
Irreversible nA+mB\0 reaction of driven hard-core particles

Sungchul Kwon and Yup Kim*
Department of Physics and Research Institute of Basic Sciences, Kyung Hee University, Seoul 130-701, Korea

�Received 2 November 2009; revised manuscript received 19 April 2010; published 8 July 2010�

We investigate the kinetics of general two species annihilation nA+mB→0 of driven hard-core �HC�
particles with N=n+m in one dimension. With uniform drift velocity, all particles are driven to the right. HC
exclusion forbids the interchange of any particles and restricts the number of particles on a site to 0 or 1. The
reaction is classified into two classes, the symmetric and the asymmetric reaction. The symmetric reaction
means both nA+mB→0 and mA+nB→0, while the asymmetric reaction means only nA+mB→0 for a given
�n ,m� pair. As N increases, the trains of particles causing the reaction rarely form. Hence, for sufficiently large
N, particles are evenly distributed before the reaction, so one expects a crossover Nc above which the kinetics
follows the classical mean-field rate equation. We show the existence of Nc and that the kinetics for N�Nc is
the same as that of A+B→0 of driven HC particles as in the reactions with the isotropic diffusion. However,
compared to the isotropic cases, Nc and the kinetics for N�Nc are shown to be completely changed by the
interplay of the drift and HC exclusion, and strongly depend on the reaction symmetry. We also show that
densities decay as t−1/N which cannot be explained by the classical mean-field rate equation. Instead the
kinetics is explained analytically by a variant theory.
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I. INTRODUCTION

Interacting particle systems with hard-core �HC� repulsion
have long been studied to describe a wide range of phenom-
ena in physics, chemistry and biology �1–5�. In one dimen-
sion �d=1�, HC exclusion severely restricts the motion of
particles by forbidding overtaking one another, which results
in unexpected and interesting phenomena ranging from
anomalous diffusion of a single particle �6,7� to certain types
of nonequilibrium absorbing phase transitions �8,9� and the
kinetics of irreversible chemical reaction A+B→0 �10–12�.
In contrast, HC exclusion is believed to be irrelevant in high
dimensions �d�1� �3� because of overtaking of particles.
Especially in reaction-diffusion systems undergoing continu-
ous phase transitions or relaxation to vacuum, density of par-
ticles are so low near criticality or annihilation fixed point
that the effect of HC exclusion should be too small to be
significant even in d=1. This belief has been confirmed by
recent successes of bosonic field theory on various reaction-
diffusion systems �14�.

In contrast to reaction diffusions of bosonic particles, ex-
ternal driving fields �drift� can play an important role in re-
action kinetics of HC particles. The typical example is two
species reaction A+B→0 with equal densities of A and B.
For isotropic diffusion with random initial distributions with
equal densities �A�0�=�B�0�, the random fluctuation of the
number of initial particles results in segregation of particles
into A-rich and B-rich domains �15�. The segregation devel-
ops in time and leads to the anomalous density decay in
sufficiently low dimensions. The density of each species de-
cays in time t as �A� t−d/4 for d�dc and t−1 for d�dc with
the upper critical dimension dc=4 �15�. On the other hand,
for driven HC particles, the interplay of HC exclusion and
drift drastically changes the kinetics, i.e. �A� t−�d+1�/6 in d

�2 �10–13�. This result is rather surprising because one
might naively expect the kinetics of isotropic diffusion by
performing Galilean transformation to a zero momentum ref-
erence frame. Furthermore, without HC exclusion, the uni-
form drift does not change the kinetics �16�. Therefore, the
interplay of the uniform drift and HC exclusion is crucial for
the anomalous kinetics of driven HC particles. However, in
d�2, the interplay is irrelevant, so the kinetics is the same as
that for isotropic diffusion �11�. Hence, the effect of HC
exclusion is still restricted in low dimensions d�2.

