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We study the random-walk problem on a deterministic scale-free network, in the presence of a set of static,
identical targets; due to the strong inhomogeneity of the underlying structure the mean first-passage time
�MFPT�, meant as a measure of transport efficiency, is expected to depend sensitively on the position of targets.
We consider several spatial arrangements for targets and we calculate, mainly rigorously, the related MFPT,
where the average is taken over all possible starting points and over all possible paths. For all the cases studied,
the MFPT asymptotically scales like �N�, being N the volume of the substrate and � ranging from
1−log 2 / log 3, for central target�s�, to 1, for a single peripheral target.
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I. INTRODUCTION

The importance of first-passage phenomena stems from
their fundamental role in stochastic processes that are
prompted by a first-passage event; examples range from
diffusion-limited growth, to neuron firing, and to the trigger-
ing of stock options �1�. These problems can be successfully
dealt with by mapping the problem into a random-walk �RW�
moving on a proper substrate and in the presence of an ab-
sorbing boundary, in such a way that first-passage properties
can be expressed in terms of survival probability and mean
hitting time. The relation between the first-passage probabil-
ity and the probability distribution for a RW has been derived
in different frameworks �continuous and discrete space
and/or time�, see e.g., �1–4�. In this context, the mean first-
passage time �MFPT� to a target point, possibly averaged
over all possible starting points, has been widely used in
order to measure the transport efficiency �5�.

The case of regular �2� and fractal lattices �6,7� as sub-
strate has been thoroughly investigated, and recently com-
plex structures, especially �pseudo-�scale-free networks, both
random and deterministic, have also attracted a lot of interest
�8–10�. The reason is that such networks are able to model
some features typical of many real systems and they can
exhibit interesting, nonintuitive first-passage properties,
whose understanding could pave the way to engineered de-
vices �see, e.g., �11,12��. In particular, several examples were
shown where the MFPT to the most connected node displays
a sublinear dependence on the size N �8,13�.

While previous works dealing with complex structures
mainly focused on the case of one single trap placed on a
central position, here we consider a special realization of
deterministic scale-free structure where we study the MFPT
for different arrangements of targets. The problem of the
trapping of random walks by randomly distributes traps on
regular infinite lattices has been investigated extensively
�2,3�, and also the case of finite lattices has been studied in
presence of perfect multiple traps �14�. On more complex
topologies, analytical approaches are mainly based on mean
field like approximations �15�, such as Rosenstock’s one, or
on asymptotic expressions �16� predicting stretched expo-

nential decays for the survival probability �17�. In particular,
within these approximations, given a concentration c�1 of
traps, and a high dimensional structure, the trapping time is
expected to grow linearly with the system size �18�. Our
results, mainly rigorous, allow to go beyond these mean field
approximations on a specific quenched topology and they
evidence how deeply the position and/or the number of tar-
get�s� affect the first-passage properties. More precisely, for
the cases analyzed we find that the MFPT scales like �N�

�up to logarithmic corrections�, where N is the number of
nodes and � is a proper exponent. Moreover, � ranges from
�0=1−log 2 / log 3�0.37 �when one single target is placed
on the central node� to 1 �when the target is placed on a
peripheral node�, which is expected to be the upper bound
�19�. Interestingly, the former sublinear scaling is recovered
also when a number Nlog 2/log 3 of targets is “centrally ar-
ranged.” On the other hand, such an effective performance is
by far not representative of the whole network and the MFPT
averaged over the target site, denoted as �̄, is found to scale
linearly with N.

The paper is organized as follows: in Secs. II and III we
briefly resume the topological properties of the graph under
study, while in Sec. IV we analyze the average time �̄. Then,
we consider special arrangements of traps distinguishing be-
tween “central,” in Sec. V, and “peripheral,” in Sec. VI Fi-
nally, Sec. VII contains conclusions and discussions, while in
Appendix we have collected the details of analytical calcu-
lations.

II. DETERMINISTIC SCALE-FREE GRAPH

The graph under study can be built recursively in such a
way that at the gth iteration we have the graph of generation
g, denoted as Gg �see Fig. 1 for g=3�; here we briefly de-
scribe its main topological properties, for more details we
refer to �9,20–22�.

