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Fractional Fokker-Planck equation with tempered a-stable waiting times:
Langevin picture and computer simulation
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In this paper we introduce a Langevin-type model of subdiffusion with tempered a-stable waiting times. We
consider the case of space-dependent external force fields. The model displays subdiffusive behavior for small
times and it converges to standard Gaussian diffusion for large time scales. We derive general properties of
tempered anomalous diffusion from the theory of tempered a-stable processes, in particular we find the form
of the fractional Fokker-Planck equation corresponding to the tempered subdiffusion. We also construct an
algorithm of simulation of sample paths of the introduced process. We apply the algorithm to approximate
solutions of the fractional Fokker-Planck equation and to study statistical properties of the tempered subdiffu-

sion via Monte Carlo methods.
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I. INTRODUCTION

A complete description of subdiffusive dynamics under
the influence of an external space-dependent force field is
given in terms of the celebrated fractional Fokker-Planck
equation (FFPE) [1,2],

where w(x,0)=48(x). Here, the operator OD}_“ (with
0<a<1) is the fractional Riemann-Liouville derivative and
F(x) is the external force. The above equation was derived in
the framework of continuous-time random walk (CTRW)
with heavy-tailed a-stable waiting times. A further generali-
zation of Eq. (1) accounting for a broad jump distance sta-
tistics, which led to space-time FFPE, was discussed in detail
in [2]. However, FFPE (1) is suitable for describing time
evolution of the probability density function (PDF) of a lim-
ited class of anomalous diffusion processes, for which the
subdiffusion exponent « does not change in time.

In a more general setting, one has to take into account the
case of nonunique diffusion exponent. In many physical sys-
tems we observe a transition from the initial subdiffusive
character of motion (a<1) to the standard linear in time
mean-squared displacement for long times (@=1). The coex-
istence of subdiffusion and normal diffusion was empirically
confirmed in a number of systems, i.e., in a random motion
of bright points associated with magnetic fields at the solar
photosphere [3]. The transition from anomalous to normal
diffusion was also observed in the motion of molecules dif-
fusing in living cells [4,5]. Other important applications re-
lated to finance [6], turbulence [7], and geophysics [8]
should also be mentioned.

To model such dualism of physical systems, a modifica-
tion of the CTRW scenario leading to FFPE (1) is necessary.
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In particular, an appropriate truncation of heavy-tailed
a-stable waiting times is needed in order to eventually cancel
the anomalous character of motion. In the physical literature,
the first step in this direction was done by Mantegna and
Stanley [9]. Their idea of cutting of the heavy tails was fur-
ther developed by Koponen [10], who proposed smoothly
truncated stable distributions. Recently, Rosinski [11] intro-
duced a class of tempered a-stable distributions. The modi-
fication that he proposed was done on the level of the Lévy
measure, which resulted in many desired properties of the
introduced laws. In particular, tempered a-stable distribu-
tions are infinitely divisible, so that there is an underlying
stochastic process with stationary independent increments,
which can be discretized for simulation at any scale, with a
corresponding semigroup and generator that leads to a useful
governing equation. Moreover, tempered distributions have
finite moments of all orders; on the other hand they resemble
stable laws in many aspects (see [11] for the details).

In this paper, we use tempered a-stable distributions to
model processes exhibiting transition from anomalous to
normal motion under the influence of external space-
dependent force fields. The force-free case was already in-
troduced in [12], without developing the associated govern-
ing equation. That was done in [8]. The aspect of relaxation
responses induced by tempered a-stable laws was discussed
in detail in [13]. Some related investigations devoted to the
problem of nonunique subdiffusion exponent can be found in
[14,15]. The problem of modeling subdiffusion with time-
dependent force fields in the general case of infinitely divis-
ible waiting times (and in particular the tempered a-stable
waiting times) was solved in [16—18].

