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A system put in contact with a large heat bath normally thermalizes. This means that the state of the system
�S�t� approaches an equilibrium state �eq

S , the latter depending only on macroscopic characteristics of the bath
�e.g., temperature� but not on the initial state of the system. The above statement is the cornerstone of the
equilibrium statistical mechanics; its validity and its domain of applicability are central questions in the studies
of the foundations of statistical mechanics. In the present paper we concentrate on one aspect of thermalization,
namely, on the system initial state independence �ISI� of �eq

S . A necessary condition for the system ISI is
derived in the quantum framework. We use the derived condition to prove the absence of the system ISI in a
specific class of models. Namely, we consider a single spin coupled to a large bath, the interaction term
commuting with the bath self-Hamiltonian �but not with the system self-Hamiltonian�. Although the model
under consideration is nontrivial enough to exhibit the decoherence and the approach to equilibrium, the
derived necessary condition is not fulfilled and thus �eq

S depends on the initial state of the spin.
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I. INTRODUCTION

In the last decade a considerable progress in deriving the
fundamentals of statistical physics from the first principles of
quantum theory was achieved �1–9� �see �9� for a profound
list of references to the related works�. Most of the results
which contribute to this progress were obtained in the fol-
lowing framework. Consider a quantum system �described
by a Hilbert space S�, which interacts with a quantum bath
�described by a Hilbert space B�. The bath is considered to
be “much larger” than the system. In particular, if S and B
are finite dimensional with the dimensions dS and dB, corre-
spondingly, which is assumed in what follows, then dS�dB.
The composite system with Hilbert space H=S � B is con-
sidered to be closed and to evolve according to the
Schrödinger equation with a Hamiltonian

H = HS + HB + HSB, �1�

where HS and HB are self-Hamiltonians of the system and
the bath, correspondingly, and HSB is an interaction Hamil-
tonian. Here and in what follows the usage of superscripts
and subscripts S, B is believed to be self-explanatory. The
state of the combined system H is described by a state vector
��H. The latter evolves as ��t�=exp�−iHt���0�. The
states of the system S and the environment B are described
by the reduced density matrices

�S � trB������, �B � trS������ , �2�

correspondingly.
The initial state of the composite system H is taken to be

a product state:

��0� = ��, � � S, � � B . �3�

Here and in what follows we use Greek letters � , �, and �
to denote the normalized vectors of unitary spaces H , S,
and B, correspondingly. The product form of the initial state

is natural when considering the approach to the thermal equi-
librium. Usually all results obtained with the use of the prod-
uct initial state assumption may be generalized to the case of
an arbitrary pure initial state. Moreover, usually the results
obtained for a pure state � are straightforwardly generalized
to the case when the state of the composite system H is
mixed and described by the density matrix �.

What can be said about the long-time behavior of �S�t� in
the case of a generic interaction HSB? This is a central ques-
tions of the equilibrium statistical mechanics. An intuitive
answer is that �S approaches an equilibrium density matrix
of some special �e.g., canonical� form. As was argued in �6�,
on closer examination one expects that the system exhibits
four distinct properties, which we refer to as thermalization
properties. We formulate them below exploiting the product
form of the initial state �Eq. �3��:

�1� Equilibration. By definition, a system equilibrates if
�S�t� approaches a time-averaged density matrix �S and stays
close to it most of the time. Defined in this way equilibration
does not imply neither any special form of �S nor the inde-
pendence of �S from initial conditions.

�2� Bath initial state independence (bath ISI). This means
that �S �almost� does not depend on the exact microstate of
the bath, �. Rather �S should depend on some macroscopic
characteristics of the state of the bath, which should be rep-
resented by functionals on B. The prime example of such
characteristic is the bath inverse temperature �=����.

�3� System initial state independence (system ISI). This
means that �S �almost� does not depend on �.

�4� Boltzmann-Gibbs form of the equilibrium state: �S

=Z−1 exp�−�HS�. This property may be expected if the inter-
action HSB is in some sense “weak” compared to the system
self-Hamiltonian HS �although “sufficiently strong” to ensure
equilibration� and the initial state of the bath has a small
energy uncertainty.

The last three properties make sense only if the firsts one
holds. The last property makes sense if also the properties �2�
and �3� hold. Note the lack of the symmetry between the
definitions of the bath ISI and the system ISI. This asymme-*lychkovskiy@itep.ru
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try arises because the bath is assumed to be much larger than
the system.

The ultimate goal is to derive all four properties from the
first principles of quantum theory under reasonable condi-
tions.

