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The Gibbs entropy of a microcanonical network ensemble is the logarithm of the number of network
configurations compatible with a set of hard constraints. This quantity characterizes the level of order and
randomness encoded in features of a given real network. Here, we show how to relate this entropy to large
deviations of conjugated canonical ensembles. We derive exact expression for this correspondence using the
cavity methods for the configuration model, for the ensembles with constraint degree sequence and community
structure and for the ensemble with constraint degree sequence and number of links at a given distance.
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I. INTRODUCTION

The evolution of complex networks is usually described
by nonequilibrium stochastic dynamics �1–5�. However, a
networks’ specific topological structure may reveal relevant
organizational principles, such as a universality for the large-
scale structure or hierarchical communities �6� that is sure to
impact dynamical processes taking place on the network
�7,8�.

Extracting relevant statistical information encoded in the
networks’ structure is a fundamental concern of community
detection algorithms �6� and other inference problems. To
study these problems, several authors have suggested en-
tropy based methods �9–11�, which are grounded in the in-
formation theory of networks �11–16�. These methods have
proved to be very useful. In fact, in a series of recent papers
�11–19� it has been shown that one may extend ideas and
concepts of statistical mechanics and information theory to
complex network ensembles.

In this paradigm, one generalizes the typical random
graph ensembles studied in the mathematical literature �20�
to ensembles characterized by an extensive number of con-
straints that fix, for example, the degree sequence �21�, num-
ber of links between different communities the number of
links at a given distance �12,13�, degree correlations between
linked nodes �11�, acyclic networks �17�, or even network
with a given number of triangles �18� and generalized motifs
�19�.

It is well known that in statistical mechanics we distin-
guish between microcanonical ensembles describing all sets
of microscopic configurations compatible with a given value
of the total energy and canonical ensembles that correspond
to microscopical configurations in which the total energy
fluctuates around a given mean. A pivotal result of statistical
mechanics is the equivalence of these ensembles in the ther-
modynamic limit, i.e., in the limit where the number of par-
ticle in the system is very large. Similarly, in the theory of
random graphs we distinguish between the G�N ,L� en-
semble, which consists of all networks with N nodes and a
total of exactly L links, and the G�N , p� ensemble, which is
formed by all networks of N nodes and the total number of
links being a Poisson distributed random variable with aver-
age �L�= p�N−1�. Exploiting the parallelism between statis-

tical mechanics and theory of random graphs we can call the
random graph ensemble G�N ,L� a microcanonical network
ensemble and the G�N , p� graph ensemble a canonical net-
work ensemble. Similarly to statistical mechanics, the ran-
dom graph ensembles G�N ,L� and G�N , p� are, in the ther-
modynamic limit, asymptotically equivalent as long as L of
the G�N ,L� ensemble and p of the G�N , p� ensemble are
related by the equality L= p�N−1�.

It was shown in �12,13,15� that the parallel construction
between network ensembles can be extended to much more
complex networks. In fact it is possible to define microca-
nonical network ensembles by imposing a set of hard con-
straints that must be satisfied by each network in the en-
semble and canonical network ensembles, which satisfy soft
constraints, i.e., the constraints are satisfied on average. The
set of constraints might fix, for example, the degree se-
quence, the community structure, or the spatial structure of
networks embedded in space.

A widely studied example of the microcanonical network
ensemble is the configuration model �21� that fixes the de-
gree sequence, i.e., degrees for all nodes in the networks. On
the other hand, canonical network ensembles that impose
soft constraints on the degree sequence have been studied
under different names �“hidden variable model” and “fitness
model”� by the physics �22–24� and statistics �25� commu-
nities.

In a recent work �15� it has been shown that if the number
of constraints is extensive the microcanonical ensemble and
its conjugate canonical ensemble are no longer equivalent. In
particular, using a network entropy measure, it was shown
that a microcanonical ensemble has lower entropy than the
conjugate canonical ensemble, even though the marginal
probabilities take the same expression. An example of this
difference was given by comparing the microcanonical en-
semble of regular networks with fixed degree ki=c�N for
all nodes i=1, . . . ,N and the canonical Poisson network en-

semble with average degree k̄i=c, for every i=1,2 , . . . ,N,
where the overbar refers to the ensemble average. It is easy
to check that in this paradigmatic case, the entropy of the
regular networks is smaller than the entropy of the Poisson
networks with the same average degree. The importance of
such a topological difference is also revealed by the obser-
vation that dynamical models defined on microcanonical net-
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work ensembles or corresponding canonical ones display dif-
ferent critical behaviors.