The paper is structured as follows. In Sec. II we give a
brief description of tempered a-stable processes and their
inverses. We introduce a model called tempered subdiffu-
sion, which is capable of describing transition between
anomalous and normal motions in the presence of external
force. The model is defined by the use of the subordination
method. We show that the PDF of the introduced model
obeys a generalized FFPE, in which the fractional derivative
is replaced with some other integro-differential operator. We
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prove that the stationary distribution follows the classical
Boltzmann-Gibbs law. Taking advantage of the Langevin
picture of tempered subdiffusion, we present in Sec. III an
efficient algorithm of simulating its sample paths. An appli-
cation of Monte Carlo methods allows us to approximate
solutions of the generalized FFPE and to detect some rel-
evant statistical properties of tempered dynamics.

II. TEMPERED SUBDIFFUSION
AND THE CORRESPONDING FFPE

FFPE (1) is a very convenient tool to study anomalous
transport in the presence of external force fields. Recall that
the Langevin picture of Eq. (1) is given in terms of the sub-
ordinated process [19-21],

Z(1) = X(S(1)).

Here, the process X(7) is given by the Itd stochastic differ-
ential equation (SDE),

dX(7)=F(X(7))dT+ dB(7), (2)

driven by the standard Brownian motion B(7). Moreover,
S(r) is the inverse a-stable subordinator defined as
S(t)=inf{7: U(7)>1t}, where U(7) is the strictly increasing
a-stable Lévy motion [22]. The diffusion process X(7) gov-
erns the spatial properties of motion, whereas the inverse
subordinator S(z) introduces the mechanism of heavy-tailed
traps (periods in which the particle stays motionless). The
trapping events slow down dramatically the overall motion,
which results in the sublinear in time mean-squared displace-
ment of the test particle. Consequently, to attain the transi-
tion from subdiffusion to normal diffusion (i.e., to eventually
cancel the effects of the trapping periods on the particle mo-
tion), an appropriate modification of the waiting-time distri-
butions is necessary. Following the idea presented in [12,13],
we modify the heavy-tailed distribution of waiting times in
Eq. (1), by replacing it with tempered a-stable laws.

The tempered a-stable random variable T, , >0 is conve-
niently defined via its Laplace transform

E(E_MTW‘) — e—[(u + )\)“—)\a],

where the constant N>0 is the tempering parameter and
0<a<1 is the stability parameter. Note that for A\, 0, we
recover the Laplace transform of one-sided stable distribu-
tion. It is worth mentioning that the PDF of T, ) has the form
ce™f,(x), where f,(x) is the PDF of one-sided stable distri-
bution and ¢>0 is the normalizing constant [11]. Therefore,
moments of all orders of T, are finite, which makes the
tempered a-stable distributions particularly attractive for
physical applications.

Given an infinitely divisible tempered a-stable random
variable T, ), we can extend our definition by taking time
into account and introduce the corresponding tempered
a-stable Lévy process T, ,(7) via its Laplace transform,

E(e_“T‘“‘(T)) — e—7{(u + )\)“—)\0‘]'

Consequently, we define the inverse tempered a-stable sub-
ordinator by
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Soa() =inf{7> 0:T,\(7) >1}, t=0,

The process S, (1) is a new operational time of the system.
Finally, the model of tempered subdiffusion is defined as the
subordinated Langevin process,

Y(t) = X(S,)(1)), (3)

where the process X(7) is the solution of the Itd SDE (2).
Similarly to the pure subdifusion case, X(7) is responsible for
the jumps of the particle, whereas S, () governs the trap-
ping events, which now follow the tempered a-stable law. It
turns out that by adapting S, ,(7) as a new clock of the sys-
tem, we are able to recover the desired transition from
anomalous to normal diffusion. Indeed, one can show [23]
that S, ,(r) >t as t— . Thus, for large time scale the process
Y behaves as the standard diffusion X. Moreover, as shown
in [12] for the force-free case, the second moment of tem-
pered subdiffusion satisfies (Y*(r))o® for small enough .
This is typical for subdiffusive dynamics.