Starting from the so-called root constituted by one single
node, at the first iteration one adds two more nodes and
connects each of them to the root; the resulting chain of
length three represents the graph of generation g=1. We call
B1 the set of sites introduced at the first generation and
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linked to the root. Then, at the second iteration one adds two
copies of G1, namely, G1� and G1�; for each of them one can
distinguish the sets B1� and B1�, which make up the set B2,
i.e., B2=B1��B1�; each node in B2 is then directly connected
to the root. Proceeding analogously, at the gth iteration one
introduces two replica of the existing graph of generation g
−1 and connects the root with all the sites belonging to Bg,
henceforth called “rims.”

This way, at the gth generation the total number of nodes
is Ng=3g, the total number of rims is �Bg�=2g and the root
turns out to be the main hub with coordination number
2�2g−1�. Apart from the main hub, one can detect “minor
hubs” �see Fig. 1�, whose degree distribution is given by the
power law P�k��k−� with exponent �=log 3 / log 2�1.59
�20�; the remaining nodes follow an exponential degree dis-
tribution: P�k���2 /3�k=e−�̄k, where �̄=log�3 /2��0.405
�21�. We also define the so-called hubs of generation g−n,
being n=0,1 , . . . ,g−1, which correspond to the hubs per-
taining to the inner subgraphs �apart the one containing the
main hub�; analogously we will refer to rims of generation
g−n, with n=0,1 , . . . ,g−1 �see Fig. 1�.

Finally, the average degree is �k	g
�kP�k� /Ng=4�1
− �2 /3�g�, namely, it approaches 4 as g→�; on the other
hand, the second moment �k2	 is divergent �21�.

III. VAN HOVE SPHERE AND AVERAGE DISTANCES

For a graph of generation g, being X�k ,g� the number of
nodes at a distance k from the main hub and, analogously,
Y�k ,g� the number of nodes at a distance k from an arbitrary
rim, the following equations hold:

X�k,g� = X�k,g − 1� + 2Y�k − 1,g − 1� , �1�

Y�k,g� = X�k − 1,g − 1� + 2Y�k,g − 1� . �2�

Notice that X�k ,g� represents the cardinality of the
borders of the generalized Van Hove sphere with radius k in
the chemical distance and centered in the main hub �12�.
Passing to the corresponding generating functions, namely,

X̃�s ,g�
�k=0
� X�k ,g�sg and Ỹ�s ,g�
�k=0

� Y�k ,g�sg, we get

X̃�s,g� = X̃�s,g − 1� + 2Ỹ�s,g − 1�s , �3�

Ỹ�s,g� = X̃�s,g − 1�s + 2Ỹ�s,g − 1� . �4�

Now, by combining Eqs. �3� and �4� we have

X̃�s,g + 2� = 3X̃�s,g + 1� − 2�1 − s2�X̃�s,g� . �5�

The solution of this finite difference equation can be ob-
tained by recalling the initial condition

X�k,0� = �k,0 ⇒ X̃�s,0� = 1, �6�

X�k,1� = �k,0 + 2�k,1 ⇒ X̃�s,1� = 1 + 2s , �7�

due to the fact that the root of the graph �generation zero� is
just the main hub, while the first generation graph is made up
by the main hub and by two rims only. Hence we get �23�

X�2k,g� = �3

2
g

23k�
l=0

g/2
1

32l� l

k
� g

2l
�1 −

g − 2l

3�2l + 1�� , �8�

X�2k + 1,g� = �3

2
g4

3
23k�

l=0

g/2
1

32l� l

k
� g

2l + 1
 , �9�

which provide the cardinality of the van Hove surface of
even and odd radius, respectively. Interestingly, these expres-
sions clarify the peculiar topology of the deterministic scale-
free graph: due to the nonmonotonicity of X�k ,g� and to the
large number of surface points at a given distance, quantities
obtained from the limit of a sequence of larger and larger
graphs could present some anomalies �23�. For instance,
X�k ,g� is approximately peaked at k=g /2 and it asymptoti-
cally decays like a stretched exponential. Peculiar behaviors
due to parity effects have been evidenced in a variety of
networks and they have been shown to affect first-passage
quantities �24,25�.