In this paper, as the generalization of A+B→0, we study
the kinetics of Nth-order two species irreversible reaction
nA+mB→0 of driven HC particles. The integer n and m
indicate the particle number of each species engaged in the
reaction and N=m+n. From now on we call nA+mB
→0�n ,m�-reaction for the simplicity. We recently showed
that the reaction is classified into two classes, the symmetric
and the asymmetric reaction �17�. The symmetric reaction
means both �n ,m� and �m ,n� reactions, while the asymmetric
reaction means only �n ,m� reaction for a given �n ,m� pair.
The asymmetric reactions with N�2 describe various kinds
of chemical processes such as the hydriding of uranium and
other corrosion reactions �18�, chemical reactions in a con-
taminated atmosphere such as the reaction of nitric oxide
with oxygen 2NO+O2→2NO2 �19�, catalysis and some pat-
tern formation processes such as Liesegang patterns �20�.

For isotropic diffusion with homogeneous initial condi-
tions of m�A�0�=n�B�0� for asymmetric reaction and �A�0�
=�B�0� for symmetric one, particle density � decays as �
� t−�. As N increases, the configurations of N particles caus-
ing a given reaction rarely form so the reaction is hard to
occur. As a result, there exists a crossover Nc above which
particles are uniformly distributed and thus the kinetics is
described by classical mean-field �CMF� equation

d�A�t�/dt = − �A
n�B

m. �1�

Therefore, for N�Nc, � decays with �CMF=1 / �N−1� by Eq.
�1� regardless of the reaction symmetry. However, Nc is*Corresponding author; ykim@khu.ac.kr
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shown to depend on the reaction symmetry �17,21,22�. For
the asymmetric reaction, Sasamoto et al. applied the field-
theoretic renormalization group �RG� method to the reaction
�21�. They showed that the kinetics depends on the number
of total particles engaged in the reaction, i.e. N�=n+m�. They
found dc=4 / �N−1� or Nc= �d+4� /d below which the kinet-
ics is fluctuation-dominated and the same as that of �1,1�
case �N=2�, i.e. �=d /4. For the symmetric reaction, how-
ever, we recently showed Nc=4 in d=1 and Nc=3 in d�2
using the microscopic argument of Cornell et al. �17,22�. For
N�Nc, the symmetric reaction also leads to the fluctuation-
dominated kinetics of N=2 case. We also showed that HC
exclusion is irrelevant in d=1 for the reactions with the iso-
tropic diffusion as in N=2 case regardless of the reaction
symmetry �17�.

As in N=2 case, �n ,m�-reactions with N�2 also lead to
the segregation into A-rich and B-rich domains in d=1
�17,21,22�. Since the kinetics of N=2 is very sensitive to the
motions of particles and HC interaction �10–13,24�, it is
naturally expected that the kinetics of the reactions with N
�2 is also affected by the motions and the type of the inter-
action between particles. In addition, the symmetry of the
reaction is also expected to play an important role in deter-
mining the kinetics as shown in the reactions with N�2 for
isotropic diffusion �17,21,22�.

In the present work, we investigate the kinetics of
�n ,m�-reaction of driven HC particles in one dimension. In
the model, all particles are driven to the right and HC inter-
action exists between all particles. For asymmetric reactions,
the interplay of HC exclusion and drift completely changes
the kinetics. We numerically show that � anomalously de-
cays as t−1/N for N�3, which cannot be explained by CMF
Eq. �1�. From a variant analysis, we analytically show �
=1 /N for N�3 for the asymmetric reaction.

On the other hand, for the symmetric reaction, the inter-
play leaves Nc unchanged, i.e. Nc=4 in d=1. Hence, for N
�4, the kinetics is the same as that of �1,1�-reaction of
driven HC particles. However, the kinetics for N�4 is rather
involved. For N=Nc�=4�, � follows Eq. �1� with �CMF
=1 / �N−1�=1 /3. It means that unlike particles are uniformly
mixed up for N=4. On the contrary, for N�Nc, � anoma-
lously decays as t−1/N or saturates to a certain value depend-
ing on �n ,m� pairs of a given N. The dependence of the
kinetics on �n ,m� pairs for N�4 results from whether the
symmetric reaction develops the initial segregation of unlike
particles or leads to the alternative ordering of unlike par-
ticles. We numerically confirm the spatial organization of
unlike particles by introducing a simple measure.

We present our results as follows. We introduce the model
in detail in Sec. II. Monte Carlo simulation results of the
asymmetric and the symmetric reaction are presented in
Secs. III and IV respectively. Finally we summarize our find-
ings in Sec. V.

