour used in the evaluation of the func-
tion B�t� given in Eq. �68�.
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qr�t → �� =
1

G0�0,���− �,��d

ddp

�2��d

�
0

�

due−u��+2��1−1/d�i=1
d cos pi��eir�·p�

=
1

G0�0,��0

� dy

�
e−y−2�y/��

i=1

d 
−�

�

Iri
�2�y

�d
	 ,

�83�

where I��z� is the modified Bessel function, which behaves
asymptotically as ��36��

I��z � �� �
ez−�2/2z

�2�z
. �84�

Therefore, when the system approaches the critical point ��
�0+�, one has

qr�t → �� =
1

G0�0,��� d

4��
	d/2

�d−2/2
0

�

dye−y−r2�d/4�y

= � d

2��
	d/2 1

G0�0,��
�2�1 − ���d−2/2

�r/��d−2/2 Kd−2/2�r/�� ,

�85�

where K��z� is the Macdonald’s function �or modified Bessel
function of the third kind�

K��z� =
1

2
� z

2
	�

0

�

dye−y−z2/4yt−�−1, 
arg z
 �
�

4
, �86�

and

� =� �

2d
�1 − ��−1/2. �87�
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