In what follows, we prove that the PDF of the tempered
subdiffusion Y(¢) satisfies the following generalized FFPE:

aw(x,1) d 1 &
Tt Nl IR

where w(x,0)=48(x). Here, ®, is the integro-differential op-
erator defined as

d t
D,f(1) = 7 f M(t—y)f(y)dy,
0

where the memory kernel M(r) is defined via its Laplace
transform,

M(u) = JO e "M (t)dt= m

Observe that for A\ 0, the integro-differential operator
@, is proportional to the fractional Riemann-Liouville de-
rivative, and we recover FFPE (1). Moreover, when
M(t)=1, formula (4) reduces to the classical Fokker-Planck
equation.

The operator @, is closely related to the tempered frac-
tional derivative discussed in [8,24]. Specifically, if you ap-
ply the operator @ to the both sides of Eq. (4) then CIDZ_I(g)
is the tempered fractional derivative, which was originally
developed in [25].

Since the process X(7) is given by the 1td SDE (2), its
PDF f(x, 7) obeys the ordinary Fokker-Planck equation

af(x,7) d a
—=-—FXx)+-— 7). 5
aT { ox ) 2 9x? &) ©)
For convenience let us introduce the notation
d 1 &
Lipp=|-—Fx) +-—|. 6
FP [ ox (x) 2 ax2:| (6)

The Laplace image of Eq. (5) with respect to the variable 7
has the following form:
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uf(x.u) = (x,0) = Lepf(x.u). (7)
Similarly, Eq. (4) in the Laplace space u yields
wi(x, 1) — w(x,0) =LFpmvf/(x,u). )

Next, let us denote the PDFs of T,,(7) and S,,(7)
by h(t,7) and g(7,r), respectively. Using the property
P(S,\ (1) =7 =P(T,,(7)=1), we obtain

1

g(r)=- (% h(t',7)dt'. (9)

—00

Consequently, the Laplace transform of g(7,7) with respect
to ¢ is equal to

ae—{(u + )\)“—)\O‘]' (10)

Using the total probability formula and the independence of
X(7) and S, (1), we get that the PDF p(x,1) of X(S,, (1)) is
given by

p(x,t):f flx,Dg(nn)dr. (11)
0

Thus, using the above formula together with Eq. (10), we
obtain

ﬁ(x,u):f e“”p(x,t)dt:f fx,ng(ru)dr
0 0

* +N)* =\ aye
=f fx, T)(M;e—f{(uﬂx) g
0 I/t

=(“+)‘I)4Jf(x,(u+>\)a-v). (12)

Now by the change of variables u— [(u+X\)*—\“] in Eq. (7)
we obtain

[+ N)* = NTfCx, (u+ N)¥ = N9 = £(x,0)
= Lppf O, (u+N)% = \9). (13)

Finally, from Eq. (12) and fact that f(x,0)=p(x,0) we infer
that in the Laplace space p(x,u) satisfies the equation

uﬁ(x’u)_p(x’o):LFP )\aﬁ(xsu)' (14)

L
(u+N)* -
Comparing the above with Eq. (8) we have

w(x, 1) = p(x,1). (15)

Thus, we have shown that the solution w(x,7) of the gener-
alized FFPE (4) describes the dynamics of the PDF of the
subordinated process X(S (7).

Using the same arguments as in [2], we can show that the
stationary solution wy(x) of Eq. (4) coincides with the
Boltzmann-Gibbs distribution. Let us write the right-hand
side of Eq. (4) as
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w(x,1) _ (I)l&S(x,t) ’ (16)
ot ox
where
S(x,t)z[—F(x)+%%]w(x,t) (17)

is the probability current. Denote by V(x) the external poten-
tial. Consequently, F(x)=-=V'(x). If w(x,?) reaches its sta-
tionary state (i.e., it does not depend on time), then S(x,7)
must be a constant. Therefore, if S,,(x)=0 at any point x, it
must be equal to zero everywhere. Thus, the stationary solu-
tion of Eq. (4) satisfies

el 9 _
[V(x)+2(7x}wn(X)_0’ (18)

from which we can easily obtain the Boltzmann-Gibbs dis-
tribution

wy(x) =A exp[-2V(x)], (19)

where A is the appropriate normalization constant.