II. MODEL

We introduce the driven HC particle model with N
�DHCM�N�� in d=1 as follows. All particles are driven to
the right. The number of particles at a site is at most one due

to HC repulsion between all particles. A randomly selected
particle attempts to hop to the right. If the right site is empty,
the hopping is accepted. Otherwise, the attempt is rejected.
After the hopping attempt regardless of its result, the reac-
tion takes place in the following cases. One considers N−1
nearest neighboring sites on the right side of the selected
particle. If all N sites including that of the selected particle
are occupied, then the reaction occurs according to the reac-
tion symmetry. In the symmetric reaction, if the number of
A-particles �nA� and B-particles �nB� among the N particles
satisfy either �nA=n , nB=m� or �nA=m , nB=n�, then the
reaction takes places. For the asymmetric reaction, the reac-
tion occurs only if �nA=n , nB=m�.

III. ASYMMETRIC REACTION

First, we discuss the numerical and analytical results for
the asymmetric reaction. We present Monte Carlo simulation
results on a ring with size L up to N=6. For homogeneous
initial conditions, we randomly distribute particles with ini-
tial density m�A�0�=n�B�0�, where �=�A+�B. With L=1.2
�106 and ��0�=1.0, we run simulations up to 107 time steps
and average ��t� over more than 100 independent runs. In
addition, as a conventional measure characterizing the spe-
cial organization of particles, we measure the average length
� of a domain containing only like particles defined as the
distance between the first particles of two adjacent opposite
species domains and the length �AA��AB� defined as the inter-
particle distance between two adjacent like �unlike� particles
�23�. The lengths algebraically increase in time t as �23�

�AA � t1/ZAA, �AB � t1/ZAB, � � t1/Z. �2�

For the fluctuation-dominated kinetics, the segregation of un-
like particles occurs and the lengths exhibits different scaling
behaviors. For DHCM�2�, the exponents of lengths are Z
=3 /2, ZAA=3 and ZAB=8 /3 respectively �11,13�. However,
for the normal mean-field kinetics described by the CMF Eq.
�1� �CMF kinetics�, particles are uniformly mixed up and
there is only one length scale of 1 /�, i.e. ZAA=ZAB=Z
=1 /�.

Figure 1 shows the density of A-particles �A�t� for the
asymmetric �4,1�- and �3,2�-reaction of N=5 and the effec-
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FIG. 1. The asymmetric reaction of N=5: The main plot shows
the density of A-particles �A�t� of �4,1�-reaction �solid line� and
�3,2�-reaction �dashed line�. The inset shows the effective exponent
��t� of each line with b=5.
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tive exponent ��t� defined as −��t�=ln��A�bt� /�A�t�� / ln b.
As shown, �A�t� depends on �n ,m� pairs for a given N, but
the time-dependence of ��t� of each �n ,m� pair is identical.
Therefore, as in the isotropic diffusion, the kinetics of
DHCM�N� also depends on only N. Since we numerically
confirm the same results for various �n ,m�-reactions of a
given N, we only present the results for �n ,1�-reaction for
simplicity.

For the asymmetric �n ,1�-reaction, we plot the total den-
sity ��t� and its effective exponent ��t� for various N from 3
to 6 in Fig. 2. Together with ��t�, we estimate the asymptotic
value of � for each N from the scaling plot of �t� against t
and plot in Fig. 3�a�. As shown, �’s deviate from �CMF
=1 / �N−1� and intriguingly collapse on 1 /N line. Figure 4
shows various lengths of N=3 and 4 together with effective
exponents defined as 1 /Z�t�=ln���bt� /��t�� / ln b and simi-
larly for the others. For N=3, � and �AB exhibit the quite
different scaling behavior from those of DHCM�2�, i.e.
1 /Z=2 /3 and 1 /ZAB=3 /8. Furthermore, all 1 /Z�t�’s asymp-
totically approach to 1/3. Hence, the kinetics of N=3 does
not belong to DHCM�2�, but it is described by a single ex-
ponent, i.e. �=1 /Z�s=1 /3. For N=4, 1 /Z�t�’s also con-
verge to 1 /N=1 /4. We also confirm the same behavior of
various lengths for N=5 and 6. Together with 1 /Z�t�’s, we
estimate the asymptotic value of 1 /Z’s from the scaling plot
of �t−1/Z and similarly for the others. As shown in Fig. 3�b�,
all length exponents 1 /Z�t�’s also collapse on the line 1 /N
for N�2.

