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We consider bootstrap percolation on uncorrelated complex networks. We obtain the phase diagram for this
process with respect to two parameters: f , the fraction of vertices initially activated, and p, the fraction of
undamaged vertices in the graph. We observe two transitions: the giant active component appears continuously
at a first threshold. There may also be a second, discontinuous, hybrid transition at a higher threshold. Ava-
lanches of activations increase in size as this second critical point is approached, finally diverging at this
threshold. We describe the existence of a special critical point at which this second transition first appears. In
networks with degree distributions whose second moment diverges �but whose first moment does not�, we find
a qualitatively different behavior. In this case the giant active component appears for any f �0 and p�0, and
the discontinuous transition is absent. This means that the giant active component is robust to damage, and also
is very easily activated. We also formulate a generalized bootstrap process in which each vertex can have an
arbitrary threshold.

DOI: 10.1103/PhysRevE.82.011103 PACS number�s�: 64.60.aq, 05.10.�a, 64.60.ah, 05.70.Fh

I. INTRODUCTION

Bootstrap percolation serves as a useful model to describe
in detail or in analogy a growing list of complex phenomena,
including neuronal activity �1–3�, jamming and rigidity tran-
sitions and glassy dynamics �4,5�, and magnetic systems �6�.
Chalupa et al. �7� introduced bootstrap percolation in a par-
ticular cellular automaton used to study some magnetic sys-
tems �for other applications see Ref. �4��, see also the even
earlier work of Pollak and Riess �8�. The standard bootstrap
percolation process on a lattice operates as follows: sites are
either active or inactive. Each site is initially active with a
given probability f . Sites become active if k nearest neigh-
bors are active �with k=2,3 , . . .�. In the final state of the
process, the fraction Sa�f� of all sites are active. Remarkably,
the function Sa�f� may be discontinuous. It may have a jump
at a bootstrap percolation threshold fc2. We will see below
that when this process takes place on a network, this is not
the only threshold in this system.

Bootstrap percolation has been thoroughly studied on two
and three dimensional lattices �see �9–12� and references
therein�. The existence of a sharp metastability threshold for
bootstrap percolation in two-dimensional lattices was proved
by Holroyd �9�, and later generalized to d-dimensional lat-
tices �10,11�. More recently, bootstrap percolation has been
studied on the random regular graph �13,14�, and also on
infinite trees �15�. Finite random graphs have also been stud-
ied �16�. Watts proposed a model of opinions in social net-
works in which the thresholds at each vertex is a certain
fraction of the neighbors, rather than an absolute number
�17�. Bootstrap percolation is closely related to another well-
known problem in graph theory, that of the k-core of random
graphs �18–21�. The k-core of a graph is the maximal sub-
graph for which all vertices have at least k neighbors within
the k-core. It is important to note the difference between the

stationary state of bootstrap percolation and the k-core. Boot-
strap percolation is an activation process, which starts from a
subset of seed vertices and spreads over a network according
to the activation rules described above. The k-core of the
network can be found as an asymptotic structure obtained by
a subsequent pruning of vertices which have less than k
neighbors. While the k-core has been extensively studied,
there are no analytical investigations of bootstrap percolation
on complex networks.