The present paper addresses the third property. To start
with, we briefly review the main results concerning all four
properties. The first key fact was discovered in �1–4�. It is
based on the concentration of measure phenomenon, which
is a striking feature of geometry in spaces of very high di-
mensions. Consider a linear subspace HR�H with dimen-
sionality dR�1. Then for almost all states ��HR the re-
duced density matrix trB������ is close to the averaged over
HR matrix:

trB������ 	 �trB�������HR
. �4�

Usually the trajectory ��t� entirely lies in some HR, for ex-
ample, in the energy shell, which is spanned by the eigen-
vectors of H with the eigenvalues in some range �E ,E
+	E�. In this case it is natural to assume that �S�t�
� trB���t�����t�� for almost every t is close to the HR aver-
age �trB�������HR

. Such assumption implies that the prop-
erty �1� generally holds; the properties �2� and �3� also hold
provided that all the considered initial states belong to HR.
Also, under certain assumptions, one may perform the aver-
aging over HR explicitly to get the Boltzmann-Gibbs form of
the averaged reduced density matrix, which addresses the
property �4�.

Although the above arguments provide an important in-
sight into the problem, they do not constitute the proofs of
properties �1�–�4�. The reason is that the trajectory ��t� ac-
tually never completely fills any high-dimensional linear
subspace HR. Rather it generically fills some torus �10�. The
dimensionality of the latter depends on the rate of the en-
tanglement between the bath and the system introduced by
the interaction HSB. In fact, the entanglement appears to be
of a primary importance in the problem involved. In case of
noninteracting system and environment �HSB=0�, when the
entanglement is completely absent, none of the properties
�1�–�4� hold. They do not also hold in case of nonzero but
very weak interaction when the operator norm of HSB is
much smaller than the typical energy level spacing of the
environment. In the latter case the perturbation theory may
be used to calculate the eigenstates and eigenvalues of H and
to demonstrate that �S�t� does not equilibrate.

Substantial success in derivation of the properties �1�, �2�,
and, partly, �3� was achieved in �6�. A general quantum-
mechanical closed system divided in two parts was consid-
ered; the only requirement for the total Hamiltonian H was
the nondegeneracy of energy gaps. First, it was proven that
the equilibration property holds provided the initial state
��0� is a superposition of a large number of eigenvectors of
the total Hamiltonian H. Second, it was shown that the equi-
librium density matrix �S is almost the same for almost all
initial states � of environment which belong to a high-
dimensional subspace BR�B; those states of the bath which
provide the exceptions from this rule form a subset in BR of
an exponentially small measure. Thus, the bath ISI property

was proven. Third, an inequality was derived which in cer-
tain circumstances �in particular, when dS�1� proves the
system ISI. However, as was emphasized in �6�, the problem
of the system state independence is rather complicated. In
particular, it was pointed out in �9� that the inequality derived
in �6� is not very restrictive when the dimensionality of the
Hilbert space of the system S is low.

Among other important advances one should mention the
strong upper bounds on the speed of fluctuations around the
equilibrium state derived in �5,8�.

In the present paper the system initial state independence
problem is addressed, especially in the case when dS is
small. In particular, a single spin 1/2 is considered as a sys-
tem �dS=2�. The paper is organized as follows. In Sec. II we
introduce definitions and notations. In Sec. III we quote and
discuss a key theorem from �6� which allows to prove the
bath ISI and, in some cases, the system ISI. In Sec. IV we
present our main results concerning the system ISI property.
In Sec. V a class of exactly solvable models is considered for
which the derived necessary condition is not satisfied and
thus the system ISI property does not hold. The outline of
our results is presented in Sec. VI.

II. DEFINITIONS

Let us start from introducing the setup, definitions, and
notations.

Any finite system returns to the arbitrarily small vicinity
of its initial state infinitely many times �although the recur-
rence time is normally very large�. For this reason the limit
lim
t→


�S�t� does not exist. Instead a time-averaged density ma-

trix

�S � lim
t→


1

t



0

t

�S�t��dt� �5�

should be considered. Note that throughout the paper we use
an overline to denote the time-averaging and angle brackets
to denote the averaging over normalized vectors from some
subset of a Hilbert space with a uniform measure, the latter
being defined in the end of the present section.