As a result, all lengths scale as 1 /�, i.e., ZAA=ZAB=Z
=1 /� for N�2. Furthermore, since all the interparticle dis-
tances overlap each other as shown in Fig. 4, all particles are
distributed with equal interparticle distance for N�2. From
the same interparticle distances with ZAA=ZAB=Z=1 /�, one
may conclude that the kinetics for N�2 shows a mean-field-

like aspect that the particles are evenly distributed in the
asymptotic time. Physically this result means Nc=3 in d=1.
However, the mean-field behavior for N�2 is anomalous
because the exponent �=1 /N cannot be explained by CMF
Eq. �1� which gives �CMF=1 / �N−1� due to the uniform mix-
ing of unlike particles. Therefore, unlike particles are not
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FIG. 2. The asymmetric �n ,1�-reaction: �a� double logarithmic
plot of ��t�. �b� Semilogarithmic plot of ��t� with b=2. Each hori-
zontal line corresponds to −1 /N.

2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7
2 3 4 5 6

0.18

0.24

0.30

0.36

0.42

(b)

1/Z
1/Z

AB

1/Z
AA

1/Z
BB1/

Z
's

N

α

(a)

FIG. 3. The asymmetric �n ,1�-reaction: �a� � �b� 1 /Z’s. The
solid line in each panel corresponds to 1 /N-line and the dashed line
in �a� represents the line for �CMF=1 / �N−1�. The error of each data
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FIG. 4. �Color online� The asymmetric �n ,1�-reaction: the effec-
tive exponent 1 /Z�t�’s with b=2 for N=3 �a� and N=4 �b�. The
horizontal lines correspond to 1 /N. In each panel, the inset shows
various lengths with the same color in the main plot.
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uniformly mixed up for N�2, which results in the anoma-
lous mean-field kinetics. It implies that in multispecies sys-
tems of HC particles, the even distribution of particles does
not always guarantee the uniform mixing of unlike particles.
To understand such anomalous mean-field kinetics, one
should take into account the interplay of three features, i.e.,
HC exclusion, the asymmetry of the reaction and drift at the
same time.

For the effect of HC exclusion, one should consider the
development of the segregation of unlike particles from ran-
dom initial distributions of particles. In pure bosonic models,
the initial segregation would disappear in early time due to
the fast mixing of unlike particles. However, in d=1, HC
exclusion forbids the mixing of any particles and thus the
initial segregation can persist even for N�Nc. Furthermore,
the asymmetric �n ,1�-reaction rarely occurs in B-rich do-
mains with few A-particles, so the segregation is naturally
preserved by the asymmetric reaction. In driven systems, the
segregation by HC exclusion is a crucial feature because it
restricts the reaction to occur only at boundary particles of
segregated domains.

Since we expect that the persistence of the segregation is
one of the important features determining the kinetics, it is
necessary to numerically confirm the spatial organization of
unlike particles. As a simple measure for the spatial organi-
zation of unlike particles, we consider a ratio �p /�, where �p
is the total pair density of adjacent unlike particles, �p=�AB
+�BA. Similarly, �AA��BB� is the pair density of adjacent A�B�
particles. Then, �A is written as �A=�AA+�p /2 and similarly
for �B with �=�AA+�BB+�p. For the random distribution of
unlike particles with m�A=n�B, one readily finds �A

= n+m
n �AA and �B= n+m

m �BB using the approximation of �AB

��A�B. Then, with �= n+m
n �A, one gets for the uniform mix-

ing of unlike particles

�p

�
=

2nm

�n + m�2 , �3�

which is the criterion for the other spatial organizations. On
the other hand, when the segregation occurs, �p scales with
the domain size � as �p�1 /� by the definition of the do-
main. Therefore, �p is smaller than that of the random distri-
bution and thus we require �p /��

2nm
�n+m�2 for the persistence

of the segregation. In Fig. 5, we plot 2nm
�n+m�2 � and �p for N up

to 5. As shown, �p�
2nm

�n+m�2 � holds for N�3 as expected.
Therefore, HC exclusion preserves the initial segregation of
unlike particles, which develops in times for the asymmetric
reaction with N�2.