From X̃�s ,g� we can also derive the average distance from
the main hub dH. Let us define dij the average �chemical�
distance from i to j, then we have

dg =

�
i�Ng

diH

Ng
, �10�

where H is the node representing the main hub. Now, the
following relation holds:

dg =� 1

Ng

�

�s
X̃�s,g��

s=1
. �11�

Then, from Eq. �5�, we get

�

�s
X̃�s,g + 2� = 3

�

�s
X̃�s,g + 1� + 4sX̃�s,g�

− 2�1 − s2�
�

�s
X̃�s,g� , �12�

which, for s=1, gives

FIG. 1. �Color online� Deterministic scale-free graph
of generation g=3. According to the labeling used B3

= �14,15,17,18,23,24,26,27�. The main hub has label 1; main
hub and minor hubs are depicted with darker nodes. Hubs of gen-
eration 2 have label 10 and 19; analogously, nodes 11,12,20,21 are
rims of generation 1.
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Ng+2dH�g + 2� = 3Ng+1dH�g + 1� + 4X̃�1,g� . �13�

From Eq. �5�, X̃�1,g�=3g=Ng follows, as expected, and by

plugging X̃�1,g� into Eq. �13�, we obtain the following re-
cursive relation:

9dg+2 = 9dg+1 + 4, �14�

whose solution is

dg =
2

9
�2g + 1� , �15�

where we used the initial condition d1=2 /3. The average
distance to the main hub can also be expressed as a function
of the volume, recalling that g=log Ng / log 3

dg =
2

9
�2

log Ng

log 3
+ 1 � log Ng. �16�

While dg provides information about the “accessibility” of

the main hub itself, the average distance d̄g calculated over
all pairs of nodes, provides a more global information, being
tightly connected with dynamics phenomena on graphs such
as spreading, random walks and synchronization �7,26,27�.
The average distance is defined as

d̄g 

�
i,j=1

Ng

dij

Ng�Ng − 1�
. �17�

The exact expression of d̄g for the graph under study has
been obtained in �22� and is given by

d̄g =
8Ng log Ng

9�Ng − 1�log 3
� log Ng, �18�

where the last expression holds in the thermodynamic limit
Ng→�.

The consistency between the leading behaviors of dg and

d̄g, see Eqs. �16� and �18�, suggests that, despite its centrality,
the main hub is not, in the average, spatially closer than any
other site. In fact, the maximum distance among nodes grows
logarithmically with the volume, that is, maxi,j=1,. . .,Ng

dij

=2g, and the graph is generally rather compact.

IV. TOTAL MEAN FIRST PASSAGE TIME

The average distance d̄g discussed in the previous section
allows to determine an upper bound for the total mean first
passage time �̄g defined as

�̄g = E�tij� 

1

Ng�Ng − 1��i�j

Ng

�
j=1

Ng

tij , �19�

where tij is the mean time taken by a simple RW on Gg to
first reach the site j starting from i, and the average E is
taken over all possible couples. As shown in �19,28�, �̄g is
subject to the following, rather strict, constraints:

Ng

2
� �̄g �

Ng�k	d̄g

2
� Ng log Ng, �20�

where we used Eq. �18� for d̄g �22�.
Such an average is characteristic of a network, in the

sense that it provides an overall measure of the transport
efficiency on that network, but, on the other hand, it conceals
the peculiarities of the graph itself and it does not allow to
see whether there exists any target position which results to
be particularly effective or ineffective.

In order to deepen this point we start by considering the
set �tij�i,j=1,. . .,Ng

: for an arbitrary connected couple �i , j�, the
analytical calculation of the mean time tij can be rather
lengthy and awkward, while the whole set �tij�i,j=1,. . .,Ng

can
be efficiently calculated numerically by exploiting a method

based on the so-called pseudoinverse Laplacian L̃† �11,29�.
More precisely, the latter is generically defined as L̃†= �L
−eeT /N�−1+eeT /N, where L is the Laplacian matrix �12� as-
sociated to the arbitrary connected graph of size N and e
denotes the unity-vector; the mean times can then be written
in terms of matrix elements: tij =�k=1