In this paper, we describe bootstrap percolation on an ar-
bitrary sparse, undirected, uncorrelated complex network of
infinite size. Specifically, we use the configuration model �a
random graph with a given degree sequence�. We show that
there are two types of critical phenomena: a continuous tran-
sition corresponding to the appearance of the giant active
component, and a second, discontinuous, hybrid phase tran-
sition combining a jump and a singularity. This transition is
also often called “mixed.” We show that network inhomoge-
neity strongly influences the critical behavior at the appear-
ance of the giant active component in networks with diver-
gent second and third moments and finite first moment of the
degree distribution. In contrast, the hybrid phase transition
has the same critical singularities for any network with finite
second moment of the degree distribution. This second tran-
sition can be understood by considering the “subcritical”
clusters of the network, consisting of vertices whose number
of active neighbors is one less than the threshold. We show
that these subcritical clusters give rise to avalanches of acti-
vations, which become increasingly large as the threshold is
approached. We also describe how the behavior changes
when the network is damaged. The damaging here is the
uniformly random removal of vertices, so that a fraction p of
vertices in a network are retained. We give the phase diagram
showing the thresholds with respect to both the extent of
damage to the network, and to the size of the initial seed
group. In particular, there is a special critical threshold ps at
which the discontinuous transition first appears. We also
show that network topology can have a dramatic effect, as on
so called scale-free networks with finite mean but divergent*gjbaxter@ua.pt
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second moment of the degree distribution a qualitatively dif-
ferent behavior occurs. There is no phase transition in the
p− f plane, but instead a giant active component appears at
any f �0 and is robust to any amount of damage �p�0�.
Finally, we generalize bootstrap percolation by considering a
distribution of threshold values, so that each vertex may have
its own threshold value. We briefly outline the equations for
the active fraction of the network and the size of the giant
active component in this general formulation, and show how
the classical percolation problem and the usual bootstrap per-
colation �which we analyze in the remainder of this paper�
are limiting cases.

II. RESULTS

Consider an arbitrary, sparse, uncorrelated complex ran-
dom network in the infinite size limit. The structure of this
network is completely determined by its degree distribution
P�q�. An important �and convenient for analytical treatment�
feature of this architecture is local tree likeness, which means
that finite loops can be neglected. For the time being we
assume there are no vertices with degree zero. We denote by
�q� the mean of the degree distribution and similarly �q2� is
the second moment. The network may also be damaged by
the uniformly random removal of vertices so that a fraction p
of all original vertices remaining.

Vertices have either an “active” or an “inactive” state.
Once activated, a vertex remains active. With probability f
each vertex is part of the seed group, and is in an active state
from the start. The remaining vertices, �a fraction 1− f� be-
come active only if they have at least k active neighbors. We
iteratively activate vertices that meet this criterion until a
steady state is reached.

We define Sa to be the fraction of the vertices in the graph
which are active at equilibrium �that is, including all active
vertices, even those forming finite clusters�, which is also the
probability that an arbitrarily selected vertex is active in the
final state of the bootstrap percolation process, and the size
of the giant active component to be Sgc, equal to the prob-
ability that an arbitrarily selected vertex belongs to the giant
active component. By giant active component we mean a
subgraph of active vertices which forms a connected compo-
nent that occupies a finite fraction of the network.

In Fig. 1, we show a representative phase diagram for the
giant active component in the f − p plane for an uncorrelated
infinite complex network whose degree distribution has finite
second and third moments. Results are qualitatively the same
for any such network. The giant active component is absent
in the region labeled I, and present in the region labeled II.
We see that if the network is sufficiently damaged so that the
proportion of remaining vertices is less than a critical thresh-
old pc, the giant active component never appears, for any
number of seed vertices. Above pc= �q� / ��q2�− �q��, which is
equal to the well-known percolation threshold �see, for ex-
ample �22��, the giant active component appears at some
value of f , fc1, for a given value of p. This threshold is
marked by the solid heavy line in the figure. This threshold is
above zero for all p� pc. In the limit k→� the boundary
between regions I and II tends to the line pf = pc, as the seed

vertices may form a giant component in the graph. For large
values of p, above a special critical point ps, we discover a
second transition in the size of the giant active component.
For a given p� ps there is a threshold fc2� fc1 at which the
size of the giant active component �and also the active frac-
tion� jumps suddenly. These points are marked by the heavy
dashed line in Fig. 1. Note that Fontes and Schonmann �14�
noticed on undamaged regular random graphs the two tran-
sitions we observe in more complex networks.