When the segregation occurs, the uniform drift restricts
the reaction to occur at the boundary particles of segregated
domains defined as interfaces. We define a AB-interface as
the leftmost B-particle in B-domain located at the right side
of A-domain such as the underlined B particle in
�AAA¯B� BB� configuration. Similarly, a BA-interface is de-
fined as the leftmost A-particle in A-domain. For isotropic
diffusion, since the reaction occurs in the middle of the two
interfaces, the reaction probability is proportional to �A

n�B
��N. However, in driven case, the reaction always includes
an interface, so the reaction probability is proportional to �A

n

at AB-interface and �B�A
n−1 at BA-interface. As a result, the

restriction by the interplay of the segregation and drift re-
duces the degree of the reaction probability by one, i.e., �N−1,
which results in the anomalous exponent �=1 /N.

On the other hand, the asymmetric reactions preferentially
occur at AB-interfaces due to the drift. At BA-interfaces,
however, the asymmetric reactions are relatively hard to oc-
cur. It can be understood from the following mean-field ar-
gument. Let define pAB and pBA as the probability of
�n ,1�-reactions at AB- and BA-interfaces respectively. As
mentioned above, one expects pAB=�A

n and pBA=�B�A
n−1 by

the restriction. Then the relative probability of the reactions
at AB-interfaces defined as R= pAB / pBA is given as R
=�A /�B=n, where �A=n�B for the asymmetric reactions.
Therefore, as N increases, the reactions mainly occur at
AB-interfaces and BA-interfaces become more and more in-
sensitive to the reactions. As a result, particles tend to be
evenly distributed near the BA-interface before the reactions
occur. It eventually causes the uniform particle distribution
over the whole system even for N=3.

To quantify the above arguments for Nc=3 and �=1 /N,
we consider the velocity vAB=d�AB /dt, which is the differ-
ence of velocities of two adjacent boundary particles. Since
the reaction always occurs at an interface and particles are
evenly distributed for N�Nc, �n ,m�-reaction occurs at the
AB-interface with rate �A

n�B
m−1��N−1. Hence, one gets vAB

��N−1��AB
1−N, where we use �AB��AA�1 /� for N�Nc. Fi-

nally, one finds �AB� t1/N and �� t−1/N for N�Nc.

IV. SYMMETRIC REACTION

We simulate the symmetric �n ,1�-reaction for various N
up to 6 for homogeneous initial distributions with �A�0�
=�B�0�. We set L as 1.2�106 for N=3 and 105 for the others.
We run simulations up to t=107 for N=3 and t=5�105 for
the others. We average densities and various lengths with
more than 500 independent runs. In the asymmetric reaction,
the mean-field analysis shows �=1 /N for N�Nc, provided
that the initial segregation persists. Hence, for N�Nc, the
kinetics should depend on whether the symmetric reaction
preserves and develops the segregation or not.

First, we consider the criterion for the possible spatial
organizations of unlike particles. For the random distribution
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FIG. 5. The asymmetric �n ,1�-reaction: plot of 2nm
N2 � �filled sym-

bols� and �p �open symbols� for N=3 �triangle�, 4 �circle�, 5
�square�, respectively. The line between data is a guide to the eyes.
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of unlike particles with �A=�B, we find �p /�=1 /2 �or
�p /�A=1� from Eq. �3�. Hence, for the segregation of unlike
particles, we require �p /��1 /2 �or �p /�A�1�. On the other
hand, for �A=�B, the alternative ordering of unlike particles
such as ABAB is also possible. For the complete alternative
ordering, we have �p /�=1 due to �AA=�BB=0.