To quantify the difference between two states �1 and �2
we use the distance ��1−�2�, where

��� � tr��2. �6�

The maximal value of this distance is 2. This is a physically
meaningful definition, as it is discussed, e.g., in �6,11�. In
particular, it is equal to the doubled maximum difference in
probability for any outcome of any measurement performed
on the two states �6�.1

The total Hamiltonian is assumed to be nondegenerate,

1Note that the above defined distance is the same as in �3� but is
two times larger than in �6�. The accepted definition is natural when
considering the distance between the states of a single spin, see
below.
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H = 

n=1

d

En��n���n� , �7�

where �n are the eigenvectors of H and En�Em for n�m.
The initial sate of the composite system is a superposition of
the eigenvectors with coefficients cn:

��0� = 

n=1

d

cn�n. �8�

The time evolution of �S�t� reads

�S�t� = 

n=1

d



m=1

d

cncm
� e−i�En−Em�t�nm

S , �9�

where the matrices

�nm
S � trB��n���m� �10�

are introduced �not to be confused with matrix elements�.
Evidently, these matrices encode the dynamics of the open
system S, while the coefficients cn describe the initial condi-
tions. The nondegeneracy of the Hamiltonian allows us to
obtain

�S = 

n=1

d

�cn�2�n
S, �11�

where a short-form notation �n
S��nn

S is used. The time-
averaged state of the system �S depends, in general, on the
initial states of the system and the bath, � and �, corre-
spondingly, through the coefficients cn= ��n ����: �S

=�S����.
In the case when the system S is represented by a single

spin, any �S may be parameterized by a polarization vector
p,

�S = �1 + p��/2, p = trS��S��, 0 � �p� � 1. �12�

The polarization vector belongs to a unit sphere which is
known as the Bloch sphere. The length of a polarization
vector equals 1 for a pure state and is less than 1 for a mixed
state. The distance between two states �1

S and �2
S is simply

the Euclidian distance in the Bloch sphere:

��1
S − �2

S� = �p1 − p2� � 2.

The scalar product of vectors p and p� is denoted as �p ,p��.
We define the following important polarization vectors: the
initial polarization vector p0= �������, polarization vectors
which correspond to eigenstates of composite system pn
= ��n����n� and the time-averaged polarization vector p̄
=
n=1

d �cn�2pn.
In order to introduce averages and to formulate proposi-

tions about states which are typical for some subspace HR
�H, we need to define a uniform measure on HR. Strictly
speaking, pure states of a physical system are in one-to-one
correspondence with one-dimensional linear subspaces of a
Hilbert space or, equivalently, with rank one projectors
������. Therefore actually one should consider the projec-
tive space HRP instead of the Hilbert space HR. It is possible
to define a uniform measure on a projective space of pure

quantum states through the Haar measure on a SU�dR� group,
taking into account that any pure state ������ may be ob-
tained from some fixed state ��0���0� by the unitary trans-
formation �see, e.g., �9� for the details�. However, following
�3,6� we use a different, more explicit construction, which
leads to the same result. Namely, let us choose an arbitrary
basis ��l� in HR and establish a map

� ↔ x � R2dR: x2l−1 = Re��l���, x2l = Im��l��� .

�13�

All normalized vectors from HR are therefore in one-to-one
correspondence with points of the 2dR−1-dimensional unit
sphere embedded in the 2dR-dimensional Euclidian space.
Note however that a physical state ������ corresponds not to
a point but to a one-dimensional curve on the sphere because
of the overall phase ambiguity of �. Now to pick up a quan-
tum state from HR �more precisely, from HRP� at random
according to the uniform measure, we first pick up a vector x
from a unit sphere according to the uniform measure on a
sphere and then construct the corresponding state ������. A
thereby constructed measure does not depend on the choice
of the basis ��l�.

In the above paragraph we reminded a well-known fact
that actually a pure physical state should be characterized by
a projector ������ �or by a vector � “up to a phase factor”�.
Bearing this in mind, in what follows we use a common
language and speak about “state vectors” � and “state
spaces” H ,HR , . . . without further stipulations.

III. SUFFICIENT CONDITION FOR THE SYSTEM
INITIAL STATE INDEPENDENCE

The following Theorem concerning the initial state inde-
pendence was proven in �6�.

Theorem 0. Consider the Hamiltonian H with nondegen-
erate energy gaps, which means that Ek−El=Em−En implies
either k= l , m=n or k=m , l=n.

�i� Almost all initial states chosen from a large restricted
subspace HR�H with the dimensionality dR yield the same
equilibrium state. In particular,

���S − ��S�HR
��HR

��dS


dR
��dS

dR
, �14�

with


 � 

n=1

d

��n��dR�−1�HR
��n�trS��n

S�2 � 1, �15�

where �HR
is the projector onto HR.2

�ii� There are exponentially few states in HR which yield
a substantial distance between �S and ��S�HR

. In particular,
for a random state ��HR

2In general, the initial condition is not required to be of a product
form in this Theorem.
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Prob���S − ��S�HR
� ��dS


dR
+ �� � 2e−cdR�2

, �16�

where c=1 / �18�3�.
First we review how this Theorem may be used to prove

the bath ISI property �6�. Let us choose any system state �
and consider HR as a tensor product of � and some large
BR�B with the dimensionality dR�dS: HR=� � BR. Then
one gets that for a fixed � and vast majority of ��BR the
equilibrium state �S is close to the average ��S�BR

. In other
words, it is proven that for any fixed initial state � of the
system the equilibrium state �S depends on the initial state of
the bath ��BR extremely weakly.