III. NUMERICAL APPROXIMATION OF SAMPLE PATHS

Let us now show how to simulate sample paths of the
tempered subdiffusion process Y (1) =X(S,,(#)). Our method
uses explicitly the fact that Y(z) is defined via subordination.
Every sample path of Y(¢) is obtained as a superposition of
independently generated trajectories of X(7) and S, ().
Now, suppose that we want to simulate Y(z) on the interval
[0,T], where T is the time horizon. The proposed algorithm
consists of two steps:

(I) In the first step we approximate the trajectory of the
inverse subordinator S, ,(r). We use the following approxi-
mation process:

Saxalt) =[min{n € N:T,,(nAr) >t} - 1]Az,  (20)

where At is the step length and 7 € [0, T]. One can show [18]
that the approximation process S, , ,(f) satisfies

sup |Sa,}\,At(t) - Sa,)\(t)| = Atr.

te[0,T]

Therefore, the smaller At we choose, the better approxima-
tion we obtain. In view of Eq. (20), to simulate numerically
the process S, ,(¢), one only needs to generate the values
T,\(nAr), where n=1,2,.... This can be done by the stan-
dard method of summing up the independent and stationary
increments of the Lévy process T, (1),

To)\(0)=0, (21)

T\ (nA1) =T, \([n - 1]AD) + Z,, (22)

where Z; are independent tempered a-stable random
variables, each with the same Laplace transform

E(e™%)=¢ AN N The algorithm of generating Z; has
been recently proposed in [24]. For completeness of the pre-
sentation, we give it in the Appendix. We underline that the
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Inverse tempered o~—stable subordinator
10 : ‘ ‘ ‘

8t

—
=
<
3
(2]

0 2 4 4 6 8 10
Anomalous diffusion X(Sa 7L(t))

FIG. 1. An exemplary sample path of the inverse tempered
a-stable subordinator S, (¢) (top panel) and the tempered subdif-
fusion process Y(1)=X(S,(7)) (bottom panel). The parameters are
=095, \=0.01, F(x)=0.

proposed method here of approximating sample paths of
Saa(f) is very efficient since the approximation process
Saxa/?) is actually a simple continuous-time random walk
with each jump equal to Ar and ith waiting time equal to Z,.

(IT) In the second step our aim is to approximate the dif-
fusion process X(7) given by SDE (2). Note that the approxi-
mation process S, a{f) considered in the previous step
takes only the values of the form kAr (with k=0,1,...,N),
where N is the appropriate last index satisfying
NAt=S, a(T). Therefore, we have to approximate the dif-
fusion process X(7) only in the time points 7,=kAt, where
k=0,1,...,N. This is done by the classical Euler scheme
[22],

X(0)=0,
X(7) =X (1) + FX(n ) Ar+ Ar'2g, (23)
where k=1,2,...,N. Here, & are independent random vari-

ables, each distributed according to the standard normal dis-
tribution &~ N(0,1).

Concluding, from the first step of the algorithm we get the
approximated trajectory of S, ,(#). From the second step we
obtain the trajectory of X(7). Finally, by putting them to-
gether, we obtain the trajectory of the tempered subdiffusion
X(Ser(0)-

The above algorithm allows us to simulate sample paths
of the process X(S,\(r)) for arbitrary external forces F(x)
and with no restriction to the parameters ae(0,1) and
A>0. In Fig. 1 we see the typical trajectories of the inverse
subordinator and tempered subdiffusion in the force-free
case. The constant intervals in both trajectories represent the
trapping events distributed according to the tempered
a-stable laws. Figure 2 depicts quantile lines corresponding
to the process X(S,,(#)), which give essential statistical in-
formation about the evolution in time of the trajectories. The
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FIG. 2. (Color online) Estimated quantile lines (black lines)
with the two sample paths (blue lines) of the anomalous diffusion
X(S, (7). The parameters are as in Fig. 1.

quantile lines were estimated via Monte Carlo methods on
the basis of 10* simulated trajectories. Recall that a
p-quantile line, p € (0,1), of a stochastic process Y(z) is a
function ¢,(t) given by the relationship P(Y(r) = g,(1))=p.