In Fig. 6, we plot �A and �p for N up to 5. For N=3,
�p /�A�1 indicates the persistence of the segregation of un-
like particles. On the other hand, we find �p /�A=1 for N
=4. Hence, the symmetric �n ,1�-reaction leads to the uni-
form mixing of unlike particle for N=4. As a result, the
kinetics for N=4 is the CMF kinetics of Eq. �1� and thus
Nc=4. It means that the kinetics for N=3 is fluctuation-
dominated and the same as that of DHCM�2�. Figure 7
shows the effective exponents 1 /Z�t�’s of various lengths for
N=3 and 4. Since we confirm �AA=�BB for N=3 and �AA
=�BB=�AB for N=4, we only plot one length among over-
lapped lengths for clarity. For N=3, the domain length �
exhibits a quite different scaling behavior from the others.
From the scaling plot of � / t1/Z and similarly for the others,
we estimate 1 /ZAA=0.354�5�, 1 /ZAB=0.37�1�, and 1 /Z
=0.63�1�, which agree well with those of DHCM�2�, 1 /ZAA
=1 /3, 1 /ZAB=3 /8, and 1 /Z=2 /3 as expected. We also esti-
mate �=0.345�5� from the scaling plot �t�. Therefore, we
confirm the DHCM�2� kinetics for N=3. For N=4, �AA and �
exhibit the same scaling behavior, i.e. ZAA=Z. We estimate
1 /ZAA=1 /Z=0.34�1� and �=0.340�1� from the scaling plots
which agree with �CMF=1 / �N−1�=1 /3. Hence, we confirm
the CMF kinetics for N=4 and Nc=4 for the symmetric re-
action as in the isotropic diffusion.

For N=5, however, �A and �p eventually converge to cer-
tain values after some transient time �Fig. 6�. We find �p /�
�0.7 for N=5. We also confirm �p /��0.6 for N=6 �not
shown�. As a result, the symmetric �n ,1�-reaction leads to
the alternative ordering of most unlike particles for N�4
because of 1 /2��p /��1. The alternating ordering of unlike
particles for N�4 can be understood from the following
argument. The symmetric �n ,1�-reaction occur at both types
of interfaces due to the drift. However, the reaction annihi-
lates trains of like particles with big size n��N� at all inter-
faces. After the exhaustion of such big size trains, the reac-

tion cannot occur anymore at interfaces, and the resultant
particle-distributions should be alternatively ordered con-
figurations like �¯ABAB¯� containing only the trains of
size less than n. Therefore, the alternative ordering is intrin-
sically natural for the symmetric �n ,1�-reaction rather than
the uniform mixing for large N. The uniform mixing for N
=4 can be thought as the result of the competition between
the processes of the segregation and the alternative ordering.

On the contrary, the �n ,m�-reactions with n�m can occur
even in the alternatively ordered state, and the alternative
ordering is removed by the reaction. Then the segregation
should persist because of the interplay of HC exclusion and
the drift as in the asymmetric reaction. Hence, we expect the
anomalous mean-field kinetics of �=1 /N and Z�s=1 /� for
n�m for N�4. For the symmetric �3,2�-reaction �N=5�, we
confirm �p /�A�1 �Inset of Fig. 6�. We estimate �
=0.215�5� from the scaling plot, which is consistent with
1 /N as expected. Therefore, for �n ,m� pairs with 1�m�n,
the symmetric reaction also exhibits the anomalous kinetics
with �=1 /N for N�4, provided that the reaction does not
drive the system into the alternatively ordered configurations
forbidding the reaction.

V. SUMMARY

In summary, we investigate the kinetics of nA+mB→0
reaction of driven hard-core �HC� particles in one dimension.
With uniform drift velocity, all particles are driven to the
right. HC exclusion forbids the interchange of any particles
and restricts the number of particles on a site to 0 or 1. We
call the reaction as �n ,m�-reaction with N=n+m. The reac-
tion is classified into two classes, the symmetric and the
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asymmetric reaction �17�. The symmetric reaction means
both �n ,m�- and �m ,n�-reactions, while the asymmetric reac-
tion means only �n ,m�-reaction for a given �n ,m� pair. Since
the interplay of the uniform drift and HC exclusion changes
the kinetics of A+B→0 �10�, the kinetics with N�2 is also
expected to be affected by the interplay.