The calculation for the entropy of arbitrary microcanoni-
cal ensembles was performed in �12,13� using a Gaussian
approximation, and in �14,16� by exact path integral ap-
proaches restricted to sparse networks and constraint degree
sequence. Here, we show an extension of the exact results
found in �14,16� using the more transparent cavity method
�26,27� and derive the correspondence between the entropies
of microcanonical and conjugate canonical ensembles.

II. ENTROPY OF SIMPLE CANONICAL
NETWORK ENSEMBLES

We first consider a canonical ensemble of simple net-
works, each consisting of N nodes and characterized by an
adjacency matrix �a�� �0,1�N�N. A link between two nodes i
and j may be present �aij =1� or absent �aij =0�. The network
is simple in that self-interactions are not permitted and that
the adjacency matrix is symmetric.

Each network is described by its probability distribution
P��a��=	i�j�ij�aij�. The link between nodes i and j is
present with probability pij =�ij�1� and is otherwise absent
with probability �1− pij�=�ij�0�. The ensemble is subject to
�=1, . . . ,M structural constraints of the type

f��p� = F�, �1�

where f��p� is a constraint function on the probability matrix
�p�, which consists of matrix elements pij, and F��R is the
constraining value.

In accordance with the principle of maximal entropy �28�,
the link probabilities for this canonical ensemble are pro-
vided by the maximization of the Shannon entropy of net-
work ensembles �9,15�,

S�p� = − 

i�j



�=�0,1�

�ij���ln��ij����

= − 

i�j

�pij ln pij + �1 − pij�ln�1 − pij�� , �2�

subjected to the constraints of Eq. �1�. This optimization ex-
ercise gives rise to the maximal entropy canonical network
ensemble, which is a generalization of the G�N , p� random
network ensemble �1�. The marginal probabilities pij are
given as the solution to the system of equations

�

�pij
�S�p� + 


�=1

M

��f��p�� = 0, �3�

where ���R are the Lagrange multipliers enforcing the con-
straints.

Let us consider the simple case of constraints on the ex-

pected degree of each node, i.e., we select k̄i, such that our
M =N constraints given by Eq. �1� take the form



j=1

N

pij = k̄i, i = 1, . . . ,N . �4�

The marginal probabilities pij that satisfy Eq. �4� are given as

pij =
e−�i−�j

1 + e−�i−�j
=

�i� j

1 + �i� j
, �5�

with the Lagrange multipliers �i fixed by Eq. �4� and the
variables �i=e−�i, which are commonly referred to as hidden
variables �22–24�. In Table I we generalize this procedure to
network ensemble satisfying a number of different structural
constraints.

III. LARGE DEVIATIONS OF CANONICAL ENSEMBLES
SOLVED BY THE CAVITY METHOD

The constraints for canonical ensembles are satisfied only
on average; it is therefore relevant to investigate the prob-
ability of large fluctuations in these ensembles. The entropy
for large deviations 	��G��� of canonical ensembles is de-
fined as

	��G��� = − lim
N→


1

N
ln


�aij�
pij

aij�1 − pij�1−aij

�	
�=1

M

�„G� − g��a�…� , �6�

where the delta function ��¯ � enforces the �=1, . . . ,M hard
constraint,

g��a� = G�, �7�

with g��a� being the constraining function specified on the
adjacency matrix and G��N as the constrained value. The
quantity 	��G����0 measures the probability that networks
in canonical ensembles satisfy Eq. �7�. If 	��G��� is large,
then this implies that the probability that the number of net-
works in the canonical ensemble satisfy the topological con-
straints is large. Small values of 	��G���, on the other hand,
correspond to the large deviations of the canonical ensemble,
i.e., there the networks satisfying the hard constraints are
rare. The exact calculation of 	��G��� has been performed
using path integral methods �14,16� with linear hard con-
straints that fix the degree sequence.