Note that the smallness of 
 is not required in the above
proof; in fact one may safely take 
=1 and exploit the
weaker bound in Eq. �14�. The bound with 
 was introduced
in �6� in order to treat the system ISI problem. The latter
appears to be more complicated compared to the previous
one. Indeed, let us try to proceed analogously to what was
done in the preceding paragraph. We fix some state of the
bath � and construct HR=S � � �according to the formula-
tion of the system ISI property we should take the whole S
instead of some subspace in S�. Now, however, dR=dS, and
the weaker bound in Eq. �14� appears to be useless. The
stronger bound is useful provided �
 is small. For this reason
one may look at Theorem 0 with HR=S � � as on the

Sufficient conditions for the system ISI: if

�
 � 1, �17�

then the system ISI property holds.
In �6� a case was considered when, first, the dimensional-

ity of the system is large, �dS�1, and, second, the eigen-
states �n are highly entangled �in particular, far from prod-
uct�, which implies that the purities of the density matrices
�n

S are close to their minimal values:

trS��n
S�2 	 1/dS. �18�

In this case 
	1 /dS, the above sufficient condition is satis-
fied and the system ISI property is thus proven.

We emphasize, however, that if the dimensionality of the
system is small, the above condition cannot be satisfied3 as


 � 1/dS. �19�

In particular, for a single spin 1/2 considered as a system one
at best obtains from Eq. �14�

���S − ��S�S��S � 1/�2, �20�

which is not very restrictive. Thus in the case of small dS
Theorem 0 does not answer the question whether the system
ISI property holds or not. Evidently in this case the system

ISI problem requires some additional treatment. In the fol-
lowing section we derive a necessary condition for the sys-
tem initial state independence, which in particular appears to
be useful when dS is small.

IV. NECESSARY CONDITION FOR THE SYSTEM
INITIAL STATE INDEPENDENCE

First let us refine the definition of the system initial state
independence.

Definition. The equilibrium state �S of the system is inde-
pendent from the initial state of the system � for a fixed
initial state of the bath � with the accuracy � if

��S���� − ��S�S���� � � for any � . �21�

We remind that � . . . �S denotes the averaging over the normal-
ized states from S with a uniform measure, while brackets
� . . . � indicate the functional dependence.

According to the above definition, to prove the system ISI
property means to establish the inequality �Eq. �21�� for �al-
most� any initial bath state � with some small � under rea-
sonable conditions. In the present paper we do not provide
such a proof. Rather we average the inequality �Eq. �21��
over � from some subset of B and obtain a less restrictive
but more tractable bound, which constitutes the following.

Theorem 1 (the necessary condition for the system ISI).
Let the Hamiltonian H have a nondegenerate energy spec-
trum. Let F be some �possibly small� subset of a restricted
subspace BR�B. Assume that the equilibrium state �S of the
system is independent from the initial state of the system
with the accuracy � for all initial states of the bath which
belong to F. Then

sup
��S

���S�BR
��� − ��S�S�BR

� � ��, �22�

with

�� = � + 2�dS
dR

+
2

�3 dR

+
8

p
e−c�3dR, c = 1/�18�3� . �23�

Here p is the measure of F �with respect to the uniform
normalized measure on BR�. In other words, for a random
��BR

p = Prob�� � F� .

Note, however, that the dimensionality of F�BR should be
equal to the dimensionality of BR, otherwise p=0 and ��
=
.

The proof of Theorem 1, which is largely based on Theo-
rem 0, may be found in the Appendix.

According to Eq. �23�, the subset F may have an expo-
nentially small measure p and still �� would be small enough
to make the bound �Eq. �22�� restrictive. Indeed, �� is small
as long as � is small and dR is sufficiently large to ensure that
p�e−c�3dR. Thus Theorem 1 states that if the system ISI prop-
erty holds for at least exponentially small number of the bath
initial conditions �, then the restrictive bound �Eq. �22�� is
valid. Usually it is natural to demand that the system ISI
property holds for those initial states of environment which

3Recently, we learned about a very recent previous work by Chris-
tian Gogolin �9�, in which he expressed the same criticism concern-
ing the uselessness of the result of �6� in the case of small dS.
Moreover, he proved another sufficient conditions for the system
ISI, which works well for small dS, but relies on the eigenstate
thermalization hypothesis. The latter is discussed in the following
section.
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have well-defined energy. In this case the set F may be con-
structed from those � which provide a small dispersion to
HB.