Figure 2 shows the active fraction Sa and the size of the
giant active component Sgc as a function of f for four values
of p in an Erdős-Rényi graph �which has a Poisson degree
distributions in the infinite size limit�. We choose this net-
work as it is representative of random graphs. For compari-
son, the position of each in the phase diagram is marked by
a faint solid line in Fig. 1. Line 1 is for a value of p before
the appearance of the jump. Line 2 is exactly at the special
critical point ps at which the jump appears. Line 3 is at a p
� ps where there is a jump. The location of the jump moves
to smaller values of f as p increases, but never reaches zero,
as is demonstrated by line 4, which is at p=1. The giant
active component appears continuously and linearly from
zero, exactly as it does in ordinary percolation �22–24�. It is
interesting to note that there is no discontinuity in Sa at fc1
�marked by a small arrow�, i.e., the threshold is invisible
�hidden� when observing only the overall activation of the
network.

For k=1 the jump does not appear, we have only the
continuous transition. For larger k there is a jump, and it
appears at larger values of f �for a given p� the larger k is.
The value of ps also increases, such that there is a finite
maximum threshold, kmax �proportional to the mean degree
of the network for Erdős-Rényi graphs� beyond which the
jump no longer appears. That is, the dashed line in Fig. 1,
which marks the location of the jump, moves to the right and
toward the top of the graph as k increases, finally disappear-

0 1

f

0

1

p

p c

p s

1

2

3

4

I I

I

FIG. 1. Phase diagram of bootstrap percolation in the f − p plane
for networks with finite second moment of the degree distribution,
for k�2 and smaller than an upper limit kmax determined by the
degree distribution. The solid line marks fc1, the continuous appear-
ance of the giant active component from 0. The giant component of
active vertices is present above this line in the upper-right portion of
the diagram �labeled II� and absent in the area to the lower-left �I�.
The dashed heavy curve represents the discontinuous transition, fc2.
This line ends at the special critical point ps. Thin horizontal lines
show the location of the traces in Fig. 2 relative to the phase dia-
gram features.
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ing completely above kmax. This discontinuous transition has
a hybrid character, with both a discontinuity and a singular-
ity: when approaching fc2 from below the size of the giant
active component approaches the value at the bottom of the
jump as the square-root of the distance from fc2:

Sa�f� = Sa�fc2� − a�fc2 − f�1/2, �1�

where a is a constant �see Sec. III below for the origin of this
equation�. Lines 3 and 4 in Fig. 2 illustrate this situation. The
same result holds with respect to p if we were to approach
this jump along a line of constant f . The size of the giant
active component, Sgc, has the same critical behavior.

The height of the jump decreases with decreasing p �while
fc2 increases slightly�, disappearing at the special point ps.
�The line labeled 2 in Fig. 2 is at p= ps.� At this point the
behavior is different, as the size of the giant component ap-
proaches fc2 now as the cube-root of the distance from the
threshold �see Sec. III�:

Sa = Sa�fc2� − a��fc2 − f�1/3, �2�

where a� is a constant.
To understand the discontinuous “jump” in the size of the

active component of the graph, we consider the subcritical
clusters, a concept related to the corona clusters which were
used to describe a similar transition in k-core percolation
�25–27�. The subcritical vertices of the graph are the vertices
whose number of active neighbors is precisely one less than
the threshold of activation for that vertex. An example of a
small subcritical cluster is illustrated in Fig. 3.

Clusters of subcritical vertices are important because of
the following quality. The activation of even a single vertex
neighboring the subcritical cluster necessarily leads to at
least one of the members of the cluster now meeting its ac-
tivation threshold. In turn, this will activate one of its neigh-
bors in the cluster, and so on, so that an avalanche of activa-
tions ensues until the entire subcritical cluster becomes

active—see Fig. 3. Below and above the jump, the subcriti-
cal vertices form only finite and isolated clusters, but as fc2 is
approached from below, the mean size of the subcritical clus-
ters diverges. Hence, the avalanches resulting from the
change in activation state of a single vertex form a finite
fraction of the entire graph, leading to a discontinuous
change in the size of the active fraction of the graph. This
argument will be made more precisely in the analysis in Sec.
IV below.