Using the cavity method, we now demonstrate how to
compute Eq. �6� for more general cases of canonical en-
semble and hard constraints fixing, for example, the �i� de-
gree sequence, �ii� community structure, and �iii� number of
links at a given distance. In order to apply the cavity method
to the calculation of 	��G��� it is first necessary to describe
the factor graph we will consider, which is depicted in Fig. 1.
Following recent efforts to evaluate the number of loops in
networks �29–31� we take the variables of the factor graph to
be the matrix elements a� of the adjacency matrix, where the
index �=1, . . . ,N�N−1� /2 identifies each possible link of the
undirected network �33�. The factor nodes, which are identi-
fied by Greek letters, �=1,2 . . . ,M, denote the M topological
constraints imposed on the network. In particular, each factor
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node � is linked to a list of variables, which are identified by
the set ��. Likewise, variable � is connected to a set of
constraints, which is indicated as ��. In our ensemble we
assume that the number of constraints connected to a vari-
able � is equal for each variable of the factor graph and is
given by ����. The cavity method remains valid even for M
=O�N2� but the scaling M =O�N� is necessary �as will be-
come clear in the following derivation� to ensure that the
entropy 	��G��� remains finite.

A. Large deviations of canonical ensembles
with linear constraints

The constraint given by Eq. �7� now fixes the degrees of
the factor nodes, i.e.,

K� = 

����

a�, �8�

with �=1, . . . ,M and factor node degree K��N. Corre-
spondingly, we can write Eq. �6� as

	��K��� = − lim
N→


1

N
ln


�a��
p�

a��1 − p��1−a�

�	
�=1

M

��K� − 

�����

a���� , �9�

Within the summation term on the first line of Eq. �9� and for
each value a�, we introduce the unity identity 1=xa�x−a�,
which is parametrized by x�0. We can then define
	N��K�� ,x� as

	N��K��,x� = −
1

N
ln


�a��
�p�x�a��1 − p��1−a�

�	
�=1

M

��K� − 

�����

a���� +
L

N
ln�x� , �10�

TABLE I. Maximum-entropy network ensembles with given set of constraints. The probability pij of each
link �i , j� is given for network ensembles in which we imposed different types of constraints. These prob-
abilities are expressed in terms of “hidden variables” of the ensembles ��i�, W�q ,q��, W�d�, and ��i�, which
are determined by the respective “conditions” specified in the table. In the network ensembles with given
community structure, the community of each node is associated with a Potts variable qi=1, . . . ,Q=O��N�. In
the network ensemble embedded in a physical space the distance between the nodes is binned in L intervals
Is� �ds ,ds+ds� and it is indicated by a discrete variable sij =s if the distance dij between the nodes i and j
satisfies dij � Is. The functions �s�d� are indicator functions of the intervals Is, i.e., �s�d�=0,1 and �s�d�=1 if
and only if d� Is.

Constraints Probabilities pij / �1− pij� Conditions

Given expected number of links L p / �1− p� pN�N−1� /2=L

Given expected community structure �Aq,q�� W�qi ,qj� A�q ,q�� �q�q�=
ijpij�qi,q
�qj,q�

A�q ,q�=
i�jpij�qi,q
�qj,q

Given expected degree sequence ��i� �i� j �i=
 jpij

Given expected degree sequence ��i� community
structure �A�q ,q���

�i� jW�qi ,qj� �i=
 jpij

A�q ,q�� �q�q�=
ijpij�qi,q
�qj,q�

A�q ,q�=
i�jpij�qi,q
�qj,q

Spatial networks

Given expected degree sequence ��i� and number
of link at distance d� Is ,Bs

�i� jW�sij� �i=
 jpij

B�s�=
ijpij�s�dij�
Given expected degree sequence ��i� and number
of triangles for each node �Ti�

�i� je
fij��i+� j�+gij �i=
 jpij

Ti=
 jkpijpjkpki

f ij =
kpikpkj

gij =
kpik�kpkj

FIG. 1. Factor graph used for the cavity calculations. The vari-
able nodes � are indicated with circles and have a fixed connectivity
����=3 in the figure. The factor nodes, instead, are indicated by
squares. Their role is to impose the hard constraints defined in
Eq. �7�.
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where L is the total number of distinguishable links con-
straint by the constraint in Eq. �8�. The introduction of the
parameter x at this stage is completely irrelevant and in fact
the relation

	��K��� = lim
N→


	N��K��,x� �11�

holds for all values of x. However, in what follows, we will
focus on the particular limiting case where x tends to zero.
Thus, we write

	��K��� = lim
x→0

lim
N→


	N��K��,x� . �12�

The calculation of 	��K�� ,x� may be formulated in terms
of the cavity method or the belief propagation �BP� algo-
rithm �26,27�, aimed at determining ln Z with Z defined as
in the following:

Z = 

�a��

�p�x�a��1 − p��1−a� �13�

� 	
�=1

M

��K� − 

�����

a��� , �14�

where the entropy 	N��K�� ,x� is given by

N	N��K��,x� = − ln Z + L ln�x� . �15�

The “messages” of this BP algorithm are sent between vari-
able and factor nodes. In particular, we may define ��→��a��
as the message sent from variable node � to factor node �
indicating the probability that matrix element � takes value
a�, in the absence of constraint �. We correspondingly define
�̂�→��a�� as the message that the factor node � sends to
variable � for the distribution of all variables connected to �,
except variable �. The BP update rules �26,27� take the form

��→��a�� =
1

C�,�
�p�x�a��1 − p��1−a� 	

����\�
�̂�→��a�� ,

�16�

�̂�→��a�� = 

�a��������\�

��K� − a� − 

�����\�

a���
� 	

�����\�

���→��a��� , �17�

where C�,��0 are normalization constants. To proceed, we
make the ansatz that the cavity distribution satisfies a bino-
mial form

��→��a�� = h�,�
a� �1 − h�,��1−a�, �18�

which is parametrized by fields h�,��R. Using integral rep-
resentations of delta functions, we calculate the cavity mes-
sages given by Eq. �17� as

�̂�→��a�� = �
−



 dz

2�
e−iz�K�−a�� 	

�����\�

�1 − h��,��1 − eiz�� .

�19�

Assuming self-consistently that h��� are small, we approxi-
mate the product in the above equation as

�̂�→��a�� = �
−



 dz

2�
exp�− iz�K� − a��

− 

�����\�

h��,��1 − eiz�� , �20�

which on suitable transformation of variables takes the form
of Hankel’s contour integral, giving

�̂�→��a�� =
1

��K� + 1 − a��
exp�h�,� − 


�����

h��,��
��− h�,� + 


�����

h��,��K�−a�. �21�

Finally, inserting the above result into Eq. �16�, we get that
h�,� satisfied the recursion equation

h�,� =

p�x 	
����\�

K�

�− h�,� + 

�����

h��,��
1 − p� + p�x 	

����\�

K�

�− h�,� + 

�����

h��,��
. �22�

Provided that every link exists with probability p��1, we
can choose the value of x to be sufficiently small so as to
approximate h�,� by

h�,� =
p�x

1 − p�
	

����\�

K�

�− h�,� + 

�����

h��,�� . �23�

Since we have assumed that every variable � is linked to
exactly ����=2,3 , . . . factor nodes, Eq. �23� is solved for ev-
ery value of x�1 by the cavity field

h�,� = x1/����ĥ�,�, �24�

where the cavity fields ĥ�,� satisfy the equation

ĥ�,� =
p�

1 − p�
	

����\�

K�

�− ĥ�,� + 

�����

ĥ��,�� . �25�

Equations �24� and �25� define the cavity distributions h�,�
which are indeed small for sufficiently small values of x, as
previously assumed. Finally, using the BP algorithm �26,27�
we can derive the marginal distributions for the factor graph
which are given by

P��a�� = C�
−1�p�x�a��1 − p��1−a� 	

����

�̂�→��a�� ,
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P���a��������� = C�
−1��K� − 


�����

a���
� 	

�����
�p�x�a��1 − p��1−a�

� 	
������\�

�̂�→���a���� ,

where C� and C� are normalization constants that satisfy

C� = 	
����

�̂�→��0��p�x 	
����

K�



�����\�

h��,�

+ 1 − p�� ,

C� = ��
����h�,���K�� 	
�����

�1 − p��� 	
�����\�

�̂�→���0� .