The averages ��S�BR
��� and ��S�S�BR

take more explicit
form in the specific case when BR=B.

Lemma. Here

��S�S�B = �dS�−11S. �24�

If further the Hamiltonian H has a nondegenerate energy
spectrum, then

��S�B��� =
1

dB


n=1

d

����n
S����n

S. �25�

With this lemma in hand one may reformulate Theorem 1 to
obtain the following.

Theorem 1�. Let the Hamiltonian H have a nondegenerate
energy spectrum. Assume that the equilibrium state �S of the
system is independent from the initial state of the system
with the accuracy � for all initial states of the bath � from
some �possibly small� subset F�B. Then

sup
��S

� 1

dB


n=1

d

����n
S����n

S −
1S

dS
� � ��, �26�

where �� is given by Eq. �23� with dR=dB.
Proof. Theorem 1� follows directly from Theorem 1 and

Lemma. Therefore it is sufficient to prove the lemma. As far
as �S���� is a quadratic form with respect both to � and to
�, the averaging over S and B with a uniform measure is
equivalent to the averaging over arbitrary orthonormal bases
in S and B, correspondingly:

��S�����S = dS
−1


j=1

dS

�S�� j��, ��S�����B = dB
−1


l=1

dB

�S���l� .

�27�

Applying this rule to the decomposition �Eq. �11�� and taking
into account that

dB
−1


l=1

dB

���n���l��2 = dB
−1����n

S��� , �28�

one obtains the equalities �Eqs. �24� and �25��. �
Although Theorem 1 is stronger than Theorem 1�, the lat-

ter may be easier applied for the analysis of the specific
models. For this reason we concentrate on Theorem 1� in
what follows.

In fact Theorem 1� states that if the system ISI property
holds, then the majority of �n

S� trB��n���n� should be ap-
proximately proportional to the unit matrix,

�n
S 	 dS

−11S. �29�

This requirement is natural. Indeed, according to �3� almost
all vectors � from H yield trB������	dS

−11S. More pre-
cisely, for a random vector ��H

Prob��trB������ − dS
−11S� ��dS

dB
+ �� � 2e−cdB�2

.

�30�

Therefore, for a generic Hamiltonian H one expects the
bound �Eq. �26�� to hold with a fairly small �.

To get more insight in the statement of Theorem 1� let
us consider a situation in which the system ISI property
is known to hold. Namely, consider the weak interaction
case and assume that thermalization occurs at the level of
individual eigenstates �12,13�, which means that �n

S

=Z−1 exp�−�nHS� for �almost� all n.4 In fact general consid-
erations and numerical studies suggest that this eigenstate
thermalization hypothesis holds generically, see, e.g. �14�. In
this case all four thermalization properties are valid.5 In par-
ticular, according to Eq. �11� the equilibrium state of the
system is of the Boltzmann-Gibbs canonical form and does
not depend on the initial state of the system, provided the
initial state of the composite system has a small energy
dispersion.6 Let us make sure that our necessary condition of
the system ISI holds in this case. Note that as far as the
dimensionality of H is finite, negative temperatures are al-
lowed as well as positive �see �16� for the discussion of
statistical physics with negative temperatures�. Normally in
such situation the inverse temperature is close to zero for the
vast majority of states. This is especially the case when the
bath is composed of many weakly interacting subsystems
with identical spectrum, as may be shown with the use of the
central limit Theorem. Thus the major contribution to the
average over B comes from the states with high temperature,
�n	0. As a result, Eq. �29� is satisfied for the majority of n
and the statement of Theorem 1� holds with some small �.

Here we would like to make the following remark. Al-
though we assume that the dimensionality of the Hilbert
space of the bath is finite throughout the present paper, it
seems plausible that all our results, in particular, Theorems 1
and 1� �and also Theorem 2, see below� may be generalized
to the case when dB=
. Indeed, dB does not enter Theorem 1
at all, while it enters Theorem 1� only through the average
�dB�−1
n=1

dSdB����n
S����n

S, which presumably remains well-
defined when dB→
. In this case Theorem 1� in fact pro-
vides a necessary condition for the system ISI in the high-
temperature regime, when it is natural to expect that all
eigenstates of �S are equiprobable independently of the ini-
tial state of the system.