When the degree distribution of the network decays very
slowly, specifically in networks with divergent second mo-
ment �q2� or third moment �q3� of the degree distribution, the
results are different from those described above. In particu-
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FIG. 2. Probability that an arbitrarily chosen vertex is �a� active and �b� in a giant connected component of active vertices for an
Erdős-Rényi graph of mean degree 5, with k=3. The four lines �labeled from 1 to 4� are: p= �0.7,0.893,0.93,1�, corresponding to the
relative positions in the phase diagram shown as thin horizontal lines in Fig. 1, namely: 1. pc� p� ps; 2. p= ps; 3. ps� p�1 and 4. p=1. The
arrows in each plot mark the point of emergence �fc1� of the giant active component for p=1. The small dot on each trace marks the point
of the hybrid transition.

FIG. 3. �Color online� Left: A subcritical cluster in a network
with threshold k=3. Filled black vertices are seed vertices, shaded
vertices are active vertices while empty vertices are inactive. The
vertices inside the dashed loop form a subcritical cluster, while
those connected to them are either inactive or have more than the
threshold number of active neighbors. If a single vertex neighboring
a subcritical cluster becomes active �for example, if it became a
seed vertex�—here marked by a cross —it’s neighbor inside the
subcritical cluster must become active, and then it’s neighbors, until
the entire cluster is activated, as shown on the right.
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lar, this is the case if the degree distribution tends to the form
P�q��q−� with ��4 for large q. If ��2 the mean of the
degree distribution also diverges, but we do not consider this
case here. If 2���3, the second moment diverges. These
scale-free networks are of particular interest because many
large real natural and technological networks appear to be of
this kind �23,24�. In this case �in the limit N→�� a finite
fraction of vertices is activated at any p or f �0, and for any
arbitrary activation threshold k. In other words the location
of the jump tends to zero as the size of the network
increases—so in very large scale-free networks we will not
find �at finite f or p� either of the transitions observed in
graphs with fast decaying degree distributions. This means
that, as has been found in several other cases �28,29�, such
scale-free networks are very robust to damage, and also that
such a network is very easily activated.

When 3���4, the phase diagram is qualitatively the
same as that shown in Fig. 1. The giant active component
appears at finite p �or f� with a continuous transition. How-
ever, rather than growing linearly near the transition point,
the size of the giant active component increases as the dis-
tance from the critical point raised to the power 1 / ��−3�.

III. BASIC ANALYSIS

In this section and the two following, we describe in more
detail how the results already described may be obtained.
Consider choosing an arbitrary vertex from the network. We
wish to calculate the probability Sa that this vertex is active
in the equilibrium state. To calculate this probability, we first
define Z as follows: Z is the probability that, on following an
arbitrary edge in the graph, we reach a vertex which is either
a seed vertex or has at least k downstream neighbors that are
active. �By downstream we mean neighbors of the vertex
reached by the edges other than the one we arrived from.� To
be active, these downstream neighbors in turn must fulfill
this same condition, that they are either seed vertices or they
have k further downstream neighbors of their own that are
previously active.

We can graphically represent this recursive relationship
using the symbols given in Table I. The probability Z is
represented by an edge ending in a square. A seed vertex is
represented by a black disk, and other vertices by open disks.
An edge crossed by a short line at its end represents the
probability 1−Z, that is the probability of encountering a
vertex that doesn’t satisfy the condition for Z. Thus, we ob-
tain the following representation for Z:

The terms on the right hand side represent sums of the
probabilities of all such terms. Based on this diagram, we
write mathematical expressions for the probabilities repre-
sented by each of these symbols, allowing us to construct the
following self-consistency equation for Z:

Z = pf + p�1 − f�	
i=k

�
�i + 1�P�i + 1�

�q�
	 	

l=k

i 
 i

l
�Zl�1 − Z�i−l.