However, as N increases, the trains of particles causing
the reaction rarely form. Hence, for sufficiently large N, par-
ticles are evenly distributed before the reaction, so one ex-
pects a crossover Nc above which the kinetics follows the
classical mean-field �CMF� Eq. �1�. For N�Nc, the kinetics
is that of the N=2 case. For isotropic diffusion �17�, Nc de-
pends on the reaction symmetry, i.e. Nc=4 for the symmetric
reaction and Nc=5 for the asymmetric one. Similarly, for the
driven systems, we show the existence of Nc and that the
kinetics for N�Nc is the same as that of the driven HC
model with N=2. However, we show that Nc and the kinetics
for N�Nc are completely changed by the interplay of the
drift and HC exclusion, and strongly depend on the reaction
symmetry.

For the asymmetric reaction, we numerically find Nc=3.
However, the kinetics for N�3 cannot be described by the
CMF Eq. �1�. For N�3, particles are evenly distributed, but
densities anomalously decay as t−� with �=1 /N instead of
the expected mean-field value, �CMF=1 / �N−1�. On the other
hand, for the symmetric reaction, we find the same Nc as that
of the isotropic diffusion, i.e., Nc=4 at which the kinetics
follows the CMF equation. However, for N�Nc, the kinetics
exhibits completely different behavior according to �n ,m�
pairs of a given N. For �n ,1�-reaction with N�4, a density �
eventually saturates to a certain value. However, for other
�n ,m� pairs of a given N, e.g., �3,2� for N=5, � decays as
t−1/N without the saturation as in the asymmetric case.

The anomalous kinetics for N�Nc results from the inter-
play of HC exclusion and uniform drift. HC exclusion pre-
serves the local segregation of unlike particles due to random
initial distributions. When the segregation develops in time
by the reaction, the uniform drift restricts the reaction to
occur at the interface defined as the leftmost particle in a
segregated domain. As a result, the interplay leads to the
slower density decay than the expected CMF one. From a
variant analysis based on the segregation and the even dis-
tribution, we analytically show �=1 /N regardless of the re-
action symmetry.

The persistence of the segregation is one of the important
features determining the kinetics for N�Nc. As a simple

measure of the spatial organizations of unlike particles, we
consider a ratio �p /�, where �p is the total number of pairs of
adjacent unlike particles, �p=�AB+�BA. For the asymmetric
reactions with m�A=n�B, we analytically show �p /�
=2nm / �n+m�2 for the uniform distributions of unlike par-
ticles. For the persistence of the segregation, one requires
�p /��2nm / �n+m�2. For the symmetric reactions with �A
=�B, one requires �p /�=1 /2 for the random distribution of
unlike particles. For the other organizations, we find �p /�
�1 /2 for the segregation of unlike particles, and �p /�=1 for
the complete alternating ordering of unlike particles.

For the asymmetric reaction, we numerically confirm
�p /��2nm / �n+m�2 for N�2. Hence, we numerically show
that the segregation is developed in time by the asymmetric
reaction for any N. On the other hand, for the symmetric
�n ,1�-reactions, we numerically confirm 2�p=� for Nc=4
and 1 /2��p /��1 for N�4. Therefore, we show that the
symmetric �n ,1�-reactions lead to the uniform distribution of
unlike particle for N=4 and the alternative ordering of most
unlike particles for N�4 in which the reaction cannot occur
anymore. However, since the other �n ,m� pairs can react
even in alternatively ordered configurations, densities are ex-
pected to decay without the saturation for other �n ,m� pair of
N�4. For �3,2� pair for N=5, we numerically confirm �
�2�p and �� t−1/N again. Therefore, the symmetric reactions
also develop the segregation for N�4 which leads to the
anomalous kinetics, provided that the reaction does not drive
the system into the alternatively ordered configurations for-
bidding the reaction. The uniform mixing for N=4 can be
thought as the result of the competition between the pro-
cesses of the segregation and the alternative ordering.

Since we mainly understand the kinetics of �n ,m�-
reactions via simulations and a variant theory, we have no
theoretical prediction for Nc of driven HC particles. Hence,
for more systematic and quantitative understandings, e.g., dc
as a function of N and its dependence on the reaction sym-
metry, we need an analysis of systematic theoretical formal-
isms such as field-theoretic formalisms for HC systems �12�.
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