Although our necessary condition for the system ISI is
expected to hold for generic Hamiltonians H, as is clear

4The inverse temperature �n for individual eigenstates �n of the
composite system is defined in a usual way, �n=� d ln r

dE �E=En
, where

the state density function r�E� is reasonably smoothed.
5Moreover, it is suggested in Ref. �15� that generically the notion

of entropy of an individual eigenstate may be introduced, with usual
thermodynamical properties of entropy being recovered.

6In Ref. �9� �Theorem 2.8.1� one may find a quantitative bound on
the time-averaged distance between two states of a system corre-
sponding to two different initial states. This bound is restrictive
whenever the eigenstate thermalization hypothesis is valid.
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from the above discussion, it does not hold for some specific
Hamiltonians. This is exemplified in the next section. A
simple model is discussed there when this condition turns out
to be restrictive enough to prove the absence of the system
ISI although the decoherence and the equilibration occur and
the bath ISI is present.

Before we turn to the specific example let us reformulate
our general results in the extreme case when the system S is
represented by a single spin 1/2. In this case the equality �Eq.
�25�� may be rewritten as

�p̄�B = d−1

n=1

d

pn�p0,pn� , �31�

while the inequality �Eq. �26��—as

sup
p0

��p̄�B� = sup
p0

�d−1

n=1

d

pn�p0,pn�� � ��. �32�

It turns out that one may get rid of supremum in Eq. �32� and
obtain the following.

Theorem 2. Consider the Hamiltonian H with the nonde-
generate energy spectrum. Assume that the equilibrium state
of the spin S is independent from the initial state of the spin
p0 with the accuracy � for all initial states of the bath � from
some �possibly small� subset F�B. Then �i�

� 1

d2 

n=1

d



m=1

d

�pn,pm�2�1/2

� �3��, �33�

and �ii�

1

d


n=1

d

pn
2 � 3��, �34�

with �� given by Eq. �23� with dR=dB.
The proof of Theorem 2 may be found in the Appendix.
The second bound in Theorem 2 is weaker but more trac-

table than the first one. It shows that the purities of eigen-
states, tr��n

S�2= �1+pn
2� /2, should be on average very close to

their minimal value 1/2. This requirement also enters the
sufficient condition for the system ISI, cf. Eq. �18�.

V. SPECIFIC MODEL

In this section we concentrate on a specific class of ex-
actly solvable �to some extent� models in which the system is
represented by the spin 1/2 and the above derived necessary
condition for the system ISI is not fulfilled. We consider the
Hamiltonian

H =
�

2
�z +

1

2 

�=x,y,z

��V� + HB, �35�

where �� acts in S, V� acts in B, at least one of Vx,y is
nontrivial �i.e., not zero and not proportional to the unit op-
erator�, all V� commute with each other,

�V�,V�� = 0, �36�

and the interaction Hamiltonian commutes with the bath self-
Hamiltonian,

�V�,HB� = 0 ∀ � . �37�

Note, however, that the interaction Hamiltonian does not
commute with the system self-Hamiltonian: �HS ,HSB�
= �i� /2���yVx−�xVy��0. This means in particular that the
system energy is not a conserved quantity, and one may ex-
pect some sort of thermalization of the system.

Let �l , l=1, . . . ,dB be the common eigenvectors of
V� , �=x ,y ,z and HB:

V��l = vl��l, HB�l = El
B�l. �38�

The eigenvectors and eigenvalues of the total Hamiltonian
read

�l� = �l��l, El� = El
B �

1

2
��� + vlz�2 + vlx

2 + vly
2 ,

�39�

where �l� are two eigenvectors of the l-dependent matrix
���z+vl��. We assume that the total Hamiltonian has non-
degenerate energy gaps �and, consequently, nondegenerate
spectrum�, which is clearly a generic case.

A specific version of the model under consideration �with
Vy =Vz=0 and the bath composed of noninteracting spins�
was introduced in �17� in the context of decoherence studies.
It was shown in �17� that the decoherence occurs effectively
in the sense that the spin which is initially in a pure state
rapidly becomes entangled with the bath in the course of the
evolution.

Equilibration and the bath ISI are also present in the
model for almost all initial states of the bath, which follows
from the general results of �6�. Namely, let us fix the initial
state of the system � and choose some initial state of the bath
� from a large bath subspace BR�B. As was proven in �6�,
the time averaged distance between �S�t� and �S is small,

��S�t� − �S� � 2
dS
�dR

=
4

�dR

�40�

for almost all ��BR. The exceptional �, which violate the
above bound, form a set of exponentially small measure.
This proves the equilibration property. The bath ISI property
may be proven with the use of Theorem 0, see Sec. III.