�3�

The probability Sa, represented by a shaded disk, is the sum
of two terms, as represented in this diagram:

The first is the probability that the vertex is active from
the beginning �pf�, the second �with prefactor p�1− f�� is the
probability that it has at least k neighbors that would be
active even if the vertex we are observing was inactive. But
each neighbor satisfies this condition precisely with probabil-
ity Z, as represented by squares in the diagram. Converting
to a mathematical expression, this gives the following equa-
tion:

Sa = pf + p�1 − f�	
i=k

�

P�i�	
l=k

i 
 i

l
�Zl�1 − Z�i−l. �4�

The probability Sgc that an arbitrarily chosen vertex be-
longs to the giant active component can be constructed in a
similar way, but we must impose the further condition that a
vertex has an edge leading to an active subtree of infinite
extent. We define X to be the probability that the vertex
encountered upon following an arbitrarily chosen edge meets
the conditions for Z and also has an edge leading to an active
subtree of infinite extent. Graphically, we represent the prob-
ability X by an infinity symbol at the end of an edge, and a
self-consistency condition for X is expressed by the diagram:

TABLE I. Symbols used in graphical representations of self-
consistency equation.
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This corresponds to the equation:

X = pf	
i=0

�
�i + 1�P�i + 1�

�q� 	
m=1

i 
 i

m
�Xm�1 − X�i−m + p�1 − f�

		
i=k

�
�i + 1�P�i + 1�

�q� 	
l=k

i 
 i

l
�

	 	
m=1

l 
 l

m
�Xm�Z − X�l−m�1 − Z�i−l. �5�

The probability Sgc �the probability that an arbitrary vertex
belongs to a giant active component, represented below by a
shaded circle containing the infinity symbol—see Table I� is
the sum of the probability that the vertex is a seed vertex that
is connected to an infinite active subtree �probability X� and
of the probability that the vertex is not a seed vertex but has
at least k independently active neighbors �probability Z�, at
least one of which also leads to an infinite active subtree.
Thus

so that, similarly to Eq. �4�, we can write Sgc in terms of
X and Z:

Sgc = pf	
i=0

�

P�i�	
m=1

i

Xm�1 − X�i−m + p�1 − f�	
i=k

�

P�i�	
l=k

i 
 i

l
�

	 	
m=1

l 
 l

m
�Xm�Z − X�l−m�1 − Z�i−l. �6�

It will be useful to define 
�Z , p , f� to be the right-hand side
of Eq. �3�, and ��X ,Z , p , f� the right-hand side of Eq. �5�, so
that these two equations become

Z = 
�Z,p, f� , �7�

and

X = ��X,Z,p, f� . �8�

These equations can be solved numerically for a given
network degree distribution. If multiple solutions exist, the
physical solution for Z is always the smallest value. The
location, fc1 of the appearance of the giant active component
can be found by assuming X is small but nonzero in Eq. �8�,
taking the limit as X tends to zero and solving for f for a
given p �or vice versa�. In this way we also find that X and
hence Sgc grow linearly from the critical point fc1 for net-
works with �q2� finite. The results mentioned below also cor-
respond to this case—we will examine the case �q2�→�
subsequently.

The second, discontinuous, transition can be located by
observing that the jump occurs when, �after a second solu-
tion appears� the smallest Z solution of Eq. �7� disappears. At
this point 
�Z� just coincides with the value of Z, and a little

consideration reveals that this must be at a local extremum of

 /Z. Thus the discontinuous transition can be found by si-
multaneously solving Eq. �7� and

d

dZ




Z
� = 0 �9�

for f . The fact that the first derivative vanishes leads to the
square-root scaling near the critical point, with respect to
either f or p—see Eq. �1�. The jump disappears at a special
critical point ps in the f − p plane which satisfies Eqs. �3� and
�9� and a third condition

d2

dZ2



Z
� = 0. �10�

This condition means that the scaling below ps �see Fig. 1� is
cube-root—see Eq. �2�.