N �Lik
† −Lij

† −Ljk
† +Ljj

† �zk,
where zk is the number of nearest neighbors of node k. In this
way we can directly derive �̄g from Eq. �19� and the variance
of the set �tij�i,j=1,. . .,Ng

as �2=E�tij − �̄g�2.
The intrinsic symmetry of the graph yields degenerate

values for tij which have been omitted in the plot of Fig. 2.
From the plot one can notice that tij spans a wide range
�O�Ng� and the variance �2 of the set �tij� �see the inset of
Fig. 3� is shown to grow asymptotically as the square of the
graph volume. The large variability of tij mirrors the strong
inhomogeneity of the graph under study; this is a further
confirmation that the efficiency of first-passage processes
is sensitively affected by the target position. Finally, as
shown in Fig. 3 �main figure� the asymptotic behavior of �̄g
is consistent with the linear law �̄g�3Ng, in agreement with
Eq. �20�.

V. TARGET ON CENTRAL NODES

As shown in �9�, for a simple RW on Gg, the mean time to
first reach the main hub starting from any of the rims in Bg is

Rg =
8

3
�3

2
g

− 3, �21�

while the mean time to first reach any rim starting from the
main hub is

Hg =
4

3
�3

2
g

− 1, �22�

where the mean is taken over all possible paths. Such results
were used to calculate the mean time to first reach the main
hub �g�H� �where the mean is taken over all possible paths
and over all possible starting points�, which reads as
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�g�H� =
1

3g − 1
�32

9
�9

2
g

−
2

9
�17 + 4g�3g� � Ng

1−1/�,

�23�

being 1−1 /�=�0=1−log 2 / log 3�0.37. Notice that the
asymptotic behavior of Rg, Hg and �g�H� is the same,
namely, �3 /2�g. The exponent �0 is very small if compared
with the result found for �̄g and also with similar results
found in the literature �8,9,13,30�, making the main hub a
particularly effective node where to place a target. Interest-
ingly, the same exponent �0 was also found in �31� for a
hierarchical network featuring indeed topological properties
similar to those of the graph considered here.

We now calculate the mean hitting time �g�Bg� at any rim,
averaged over all possible starting points �Bg and over all
possible paths,

�g�Bg� 

1

Ng − �Bg� �
i�Bg

tib̃, �24�

where tib̃=minb�Bg
tib. By properly combining Hg and Rg we

can write the following recursive equation:

�g�Bg� =
1

3g − 2g �3g−1Hg + �3g−1 − 1��g−1

+ 2�g−1�Bg−1��3g−1 − 2g−1�� . �25�

In fact, if the RW starts from a site belonging to the subgraph
Gg−1 containing the main hub, then, in order to arrive to rims,
it must pass through the main hub itself �in a mean time
�g−1�H�� from which rims are first reached in a time Hg.
Conversely, if the starting point is in Gg−1� �Gg−1� , the MFPT
to rims is just �g−1�Bg−1�. The recursive relation can
be solved to obtain

�g�Bg� =
3g

9�3g − 2g��20�3

2
g

− 8g − 19� � �3

2
g

. �26�

Interestingly, the leading behavior is the same as �g�H�, even
if in this case the number of targets is 2g�Ng

1/�, moreover,
�g�Bg� /�g�H��5 /8. It is rather intuitive at this point that
when targets are placed on the main hub and on rims the
leading behavior of the hitting time is conserved. Indeed, one
has

�g�H � Bg� =
1

3g − 2g − 1
��3g−1 − 1��g−1

+ �g−1�Bg−1��2 · 3g−1 − 2g�� . �27�

We finally consider the case of one single target placed on
a rim, i.e., on a site b�Bg; with respect to the original graph,
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6

t i
j
/
3g

g = 4

g = 5

g = 6

FIG. 2. �Color online� Mean
times tij divided by the volume
Ng for graphs of generations g
=4,5 ,6, as indicated by the leg-
end; only nondegenerate data have
been depicted. Notice that data are
plotted in ascending order and
versus a proper normalized inter-
val accounting for the effective
�size dependent� number of non-
degenerate values.
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FIG. 3. �Color online� Total mean first passage time �̄g �main
figure� and related variance �2 �inset� as a function of the graph
volume Ng. Data points have been fitted with the power law �Ng

and �Ng
2, respectively.
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this kind of perturbation breaks the symmetry of the structure
itself so that the exact analytical evaluation of the mean time
is rather lengthy and the calculation has been performed nu-
merically exploiting the following expression �30�

�g�b� =
1

Ng − 1 �
i=1

i�b

Ng

tib =
1

Ng − 1 �
i=1

i�b

Ng

�
j=1

j�b

Ng

�− L−1�ij ,

where L is the Laplacian matrix of the underlying structure.
In the range considered, i.e., g� �0,6�, data points can be
fitted by the following:

�g�b� �
Ng

log Ng
, �28�

which is consistent with the analytical result found in �19�
�although the average here is taken over the flat distribution�.
The MFPT’s �g�H�, �g�Bg�, and �g�b� are shown and com-
pared in Fig. 4

VI. TARGET ON PERIPHERAL NODES

After having analyzed particularly effective arrangements
for targets, i.e., main hub and rims, we now want to focus on
trapping at the farthest nodes from the main hub which are
expected to be rather difficult to reach.

We notice that in a graph of generation g, the radius of the
outmost van Hove surface centered on the main hub, i.e., the
largest chemical distance achievable from the main hub,
equals g and its cardinality is X�g ,g�=g if g is even, other-
wise X�g ,g�=g+1; such farthest nodes correspond to hubs
�g even� or rims �g odd�, of subgraphs of generation 1. We
call Fg the set of nodes at a chemical distance g from the
main hub so that �Fg�=X�g ,g�.

We will first consider the case of Fg working as a bound-
ary, that is each node in Fg is occupied by a target, hence,
exploiting the intrinsic symmetry of the arrangement, the
problem will be solved analytically. Later we will focus on
the case of one single target fixed on a node belonging to Fg
and we will solve the problem numerically.

A. Multitarget

The basic step to calculate the hitting time �g�Fg� when
each node in Fg is occupied by a target, is to obtain Hg−n and
Rg−n, which represent, respectively, the MFPT from the hub
of a subgraph of generation g−n to any rim of the same
subgraph, and the MFPT from any rim in a subgraph of
generation g−n to the pertaining hub; for example, referring
to Fig. 1, R3−1 is the mean time to go from node 14 to 10,
while H3−2 is the mean time to reach 11 starting from 10 �and
equivalently for similar nodes�. The detailed calculations are
reported in the Appendix, while here we just summarize the
main passages and results.

We first consider the MFPT from the main hub to Fg;
starting from the main hub the RW has first to reach the rims
in a time Hg �see Eq. �22��, from Bg the RW has to reach the
hub of the subgraph of generation g−1 and this is found to
be

Rg−1 =
28

3
�3

2
g

− 3, �29�

which exhibits the same asymptotic behavior of Hg and of Rg
�see Eqs. �21� and �22�� �9�. Then, the RW has to “bounce”
from rim to hub and from hub to rims of inner and inner
subgraphs, the pertaining MFPT’s read as

Rg−n = 4 	 2n/2��3

2
g

− 1� + 1 −
8

9
�3

2
g−n

�30�

and

Hg−n = 4 	 2n/2��3

2
g

− 1� + 3 −
8

3
�3

2
g−n

. �31�

We notice that Rg−n and Hg−n �Eqs. �30� and �31�� display the
same asymptotic behavior, namely �3 /2�g2n/2, which, inter-
estingly, is the same behavior found for �g�H� but “cor-
rected” by a factor which depends on n as 2n/2,

Rg−n � 2n/2Rg, �32�

Hg−n � 2n/2Hg. �33�

Some remarks are in order here. Although, for a given sub-
graph, the distance between the hub and a rim is the same
and equal to 1, the mean time taken by the RW depends
significantly on how “deep” the subgraph is �i.e., how small
g−n is�. Such a result is somehow counterintuitive because
the probability to go directly from rim to hub �1 / �g−n+1��
and from hub to rim �2g−n−1 / �2g−n−1�� grows with n. Actu-
ally, what really matters is that if the right way is missed at
the first step then it is more and more difficult for the RW to
retrieve it as n gets larger. The factor 2n/2 is a clear indication
of the fact that targets placed on inner nodes are in general
rather difficult to reach.