Thus our model is nontrivial enough to decohere and
equilibrate effectively and to have equilibrium states which
are almost independent from the bath initial states. However,
it does not match the necessary condition for the system
initial state independence imposed by Theorem 2. The reason
is that the eigenstates of the composite system are factorized
�see Eq. �39��, which results in �pn�=1 for any n. This en-
sures that if ���

1
3 then the restriction �Eq. �34�� imposed by

Theorem 2 cannot be satisfied. In other words, for the over-
whelming majority of the initial states of the bath the equi-
librium state �S of the system cannot be independent from
the initial state of the system � with the accuracy better than
1/3.

Two other examples when the system ISI property is ab-
sent were already considered in �6�. In the first considered
case, there exist at least one conserved quantity of the sys-
tem, i.e., a nontrivial operator A which acts in S and com-
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mutes with the total Hamiltonian H. Evidently equilibrium
states are different for different expectation values ���A���.

In the second case the range of energies of the self-
Hamiltonian HS is greater than the range of energies of the
combined interaction-bath Hamiltonian HSB+HB:

Emax
S − Emin

S � Emax
SB+B − Emin

SB+B.

In this case the system cannot transfer to �or from� the bath a
substantial amount of energy, and the equilibrium state de-
pends on the initial energy of the system �although the en-
ergy of the system is not strictly conserved�.

Our example differs from the examples provided in �6�.
Indeed, there are no conserved quantity of the system in our
model, and the range of energies of the self-Hamiltonian HS

�which is equal to �� may be arbitrary small. The distinctive
feature of the considered model, which leads to the absence
of the system ISI, is total lack of the entanglement of eigen-
vectors of H. Remind that the high degree of entanglement
was required to prove the system ISI property in case when
dS�1 �6� �see the discussion in Sec. III�. Now we show that
the absence of entanglement leads to the breakdown of the
system initial state independence in the opposite case when
dS=2. Thus the entanglement seems to be an indispensable
condition for the system ISI.

We emphasize however that the exact lack of entangle-
ment ��pn�=1� is not of key importance in the above consid-
erations which proved the absence of the system ISI prop-
erty. Rather, according to Theorem 2 �ii�, the value of the
average 1

d
n=1
d pn

2 is essential. If it is greater than some x, then
the equilibrium state of the system cannot be independent
from the initial state with the accuracy considerably better
than x /3.

VI. SUMMARY

To conclude, we have considered the system initial state
independence property—one of the cornerstones of the equi-
librium statistical mechanics. We present a necessary condi-
tion for this property to hold �Theorem 1�. This condition
may be applied in particular in the case when dS �the dimen-
sionality of the Hilbert space of the system which undergoes
thermal relaxation� is small. This case is of special interest,
as the sufficient condition proved previously �6� does not
work for small dS.

If we demand that the system ISI property holds with a
fixed accuracy for the whole range of the bath “macrostates”
�e.g., for all states of the bath with small energy dispersion�,
then we get a more explicit form of the necessary condition
�Theorem 1��. The latter indicates that the majority of eigen-
states of the total Hamiltonian �which includes self-
Hamiltonians of the system and the bath, as well as the in-
teraction term� should be highly entangled.

When the equilibrating system is just a single spin 1/2,
our necessary condition leads to the transparent bounds on
the polarization vectors of the total Hamiltonian eigenstates
�Theorem 2�. The usefulness of the derived bounds is dem-
onstrated in the specific case. Namely, it is shown that for a
specific form of interaction between the spin and the bath the
necessary condition is not satisfied and thus the system initial

state independence property does not hold. The considered
interaction is not completely trivial; in particular it leads to
the decoherence of the spin. Two other properties which are
associated with thermal relaxation—the equilibration and the
bath initial state independence—also hold in the considered
model.

Our results are negative in the sense that they allow only
to pinpoint those models which lack the system initial state
independence property. Further work is necessary to obtain
more insight in the problem, in particular, to find an efficient
sufficient condition for the system initial state independence
in the case when dS is small. Also it is desirable to accurately
generalize the obtained results to the case when the Hilbert
space of the bath is infinitely dimensional.
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APPENDIX

Proof of Theorem 1. We need to derive the bound �Eq.
�22�� from the following inequality:

��S���� − ��S�S���� � � ∀ � � S, ∀ � � F .

�A1�

The latter along with the triangle inequality implies that

���S�F��� − ���S�S�F� � � ∀ � � S . �A2�

Now we have to move from averaging over small subset
F�BR to averaging over the whole large BR. From �A2� one
gets

���S�B��� − ���S�S�B� � � + ���S�F��� − ��S�B����

+ ����S�S�F − ���S�S�B� ∀ � � S .