IV. AVALANCHES

The singular behavior �Eq. �1�� near the hybrid transition
can be understood by considering the subcritical clusters of
the active subgraph. These form a subset of the inactive por-
tion of the graph consisting only of those vertices whose
number of active neighbors is exactly one less than the acti-
vation threshold for that vertex—see Fig. 3. That is, the sub-
critical subgraph consists of all those vertices which are not
seed vertices and which have exactly k−1 active neighbors.
The subcritical clusters are finite everywhere except exactly
at the point of the jump transition. To show that this is the
case, we use a generating function approach, similar to that
used in �25,30,31�, to calculate �s�sub, the mean size of the
subcritical clusters.

Let F0�x� be the generating function for the probability
that an arbitrarily chosen vertex is subcritical. By consider-
ing the probability that an arbitrarily chosen vertex is sub-
critical, which corresponds to F0�1�, we can write

F0�x� = p�1 − f�

	 	
q�k−1

P�q�
 q

k − 1
�Zk−1�1 − Z�q−k+1xq−k+1.

�11�

Similarly, the generating function for the probability that an
arbitrarily chosen edge leads to a subcritical vertex is

F1�x� = p�1 − f�	
q�k

qP�q�
�q�


q − 1

k − 1
�Zk−1�1 − Z�q−kxq−k.

�12�

The generating function for the probability that a ran-
domly chosen vertex belongs to a subcritical cluster of a
given size then must obey the self-consistency equation
�30,31�:

H0�x� = 1 − F0�1� + xF0�H1�x�� , �13�

where 1−F0�1� represents the probability that the randomly
chosen vertex is not itself subcritical, and the second term is

BOOTSTRAP PERCOLATION ON COMPLEX NETWORKS PHYSICAL REVIEW E 82, 011103 �2010�

011103-5



a recursive relationship, ensuring that successive powers of x
correspond to the probabilities of encountering a cluster size
matching that power. In this equation H1�x� is the related
generating function for the probability that a subcritical clus-
ter of a given size is reached upon following an arbitrarily
chosen edge. In a similar way we can write a self-
consistency equation for this:

H1�x� = 1 − F1�1� + xF1�H1�x�� . �14�

Where 1−F1�1� is the probability that the arbitrarily chosen
edge leads to a vertex that is not subcritical. Note that
H0�1�=H1�1�=1.

From these generating functions, we can calculate various
quantities related to the subcritical clusters. For example, the
distribution of avalanche sizes �which are the same as the
sizes of the subcritical clusters� is given by

G�s� =
1

s!

dsH0�x�
dxs �x=0 �15�

and we expect that at the critical point G�s�s−3/2. The mean
size of the subcritical clusters is simply

�s�sub =
dH0

dx
�x=1 = F0�1� + p�1 − f� 	

q�k−1
P�q�
 q

k − 1
�

	 Zk−1�1 − Z�q−k+1�q − k + 1�
dH1

dx
�x=1. �16�

Using Eqs. �14� and �12� and comparing with Eqs. �3� and
�7� we find that

dH1

dx
�x=1 =

F1�1�
1 − d
�Z�/dZ

. �17�

Now from Eq. �9�, d
�Z� /dZ=1 at the critical point, and 1
−d
�Z� /dZ�Z−Zj � �fc2− f�1/2, near the critical point. Thus,
near this point, therefore, the term containing dH1 /dx �x=1
dominates �s�sub so that

�s�sub � �fc2 − f�−1/2, �18�

or alternatively, for fixed f , �s�sub� �pc2− p�−1/2, hence, the
mean size of the corona clusters diverges at the critical point.

The addition of a single vertex �an infinitesimal increase
in p� or activation of a seed vertex �increment of f� may lead
to the activation of a subcritical vertex and hence activating
an entire subcritical cluster in an avalanche. At fc2, the sub-
critical clusters span the whole graph, so the activation of a
vertex can lead to an avalanche of activation that eventually
affects a finite fraction of the whole infinite graph, hence, we
see a discontinuity in both the size of the active fraction and
the giant active component. Note that for f � fc2 the mean
size of the subcritical clusters is finite.