Monte Carlo methods can be employed to estimate solu-
tions of the generalized FFPE (4). In Fig. 3 we can see the
estimated PDFs of the process X(S, (7)) in the double-well
potential V(x)=(x*/4—-8x?)/20. These PDFs are also solu-
tions of Eq. (4) with F(x)=-V"(x)=—(x*-16x)/20.

Figure 4 shows the quantile lines for the case of tempered
subdiffusion in the double-well potential. The lines become
parallel, which indicates that the process reaches its equilib-
rium. In Fig. 5 we compared the theoretical and estimate
stationary PDFs. We see almost perfect agreement between
both functions. The PDF estimation was performed using

<—t=0.1

1k
0.81
= 061
X
aQ
—t=0.5
04l /|
t=10
0.2r
-10 -5 0 5 10
X

FIG. 3. (Color online) Evolution in time of the PDF of the
anomalous diffusion Y(r)=X(S,\(r)). The parameters are a=0.95,
A=0.01, and F(x)=—V'(x)=—(x>*~16x)/20. The results were ob-
tained via Monte Carlo methods on the basis of 10* simulated
trajectories.
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FIG. 4. (Color online) Estimated quantile lines with the two
sample paths of the anomalous diffusion X(S,,(1)). As the quantile
lines become parallel, they indicate that the process is asymptoti-
cally stationary. Parameters are as in Fig. 3.

Rozenblatt-Parzen kernel estimator from the sample of 10*
simulated trajectories.

IV. CONCLUSIONS

In this paper we have extended the model of tempered
subdiffusion proposed in [12,13] to the case of space-
dependent force fields. Our model is a combination of two
independent stochastic mechanisms: the first one is a classi-
cal diffusion process X(7) governing the spatial properties
(jumps) of the test particle and the second mechanism of
trapping events (tempered a-stable waiting times) is repre-
sented by the inverse subordinator S, (). We have derived
the generalized FFPE, which describes the dynamics of the
PDF of the subordinated process X(S, (7). In the special
case, A=0, we recover the typical equation of subdiffusion
(1). The proposed Langevin approach here to tempered sub-
diffusion allowed us to construct a numerical algorithm of
simulating sample paths of the introduced process. The algo-
rithm can be applied to examine many relevant properties of
the system via Monte Carlo methods. In particular, one can
approximate solutions of the generalized FFPE with arbitrary
space-dependent forces F(x). One can also verify numeri-
cally various physical properties of the tempered subdiffu-
sion, in a similar way as it was done for the typical subdif-
fusion [26-29]. We believe that our investigations will
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FIG. 5. (Color online) Comparison of the analytical (black solid
line) and estimated (red dotted line) stationary PDFs of the tem-
pered subdiffusion in the double-well potential. We observe almost
perfect agreement between both lines. Parameters are as in Fig. 3.

provide another insight into the physical and biological sys-
tems, in which the transition between anomalous and normal
diffusions occurs.

APPENDIX

For completeness, we present the method of simulating
tempered a-stable random variables. The method has been
recently introduced in [24]. Suppose that we want to gener-
ate the tempered random variable Z>0 with the Laplace
transform E(e™%)=e A+ A The method is the follow-
ing:

1(I) Generate exponential random variable E with mean
A

(IT) Generate totally skewed a-stable random variable S
using the following formula [30]:

ol o]

cos(U)V« w

S=Are

(A1)

Here, U is uniformly distributed on [—7/2, /2], and W has
an exponential distribution with mean 1.
(IIT) If E> S put Z=S; otherwise go to step (I).
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