�A3�

Now two last terms in the right-hand side �rhs� should be
bounded. First we note that

���S�F��� − ��S�B���� � ���S���� − ��S�B�����F,

�A4�

����S�S�F − ���S�S�B� � ����S���� − ��S�B�����F�S.

�A5�

Next we fix some �, take some arbitrary ��0 and divide the
set F in two nonintersecting parts, F1 and F2, such as

F2 ��� � F:��S���� − ��S�B���� ��dS
dR

+ �� ,

F1 � F \ F2. �A6�

According to Theorem 0 �ii�,
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m�F2� � 2e−cdR�2
, �A7�

where m�A� is the measure of the set A �remind that we take
m�BR�=1�. Evidently,

� . . . �F =
m�F1�
m�F�

� . . . �F1
+

m�F2�
m�F�

� . . . �F2
, �A8�

and one gets

���S���� − ��S�B�����F
� ���S���� − ��S�B�����F1

+
2

p
e−cdR�2

���S���� − ��S�B�����F2

��dS
dR

+ � +
4

p
e−cdR�2

�A9�

for any � and �, where the definition p�m�F� is taken into
account. Now we choose �=d−1/3. Inserting the estimate �A9�
into Eqs. �A4� and �A5� one evaluates the rhs of the inequal-
ity �Eq. �A3�� and gets the desired final expression for ��.�

Proof of Theorem 2.
�i� To get the bound �Eq. �33�� from Eq. �32� one needs to

prove that

sup
p0

K�p0x,p0y,p0z� �
1

3

n=1

d



m=1

d

�pn,pm�2, �A10�

where K�p0x , p0y , p0z��
n=1
d 
m=1

d �pn ,p0��pm ,p0��pn ,pm�
=d2�p̄�B

2 is a positive semidefinite quadratic form. One may
rotate the basis to make K diagonal:

K�p0x�,p0y�,p0z�� = �x�p0x�
2 + �y�p0y�

2 + �z�p0z�
2 , 0 � �x�

� �y� � �z�. �A11�

The maximal value of K on the unit sphere is �z�� ��x�
+�y�+�z�� /3=tr K /3= 1

3
n=1
d 
m=1

d �pn ,pm�2, which is exactly
the bound �Eq. �A10��.

�ii� To derive the bound �Eq. �34�� from the bound �Eq.
�33�� one needs to prove that



n=1

d



m=1

d

�pn,pm�2 �
1

3
�


n=1

d

pn
2�2

. �A12�

Let us consider the left-hand side �lhs� of the above inequal-
ity as a function of 3d variables p1 , . . . ,pd and find its mini-
mum subject to d constraints of the form pn

2=an , n
=1, . . . ,d, where 0�an�1 are some fixed numbers. We in-
troducing d Lagrange multipliers �n to get the Lagrange
function L�p1 , . . . ,pd ,�1 , . . . ,�d�=
n=1

d 
m=1
d �pn ,pm�2

+
n=1
d �n�pn

2−an�. Differentiation of the latter over pm� gives
3d equations which �along with the d constraints� define the
critical points:

2

n=1

d

�pn,pm�pn� = �mpm�, m = 1, . . . ,d, � = x,y,z .

�A13�

Assume that we already know the set of vectors pn which
minimize the lhs of Eq. �A12� subject to the imposed con-
straints. This set of vectors should obey Eqs. �A13�, which
may be rewritten as



�=x,y,z

M��pm� = �mpm� �A14�

for every m and �. Here �M�����2
n=1
d pn�pn�� is a 3�3

real symmetric matrix. Note that it does not depend on m,
which is of key importance for the present proof. It has three
orthonormal eigenvectors �1 ,�2 ,�3. According to Eq. �A14�
every nonzero pn is collinear to one of this eigenvectors and,
consequently, orthogonal to two other eigenvectors. In other
words, in the set of vectors pn which minimize the lhs of Eq.
�A12� subject to the constraints each two vectors are either
collinear or orthogonal. Without loss of generality we as-
sume that p1 , . . . ,pd1

are collinear with �1, pd1+1 , . . . ,pd2
are

collinear with �2, and pd2+1 , . . . ,pd are collinear with �3.
Then



n=1

d



m=1

d

�pn,pm�2 = �

n=1

d1

an�2

+ � 

n=d1+1

d2

an�2

+ � 

n=d2+1

d

an�2

�
1

3
�


n=1

d

an�2

, �A15�

which proves the inequality �Eq. �A12��. �
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