100 101 102 103 104 105
100

101

102

103

104

Ng

τg(b)

τg(H )

τg(Bg)

FIG. 4. �Color online� Mean hitting times at the main hub �g�H�,
at rims �g�Bg� and at one rim �g�b�, as a function of the number of
nodes Ng for a simple RW moving on Gg. Data from numerical
calculations coincide with those calculated analytically �for the
former two cases see Eqs. �23� and �26�� and are compared with the
leading behaviors �Ng

1−1/� and �Ng / log Ng �continuous line�.
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By merging the previous results one can find the average
time tg−n

H to reach a node in Fg, starting from the hub of any
subgraph of generation g−n

tg−n
H �Fg� = �

l=g−n

g−2

�Rg−l + Hg−l� �34�

or from any rim of generation g−n

tg−n
R �Fg� = �

l=g−n

g−2

Rg−l + �
l=g−n−1

g−2

Hg−l. �35�

These expressions are used in Appendix to get the average
time �g�Fg� to reach an arbitrary node f �Fg, where the
average is meant over all possible starting points �Fg and
over all possible paths, namely,

�g�Fg� 

1

Ng − �Fg� �
i�Fg

tif . �36�

Hence, we finally get

�g�Fg� =
2g+1

45�3g − 2g/2��4�3

2
2g

�45 	 2g/2 − 97�

− �3

2
g

�45 	 2g/2+2 − 25g − 527� − 144�
� �3

2
g

2g/2 � Ng
1−1/2�, �37�

where the last line contains the asymptotic behavior valid in
the limit Ng→� �see Fig. 5�. Although the number of targets
is �log Ng, the mean time to first reach any of them grows
much faster than the mean time to reach the main hub
�g�H���3 /2�g, but still slower than the average hitting time

�̄g�3g. Indeed, recalling 1− 1
2� =1− 1

2
log 2
log 3 �0.6845, we have

that

�g�Fg� � �̄g
1−1/2� � �g�H�1+1/2��−1�, �38�

where 1+1 / �2�−2��1.85.

B. Single target

We now turn to the case of one single target placed on a
node f �Fg, which has been investigated numerically ac-
cording to

�g�f� =
1

Ng − 1 �
i=1

i�f

Ng

tif =
1

Ng − 1 �
i=1

i�f

Ng

�
j=1

j�f

Ng

�− L−1�ij .

Results found for several generations are shown in Fig. 5. By
means of fitting procedures we find that when the size is
large, the mean hitting time �g�f� scales like

�g�f� � Ng
�f , �39�

where the exponent � f is consistent with the value 1, which,
following �19�, suggests a transient behavior for f .

VII. CONCLUSIONS

In this paper we studied the mean first-passage problem
for a random walk on a deterministic scale-free structure,
focusing the attention on different arrangement of targets.
First of all, we highlighted that, due to the high inhomoge-
neity of the structure, the mean first-passage time �MFPT� tij
from a node i to j sensitively depends on the couple �i , j�
chosen, spanning a range �O�Ng�, being Ng the size of the
structure.

The case of a single target placed on the main hub turns
out to be strategic as it gives rise to a slow sublinear scaling
�Ng

�0, being �0=1−1 /�=1−log 2 / log 3�0.37. Interest-
ingly, the same scaling is obtained in the case that the whole
set of rims Bg, with cardinality �O�Ng

1/��, is assumed as
absorbing boundary. On the other hand, when only one
single node b�Bg works as a target we get a faster growth
�Ng / log Ng, where the logarithmic correction accounts for
the large coordination number of rims �see �19��.

When peripheral positions for traps are considered, sub-
linear scaling are achievable provided that the number of
targets is large enough; in particular, when the absorbing
boundary is given by the whole set of peripheral nodes Fg
with cardinality log Ng / log 3 we have that the mean hitting
time scale like �Ng

1−1/�2��. Conversely, when one single node
f �Fg works as a target our fits suggest a linear growth �Ng.