�26�

The term �x�y� gives the probability for Poisson distributed
random variable y with average x. Following �26,27�, in
terms of our marginal distributions, the quantity −ln Z, with
Z defined in Eq. �14�, may be expressed as the minimum of
the Bethe free energy,

GBethe��K��� = 

�=1

M



�a������

P���a���ln�P���a���
����a���

�
− 


�=1

N�N−1�/2

����� − 1� 

a�=�0,1�

P��a��ln�P��a��
���a��

� ,

�27�

where ���� indicates the number of factor nodes connected to
variable � and

����a��� = 	
����

�p�x�a��1 − p��a�, �28�

���a�� = �p�x�a��1 − p��1−a�. �29�

Inserting the expression for the marginal distributions �Eq.
�26�� into Eq. �27� we obtain the result �27,29,30� that

− ln Z = − 

�=1

M

ln C� + ����� − 1� 

�=1

N�N−1�/2

ln C�. �30�

Using the definition of entropy of large deviations �Eq. �10��
and the expressions in Eq. �27� for C� and C�, together with
Eqs. �24� and �25� for the cavity fields, we get, for x�1,

N	N��K��,x� = − 

�=1

M

ln C� + ����� − 1� 

�=1

N�N−1�/2

ln C� + L ln�x�

= − 

�=1

M

ln 1

K�!�x1/���� 

����

ĥ�,��K�exp�− x1/���� 

����

ĥ�,�� 	
����

�1 − p���
+ ����� − 1� 


�=1

N�N−1�/2

ln�p� 	
����

K�



�����\�

ĥ��,�

+ 1 − p�� + L ln�x� . �31�

Finally, going in the limit x→0 and N→
 we get, according to Eq. �11�

	��K��� = lim
N→


1

N�− 

�=1

M

ln 1

K�!� 

����

ĥ�,��K��
+ ����� − 1� 


�=1

N�N−1�/2

ln�p� 	
����

K�



�����\�

ĥ��,�

+ 1 − p�� − ����

�

ln�1 − p��� , �32�

where the cavity fields ĥ�,� are the solution of the BP �Eq.
�25��.

B. Specific hard constraints

We now consider a few specific cases for the hard con-
straints, which allow us to simply our expression �32�
further.

1. Degree sequence

Also known as the configuration model �21�, we consider
constraints that fix the degree sequence

�k1,k2, . . . ,kN� � NN

for the network, where
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ki = 

j=1

N

aij , �33�

with i=1, . . . ,N. In terms of the factor graph, each factor
node � fixes the degree for a specific node i in the undirected
network. Recalling that variable � represents the tuple �i , j�
in the adjacency matrix, the variable is linked to ����=2 con-
straints that fix the degrees for nodes i and j. Finally, the
cavity fields h�,� can be written as hj,i, as we have identified
factor node � with node index i and, similarly, variable �
with nodes i and j.

To simplify expression �32� for 	��ki�� we introduce

�i = 

j�i

N

ĥj,i. �34�

Using Eq. �25� it is easy to show that the variables ��i�
satisfy the following equation:

�i = 

j�i

N � pij

1 − pij
� kj

� j − ĥi,j

, �35�

where ĥi,j is given by the solution to Eq. �25�. Finally, in the
limit x→0, we get the exact result for the entropy of the
large deviation of canonical network ensembles to be

	��ki�� = lim
N→


1

N�− 

i=1

N

ln 1

ki!
�i

ki� + 

�i,j�

ln pij

1 − pij

kikj

�i� j
+ 1�

− 

�

ln�1 − p��� , �36�

where �i , j� indicates the sum over all links in the adjacency
matrix. If hj,i��i Eq. �35� simplifies to

�i = 

j�i

N
p�

1 − p�

kj

� j
, �37�

which then gives in the diluted limit p��1 the result �14,16�

	��ki�� = lim
N→


�−
1

N
�


i=1

N

ln 1

ki!
�i

kie−ki��� , �38�

for the configuration model.