V. SCALE-FREE GRAPHS

Let us consider degree distributions that tend to P�q�
�q−� for large q where exponent � is some positive constant
usually �2. For concreteness, in the following we will con-
sider the degree distribution

P�q� = Aq−� for q � q0, �19�

where A is a constant of normalization. For ��4 the results
are qualitatively the same as those described above.

When ��3 the second moment of the degree distribution
diverges, leading to different behavior. The results that fol-
low refer to the situation when 2���3. Note that many real
world networks, especially biological networks have expo-
nent in the range 1���2 �23,24,32�. In this case the first
moment also diverges. We don’t consider this case here.

By assuming Z to be small, we can approximate 
�Z� by
considering only leading order in Z. Then the self consis-
tency equation �3� becomes:

Z � p�1 − f�aZ�−2 + pf . �20�

For p�0, this equation has no small-Z solution, even in the
limit f →0. Because the only solutions for Z as f →0 are
therefore of order 1 it is clear that the discontinuous transi-
tion is moved to f =0 for scale-free graphs. A similar analysis
for the giant active component—approximating ��Z ,X� �the
RHS of Eq. �5�� by assuming X and Z both small leads to
similar conclusion about X: that there are no infinitesimal
solutions in the limit f →0, confirming that there is no jump
for f �0 but also that the giant active component appears for
any f �0 and p�0.

To add support to this approximation, consider the same
degree distribution as before, but truncated at some maxi-
mum degree qcut �the normalization constant will also neces-
sarily change�. If we rederive Eq. �20� assuming a finite qcut,
we find

Z � p�1 − f�bZk + pf �21�

which does have a solution at finite p �or f�. For finite qcut,
numerical solution of Eq. �3� shows a jump appears at small
values of f . As qcut is increased, the curve of this jump moves
closer to f =0, and extends toward p=0. Similarly the giant
component appears at smaller and smaller values of p and f
as qcut is increased. In keeping with the approximate analysis
just described, we expect that both thresholds reach f =0 and
p=0 in the infinite size limit. In summary, when 2���3,
the giant active component is always present everywhere in
the p− f plane for p�0 and f �0, and appears not from zero
but with a finite size.

When 3���4, an expansion of the right-hand-side of
Eq. �5� in leading powers of X gives an equation of the form

X = c1X + c2X�−2 + . . . , �22�

where the ellipsis signifies further terms of higher order in X.
The first coefficient c1= pf �q2�−�q�

�q� + p�1− f�B�Z�, where B�Z�
is a function of the variable Z. Thus when f �1 the value of
c1 differs from that found in the percolation problem. The
presence of a finite linear term �c1�0� means that the ap-
pearance of the giant component occurs at nonzero values of
p �or f�—at a point which can be found by solving c1=1.
However, because the second leading exponent is �−2 and
not 2, X scales as �p− pc1��, near the appearance of the giant
component, with �=1 / ��−3�. This is the same scaling as
found in the usual percolation problem �33�. Curiously, the
second coefficient c2 is simply equal to p up to a factor
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depending on the degree distribution. Above �=4, we find
�=1 as found for the usual percolation.

VI. GENERAL DISTRIBUTION OF ACTIVATION
THRESHOLDS k

The bootstrap percolation process described above can be
thought of as a specific case of a more general process in
which the threshold values can be different for each vertex.
Assuming no correlations between vertex degree and thresh-
old value, we can define a distribution Q�k� such that Q�k� is
the fraction of vertices which have threshold value k. The
fraction of seed vertices is then Q�0�. Setting Q�0�= f and
Q�k�=1− f for some k�2 we recover the bootstrap percola-
tion model described above.

In the general case, we find that the equation for the active
fraction is

Sa = p	
k�0

Q�k�	
i=k

�

P�i��	
l=k

i 
 i

l
�Zl�1 − Z�i−l� , �23�

where, as above, Z is the probability of encountering a vertex
with at least k downstream active neighbors upon following
an arbitrary edge:

Z = p	
k�0

Q�k�	
i=k

�
�i + 1�P�i + 1�

�q� 	
l=k

i 
 i

l
�Zl�1 − Z�i−l.