Therefore, the transport efficiency sensitively depends on
the number and on the position of targets, moreover, the
existence of very “close” couples, such as main hub and
rims, is evened off by rather “distant” couples, giving rise to
a mean hitting time �̄g, averaged over all possible pairs,
which scales linearly with Ng. In the highly inhomogeneous
topology of the network, the average behavior arises from
very peculiar and different contributions.

100 102 104
100

101

102

103

104

105

Ng

τg(Fg)

τg(f )

FIG. 5. �Color online� Mean hitting times at peripheral nodes
�g�Fg� ��� and �g�f� ���, as a function of the number of nodes Ng

for a simple RW moving on Gg. Data from numerical calculations
coincide with those calculated analytically from Eq. �26� and are
compared with the leading behavior �Ng

1−1/�2�� and �Ng �continu-
ous line�, according to Eqs. �38� and �39�, respectively.
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A key point in this framework appears to be the rather
strange behavior of the Van Hove spheres, which makes the
exploration of larger portions of the graph through a se-
quence a subtle task. In particular, the behavior of trapping
times evidenced by our results is consistent with the tran-
sience of the nodes �19�. Interestingly, the general properties
of the graph, which can be defined strictly only in the ther-
modynamic limit, could present some peculiar behavior on
these highly inhomogeneous structures. A rigorous investiga-
tion of a possible connection between the rate of growth of
the van Hove surface centered at a node i and the features of
the mean-first passage times to i as well as �local�
recurrence/transience properties are still open problems and
they would provide interesting insights in the study of inho-
mogeneous topologies �23�.

APPENDIX: MEAN FPT ON Fg

In this appendix we report the detailed calculation of the
mean time taken by a simple RW on a graph Gg and started
from the hub of a subgraph of generation n, to first reach any
rim in the same subgraph, which is denoted as Hn, and the
MFPT from any rim in a subgraph of generation n to the
pertaining hub, denoted as Rn. Such times will then be
merged in order to obtain the mean time �g�Fg� �averaged
over all possible starting points and over all possible paths�
to first reach any node belonging to the set Fg and meant to
be occupied by a target.

Let us start from the highest generation, i.e., n=g. As for
Hg, this has already been calculated in �9� �see Eq. �22��.
Now, from rims of generation g, in order to reach Fg, we first
need to pass through the hub of generation g−1 and we can
write

Rg−1 =
1

g��tg
H + 1 + Rg� + 1 + �

l=1

g−2

�1 + tl
H + Rg�� . �A1�

In fact, starting from any rim of generation g, a RW has g
options: it goes to the main hub and then returns to rims in a
time Hg, either it goes directly to the hub of generation g
−1, either it reaches a hub of generation g− l from which it
return to rims in an average time Hl. By plugging Eqs. �22�
and �21� in Eq. �A1� we get

Rg−1 =
28

3
�3

2
g

− 3. �A2�

Now, from the hub of generation g−1 the RW needs to reach
the pertaining rims and this is first accomplished in a mean
time given by

Hg−1 =
1

2�2g−1 − 1��2�g−1�−1 + �
l=1

�g−1�−2

�1 + Rl + Hg−1�

+ �1 + Rg−1 + Hg−1�� , �A3�

in fact, the RW can jump directly in any of the 2�2�g−1�−1�
rims of generation �g−1�−1, either it can reach rims of g
−1 from which it needs to return to the hub of generation

�g−1� in a time Rg−1 �Eq. �A1��, either it can jump to a rim
of the subgraph of generation g− l from which it can return to
the hub in Rl.

As can be deduced from the previous equations, Hg−n and
Rg−n are deeply connected with each other, such an interplay
allows to build up a system of recursive equations. We can in
fact write the following general equations

Hg−n =
1

2�2g−n − 1��2�g−n�−1 + �
l=1

�g−n−2�

�1 + Rl + Hg−n�

+ �1 + Rg−n + Hg−n�� . �A4�

and

Rg−n =
1

g − n��Hg−n + 1 + Rg−n� + 1 + �
l=1

g−2

�1 + Hl + Rg−n�� .