2. Community structure and degree sequence

Suppose we assign to node i a Pott’s index qi=1, . . . ,Q
that indicates the community to which the node i belongs. In
addition to the degree constraint given by Eq. �33�, we also
impose on the level of the adjacency matrix that

A�q,q�� = 

i�j=1

N �1 −
1

2
�q,q���q,qi

�q�,qj
aij , �39�

where q�q�=1, . . .Q. The total number of constraints is
M =N+Q�Q−1� /2.

Each variable node � in our factor graph is now linked to
three factor nodes—two for constraining the degrees of
nodes i and j, separately, in the undirected network and a

third one to enforce the community structure qi ,qj. Similarly
to the previous case we introduce

�� = 

����

ĥ�,�, �40�

where �� �i , j , �qi ,qj�� indicated the type of constraint.
Given the cavity equations �25�, it can be shown that the
variables ��i� satisfy the following equation:

�� = 

����

p�

1 − p�
	

����\�

K�

�� − ĥ�,�

, �41�

where K�� �ki ,kj ,A�qi ,qj��, depending on the value of �

and the cavity fields ĥ�,� satisfy the cavity equations �25�.
The entropy of large deviations 	��K��� given by Eq. �32�
can be expressed as

	��K��� = lim
N→


1

N�− 

�=1

M

ln����
�K���

+ 

i,j=1

N
pij

1 − pij
 kikjA�qi,qj�

�i� j��qi,qj�
+ 1�

− 

�

�� − 2

�

ln�1 − p��� . �42�

In the case in which ĥ�,���� and the network is diluted, i.e.,
p��1 we get

	��K��� = lim
N→


1

N�− 

�=1

M

ln 1

K�!
��

K�e−K��� . �43�

The value of 	��K��� converges to a finite value in the limit
of N→
 only if the number of constraints M is of the same
order of magnitude as N, i.e., M =O�N�, in other words if the
number of communities Q=O��N�. For M =O�N��, with
�� �1,2�, we have 	��K����N�−1.

3. Links at a given distance and degree sequence

Let us embed the N nodes in a metric space, such that two
nodes i and j are a distance dij �D apart. We divide the
interval �0,D� into L=O�N� intervals Is= �ds ,ds+ds� with
s=1,2 , . . . ,L and ds+1=ds+ds. The constraint for the num-
ber of links at a given distance is given by specifying a
sequence of integers B1 ,B2 , . . . ,BL that satisfy

Bs = 

i�j

N

�s�dij�aij , �44�

where �s�dij�=1 if dij � Is and �s�dij�=0, otherwise. The total
number of constraints is in this case M =N+L.

Once again each variable � is linked to ����=3 factor node
constraints—two for fixing the degrees of node i and j and a
third for the number of links Bs in the interval Is. We intro-
duce the variables �� according to the definition
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�� = 

����

ĥ�,�, �45�

with �� �i , j ,si,j�. These parameters satisfy the following
equation:

�� = 

����

p�

1 − p�
	

����\�

K�

�� − ĥ�,�

, �46�

where the cavity field solve the cavity equation �25�. The
entropy of large deviations 	��K��� given by Eq. �32� can be
expressed as

	��K��� = lim
N→


1

N�− 

�=1

M

ln����
�K��� + 


i,j=1

N
pij

1 − pij
� kikjBsi,j

�i� j�si,j

− pij� − 

�

�� − 2

�

log�1 − p��� , �47�

where the subscript si,j denotes the interval s such that dij
� Is. Using Eq. �46� in the limit of sparse networks with p�

�1 the entropy of large deviations simplifies and takes the
form

	��K��� = lim
N→


1

N�− 

�=1

M

ln 1

K�!
��

K�e−K��� . �48�

The value of 	��K��� converges to a finite limit for N→

only if the number of constraints M is of the same order of
magnitude as N, i.e., M =O�N�, i.e., only if L=O�N�. If M
�N� with �� �1,2� then 	��K����N�−1.