�24�

These two equations are similar to those presented in �34� for
undamaged networks as a generalization of the Watts model
�17�.

Similarly, the equation for the giant active component is

Sgc = p	
k�0

Q�k�	
i=k

�

P�i�	
l=k

i 
 i

l
�

	 	
m=1

l 
 l

m
�Xm�Z − X�l−m�1 − Z�i−l, �25�

where as before X is the probability that an edge leads to an
infinite active subtree:

X = p	
k�0

Q�k�	
i=k

�
�i + 1�P�i + 1�

�q�

	 	
l=k

i 
 i

l
�	

m=1

l 
 l

m
�Xm�Z − X�l−m�1 − Z�i−l. �26�

Vertices which have k=1 become active if they have a
single active neighbor. Thus a single seed vertex will activate
an entire connected cluster of such vertices. In particular, if
there is a giant connected cluster in the network �i.e., if p
� pc, the percolation threshold�, the introduction of a finite
number of seed vertices into the infinite network will �almost
surely� activate the giant connected component. In other
words, we have behavior equivalent to ordinary percolation.

In particular, if we set Q�0�+Q�1�=1 �and requiring that, if
Q�0�→0, the number of seed vertices remains sufficient to
activate the giant component of the network� then we recover
from Eqs. �25� and �26� the well known percolation equa-
tions �22�.

VII. DISCUSSION

In this paper, we have extended the understanding of
bootstrap percolation to uncorrelated infinite random graphs
with arbitrary degree distribution, and studied the effects of
damage to the network. We have found that the phase dia-
gram for the giant active component with respect to damage
to the network �1− p� and the fraction of initially active ver-
tices �f� has several interesting features. There are two tran-
sitions observed. At the first the giant active component ap-
pears continuously from zero, and at the second �always at a
higher initial activation fraction� there is a hybrid phase tran-
sition, where the size of the giant active component has a
discontinuity—a “jump”—while also having a singularity, as
the size of the giant active component approaches the tran-
sition from below as the square root of the distance from the
critical point. This singular behavior is due to avalanches in
the activation process. The sizes of avalanches of activation
are determined by the size of subcritical clusters—clusters of
vertices whose number of active neighbors is exactly one
less than the activation threshold. Everywhere but at the hy-
brid transition these subcritical clusters are finite �though to-
gether occupying a finite fraction of the network�, but as the
transition is approached these clusters grow as the reciprocal
of the square-root of the distance from the transition. We also
observe a new special critical point, at the level of damage at
which the second transition first appears. Here, the height of
the jump tends to zero, and the scaling near the critical point
is the cube root of the distance from the threshold. These
results are valid for arbitrary degree distributions, so long as
they decay rapidly enough that the second and third moments
of the distribution are bounded. Note that we could express
our results not in terms of f and p, but of f and any other
convenient parameter, for example, the mean degree �q� of a
network. This allows one to apply our conclusions to arbi-
trary uncorrelated networks.

Network inhomogeneity plays an important role. When
the second moment of the degree distribution is bounded but
the third moment is unbounded, the critical scaling near the
appearance of the giant active component is not simply linear
but has higher order scaling, depending on the degree distri-
bution. When the second moment is unbounded, for example
in scale-free networks with degree distribution exponent �
�3, both thresholds tend to f =0 and p=0 in the infinite size
limit. Thus the phase diagram is featureless, with a giant
active component �albeit sometimes very small� present for
any finite activation and any amount of damage to the net-
work. This result has important implications for real world
networks. For example, the network of neurons in the brain
may have such a scale-free organization �35� meaning that
brain activity may be able to be instigated with very small
stimulus �even though such networks, while large, are of
course finite�.
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In summary, we have obtained phase diagrams for the
bootstrap percolation problem in a wide range of complex
networks. We have described the properties and the nature of
two distinct transitions in this problem: the bootstrap perco-
lation transition and the emergence of a giant connected
component �percolative cluster� of active vertices.
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