�A5�

Now, by plugging in Eqs. �A5� and �A4� the expressions Eqs.
�21� and �22�, with some algebra we get

Rg−n = Hg−n+1 + 2 + 4��3

2
g−n

− 1� , �A6�

Hg−n = 2Rg−n+1 + 1 +
8

9
�3

2
g−n

. �A7�

By properly combining these equations we have

Rg−n = Rg−n+2 − 1 +
28

9
�3

2
g−n

�A8�

and using Eq. �21� we have

Rg−n = 4�3

2
g

2n/2 − �24+n/2 − 1� −
8

9
�3

2
g−n

. �A9�

Repeating the same calculations for Hg−n we obtain similar
results, namely:

Hg−n = 4�3

2
g

2n/2 − �24+n/2 − 3� −
8

3
�3

2
g−n

. �A10�

Following analogous operations for n odd, we reach the
same result provided that n is replaced by n+1. We notice
that, for a given generation g, the calculation of �g�F� in-
volves either Rg−2n or Rg−2n+1 occur according to whether g
is even or odd. Hence, in the following, without loss of gen-
erality, we focus on the case of g−n.

From Hg−n and Rg−n it is now possible to derive a closed
form expression for the trapping time at Fg. We now use the
partial results found so far to finally calculate �g�Fg�. First of
all, let us calculate the first passage time tg

H�Fg� on any site in
Fg for a RW started from the main hub; when g is even, Fg
is made up of nodes which correspond to hubs of generation
1, vice versa, when g is odd Fg is made up of nodes which
correspond to rims of generation 1. Let us now focus on g
even; we then reach the following expression:
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tg
H�Fg� = �

l=0

g−2

Rg−l + Hg−l, �A11�

which can be straightforwardly generalized to the case of a
RW started on a hub of generation g−n

tg−n
H �Fg� = �

l=g−n

g−2

�Rg−l + Hg−l� , �A12�

from which we get

tg−n
H �Fg� = 8�2g/2 − 2n/2���3

2
g

− 1�
−

32

5
��3

2
g−n

− 1� + 2�g − n� . �A13�

Let us now calculate the mean time tg
R�Fg� taken by a RW

started from a rim of generation g−n to first reach any node
in Fg; the following relation holds

tg−n
R �Fg� �

l=g−n

g−2

Rg−l + �
l=g−n−1

g−2

Hg−l, �A14�

which is just a truncated version of sum �Eq. �34��, so that
we get

tg−n
R �Fg� = 4�2 	 2g/2 − 3 	 2n/2���3

2
g

− 1�
−

56

15
�3

2
g−n

+ 2�g − n� +
17

5
. �A15�

In order to simplify the notation we introduce Tn which rep-
resents the mean time taken by the RW to first reach a site f
in Fg and started from a node at a chemical distance n from

f . Since we assumed g to be even, when n is even �odd� the
starting point is a hub �rim�. By exploiting the intrinsic sym-
metry of the graph, Tn can be written as the sum of two
contributes, according to whether the starting node belongs
to the subgraph Gg−1 �and therefore the RW has to pass
through the main hub before reaching the target� or to
Gg−1� �Gg−1� �and therefore the RW has to pass through Bg�;
for subgraphs of smaller generation it holds analogously. The
first contribute reads as

�
n=1

n odd

g−1

2n−1/2�3g−n − 1���g−n
H + Tg−n+1� + Tg−n+1, �A16�

in fact the RW has first to reach the main hub of the pertain-
ing subgraph in a mean time �g−n, from which it reaches Fg
in a time Tg−n+1. The factor 2n−1/2 accounts for the number of
subgraphs of generation g−n present. The second contribute
reads as

4 �
n=2

n even

2n−2/2�3g−n − 2g−n���g−n
R + Tg−n+1� + 2g−nTg−n+1,

�A17�

where we considered RWs starting from nodes such that in
order to reach Fg has first to reach the rims of the pertaining
subgraphs or Bg itself. We sum together the previous expres-
sions to obtain

�g�Fg� =
2g+1

45�3g − 2g/2��4�3

2
2g

�45 	 2g/2 − 97�

− �3

2
g

�45 	 2g/2+2 − 25g − 527� − 144� ,

for g odd analogous results are expected.
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