C. Special case for constraining degrees in sparse networks

Further simplifications for the expressions obtained in the
previous section are possible when the constraining degrees
K� of sparse networks are the expected degrees over the
canonical ensembles, i.e., K�=
����p�=k�. The BP equa-
tions simplify to give

h�,� = p�. �49�

Thus, Eq. �32� reduces to

	��k��� = − lim
N→


1

N 

�=1

M

ln �k�
�k�� . �50�

Since this is the minimum value of 	, we obtain, for M
=O�N�, the limit limN→
 	�0 and therefore the canonical
ensemble is not self-averaging in the thermodynamic limit.

1. Degree sequence

In the situation wherein only the degree sequence of the
network is constrained, we have Ki=
 j=1

N pij =ki, for all i
=1, . . . ,N. The entropy 	��ki�� of the expected degrees in the
configuration model 	��ki�� takes the form

	��ki�� = − 

k�0

pk ln��k�k�� , �51�

where pk is the probability for a node to have degree k.

2. Community structure and degree sequence

As in Sec III B 2, each node i is assigned a Pott’s index
qi=1, . . . ,Q that indicates the community to which the node
belongs, with Q=O��N�. The expected degree constraints
take the form

ki = 

j=1

N

pij , �52�

A�q,q�� = 

i�j

N �1 −
1

2
�q,q���q,qi

�q�,qj
pij , �53�

for i=1, . . . ,N and q�q�=1, . . .Q The total number of con-
straints is in this case M =N+Q�Q−1� /2=O�N�. The en-
tropy 	��ki� , �A�q ,q���� takes the value

	��ki�,�A�q,q���� = − 

k�0

pk ln��k�k�� − lim
N→


1

N

� 

q�q�

Q

ln��A�q,q��„A�q,q��…� . �54�

3. Links at a given distance and degree sequence

Following the setup of Sec. III B 3, the constraints in
terms of expected degrees are given by Eq. �52� and

Bs = 

i�j

N

�s�dij�pij , �55�

where i=1, . . . ,N and s=1, . . .L, and where �s�dij�=1 if dij
� Is and �s�dij�=0, otherwise. We now express 	��ki� , �Bp��
as

	��ki�,�Bp�� = − 

k�0

pk ln��k�k�� − lim
N→


1

N

s=1

L

ln��Bs
�Bs�� .

�56�

IV. ENTROPY OF SIMPLE MICROCANONICAL
NETWORK ENSEMBLES

So far we have investigated the entropy of simple canoni-
cal network ensembles and large deviations therein. In this
section we derive an expression for the entropy � of a mi-
crocanonical ensemble with linear constraints. Moreover, us-
ing the result of Eq. �32� we relate � to the entropy 	 of the
most likely configuration of a canonical ensemble when lin-
ear constraints are imposed.

Specifying �=1, . . . ,M hard constraints on the adjacency
matrix, as in Eq. �7�, the microcanonical ensembles’ entropy
� is given by

� = lim
N→


1

N
ln ZN, �57�

where the partition function ZN is given by
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ZN = 

�aij�

	
�=1

M

�„G��a� − g�… . �58�

In what follows we shall prove the following relationship:

� = S��P� − 	���G��� , �59�

where S��P�, given by Eq. �2�, is the Shannon entropy of the
conjugated canonical ensemble. The term 	���G��� is the
logarithm of the probability that a network in the conjugated
canonical ensemble satisfies the hard constraints.

Physically, Eq. �59� implies that a network satisfying the
hard constraints of Eq. �7� belongs, with probability 1, to the
conjugated canonical ensemble. However, such networks
make up only a fraction eN	���G��� of the total canonical en-
semble measure.

A. Proof of correspondence between canonical
and microcanonical entropies

We now prove the relationship of Eq. �59�, for the case of
hard constraints specifying the degree sequence. In order to
evaluate Eq. �58� in this case we use the integral representa-
tion of the Dirac-delta functions, and we get

ZN =� 	
i=1

N
d�i

2�
exp�− 


i=1

N

i�iki + 

i�j

ln�1 + ei�i+i�j�� ,

�60�

where with the change of variables zi=�i−�i
�,

ZN =� 	
i=1

N
dzi

2�
eFN��z,����, �61�

with

FN��z,���� = − 

i=1

N

�i�i
� + izi�ki + 


i�j

ln�1 + ei�i
�+i�j

�
�

+ 

i�j

ln�1 + pij�eizi+izj − 1�� , �62�

and the �� variables are chosen so as to satisfy the marginal
probabilities for the canonical ensemble, i.e.,

pij =
ei�i

�+i�j
�

1 + ei�i
�+i�j

� . �63�

We observe that Eq. �62� can be expressed as

FN��z,���� = S�P,����� − 

i

iziki + 

i�j

ln�1 + pij�eizi+izj − 1�� .

�64�

Therefore, with simple manipulations it can be shown that
the partition function can be written as

ZN = eNS��P�

�aij�

pij
aij�1 − pij�1−aij	

i=1

N

�ki,
jaij

= exp�NˆS��P� + 	N��ki�,1�‰� . �65�

Given definition �57�, this proves the relationship �Eq. �59��
between entropies of microcanonical and conjugate canoni-
cal ensembles.

B. Special cases for constraining degrees

Following the simplification of Sec. III C we assume that
the constraining degrees K� are expectation values of the
canonical ensemble. Using Eq. �59� we get

� = S��P� − 	���k��� . �66�

where 	��k��� is given by Eq. �32�, where k� are the ex-
pected degrees of the canonical ensembles. For sparse net-
works, we can use Eq. �50� and � takes the simple form

� = S��P� + ����� − 1�

k�0

nk ln �k�k� , �67�

where nk is the probability that a random constraint enforces
the degree k.

We note that when using a Gaussian approximation
�12,13� for network models with linear constraints, the value
for the entropy �G obtained for the microcanonical en-
sembles is reasonably good, with an estimated error equal to

�� − �G� = � 1

N


�=1

M

ln
�k�e−1�k��2�k�

k�!
� �

M

N
�ln e−1�2��

=
M

N
0.08. �68�

We conclude this section with the expressions for � for a few
specific constraints.

1. Degree sequence

From Eq. �66� we get in the case of the sparse configura-
tion model

� = S��P� + 

k�0

pk ln��k�k�� , �69�

where pk is the probability of observing a node with
degree k.

2. Community structure and degree sequence

In the ensemble with a given degree sequence and a con-
straint on the number of links within and between commu-
nities q=1, . . . ,Q, the total number of communities Q
=O��N�. Here, we obtain for sparse networks

� = S��P� + 

k�0

pk log��k�k��

+ lim
N→


1

N 

q,�q�=1

Q

log��Aq,q�
�Aq,q��� , �70�

where Aq,q� is given by Eq. �39�.
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3. Links at a given distance and degree sequence

When the constraints are on the number of links at a spe-
cific distance and the degree sequence, the expression for the
entropy of the microcanonical ensemble takes the form

� = S�P� + 

k�0

pk log��k�k�� + lim
N→


1

N

s=1

L

log��Bs
�Bs�� ,

�71�

where Bs is given by Eq. �55� valid for sparse networks.

V. CONCLUSIONS

In conclusion we have derived exact results for the large
deviation properties of canonical network ensembles and for
the entropy of microcanonical network ensembles in the case
of simple networks with linear constraints. Our results apply
to simple networks with given degree sequence and commu-
nity structure, and to networks embedded in a metric space.

Our approach makes use of the transparent cavity method,
which can also be extended to other types of constraints or
directed networks.

Our calculations are valid even when the number of con-
straints scales like M =O�N2�. Nevertheless, only in the case
of a linear number of constraints, i.e., M =O�N�, can we
ensure that the entropy 	��K��� remains finite in the limit
N→
.

Further inquiry will be directed toward the exact evalua-
tion of the entropy of weighted networks and networks
wherein the number of loops passing through each node is
constrained. Moreover, the relation between the information
entropy of network ensembles studied here and the von Neu-
mann entropy, as introduced in �32�, presents further scope
for investigation.
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