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Within the framework of paraxial approximation it is shown that in an anisotropic plasma with sloshing ions
confined an open-ended system a magnetic hole is formed near the turning point of the sloshing ions above the
threshold of the mirror instability. The magnetic field experiences a jump at the hole boundary from the side of
the magnetic mirror. For a small excess over the mirror instability threshold, the surface of the discontinuity
has the shape of a truncated paraboloid, and the magnitude of the magnetic field jump at the system axis is
proportional to the radius of the hole and gradually decreases to zero away of the axis. It is argued that
disappearance of the magnetic hole because of the widening of the sloshing ions angular spread in the course
of the neutral beam injection results in abrupt anticorrelated changes of the diamagnetic signals measured near
the turning point of the sloshing ions and near the midplane of the gas-dynamic trap.
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The inequality

�

�B
�p� +

B2

8�
� � 0, �1�

which guaranties the stability against the mirror modes, is
commonly recognized as necessary condition for the bound-
ary value problem of the plasma equilibrium in an open-
ended domain to be well posed �1�. It also restricts applica-
bility of a paraxial approximation to the case of sufficiently
low transversal plasma pressure p� �2�.

In spite of these directions, we admit that the paraxial
approximation still can be used for computation of the
plasma equilibrium in an open-ended system even above the
threshold of the mirror instability almost in the entire bulk of
a plasma column except for some small regions. A similar
situation was addressed by K. Lotov �3�. In his example, a
magnetic hole with exactly zero magnetic field is formed
around the axis of isotropic plasma column in a supercon-
ducting expander of an axisymmetric confinement system.

We consider a plasma configuration, typical for systems
with an intense slope injection of high-energy neutral atoms,
but address a much mode dense plasma as compared to ear-
lier experimental studies described, e.g., in Ref. �4�. The at-
oms are trapped into a target, relatively cold plasma through
the change exchange process, thus forming a population of
fast sloshing ions. The ions bounce off the magnetic mirrors
building up narrow pressure peaks at the turning points. As
the pressure of the sloshing ions rises in the course of injec-
tion, the criterion Eq. �1� breaks starting from the plasma
axis, where the pressure is maximal.

Following a standard paraxial approach, we assume that
the magnetic field B inside the plasma column can be related
to the external magnetic field H by the equation

p� +
B2

8�
=

H2

8�
, �2�

where the transversal pressure, p�= p��� ,B�, is interpreted
as a given function of the magnetic flux � and the actual
magnetic field B. The approximate Eq. �2� is derived from
the exact equation of the transversal equilibrium,

�

�n
�B2 + 8�p�� = ��2B2 + 8�p� − 8�p�� , �3�

by dropping the right-hand side, proportional to the field line
curvature �, and integrating the left-hand side over the direc-
tion of the normal n to the magnetic field line. In the paraxial
approximation, the curvature is assumed to be small, and the
vacuum field H=H�z� a given function of the coordinate z
along the axis of symmetry.

In the same approximation, the magnetic flux � as a func-
tion of r and z can be implicitly determined from the equa-
tion

�r2

��
=

1

�B��,H�
, �4�

where B�� ,H� stands for a root of Eq. �2�. Outside the
plasma column, B=H, so that a non-trivial part of the prob-
lem resides in the interval 0����p, where p� is distin-
guished from zero. For a known function B�� ,H�, Eq. �4�
can be formally solved in quadratures as follows

r2��,H� − rp
2�H� = �

�

�p d�

�B��,H�
, �5�

where the radius of the column, rp�H�, is determined from
the condition r�0,H�=0.

The described method for solving Eqs. �2� and �4� works
fine, if the condition Eq. �1� holds and, hence, the depen-
dency of B on H is one valued. An uncertainty appears if Eq.
�2� has more than a single root regarding B. We assume
below that one has to select a maximal root in this case. Such
a choice is based on the proposition that the magnetic field*i.a.kotelnikov@inp.nsk.su
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H�z� outside the plasma column is not affected by the field
restructuring in the plasma interior; this is true, if the plasma
cross section is small as compared to the cross section of a
conducting chamber surrounding the plasma.

Indeed, let us consider the total pressure P��� ,B�
=B2 /8�+ p��� ,B� as function of B for various values of �
as shown in Fig. 1 and imagine that we mentally integrate
Eq. �4� with a step-by-step method, starting from the plasma
edge at �=�p and moving toward the system axis at �=0.
Performing the integration, we move along a horizontal line
P��� ,B�=H2 /8�=const from the right to the left. For ex-
ample, moving along the line I, we sequentially go over the
points I1 , I2 , I3. . ., which correspond to sequentially increas-
ing values of p� as the plasma pressure monotonically in-
creases toward the plasma axis.

The line P�=H2 /8� crosses any curve P��� ,B� at a
given � only once if H is noticeably larger than the magnetic
field B� at the turning point �line V�. Passing to a lower
vacuum field, from the line V to IV, we get three cross
points, which correspond to three roots of Eq. �2�. However,
there is no visible reason at the moment for jumping to
newly appeared smaller roots �indicated by open circles�.
The jump is forced when the maximal root 3 merges with the
intermediate root 2 and disappears �line III�. At first, the
jump occurs for the uppermost curve that correspond to �
=0 �line III�. However for a smaller H a similar jump occurs
also at ��0. Its magnitude gradually diminishes and the
jump finally dissolves at some critical value of the magnetic
flux �c and Bc �line II�. In the critical point,

�P�

�B
= 0,

�2P�

�B2 = 0. �6�

Since p�+B2 /8� is constant across the plasma column,
the jump in B is accompanied by a jump in p�. The magnetic
field is smaller and the plasma pressure is larger at the inner
side of the surface of discontinuity. Thus, a magnetic hole,
filled with dense plasma, is formed near the system axis, if
the stability criterion against the mirror modes is broken in

the vicinity of the turning point. No such hole has been ob-
served in laboratory experiments so far but both magnetic
holes and magnetic humps are discovered in cosmic plasmas
�see �5� and references therein�.

The parameter �c determines the radial size of the mag-
netic hole, which is roughly proportional to 	�c. In the rest
of the Brief Report, we consider the case of shallow mag-
netic hole where �c��p, and, hence, the hole radius rc is
also small as compared with the plasma radius, rc�rp.

We assume that the sloshing ions have a narrow angular
distribution with the angular width �	�1 around the angle
of injection 	�. Introducing the mirror ratio b=B /B0 as
the ratio of B to the magnetic field B0 at the location of the
injection in the minimum of magnetic field, one can show
that the transversal pressure p� is peaked near the turning
point located at the mirror ratio b
b�=1 /sin2 	�. Near
the maximal value, p��, the transversal pressure as a
function of B varies on the scale of �B=B0�b, where �b
=2	b�−1b��	 �see, e.g., �6��. Evaluating maximal negative
value of �p� /�B as −p�� /�B, we readily find that the con-
dition Eq. �1� breaks if

p�� � p�c � B��B/4� . �7�

Thereafter, the corresponding critical value 
c��b /b� of
the parameter 
=8�p�� /B�

2 turns out to be small since �	
�1.

In a typical plasma configuration, p� is monotonically
decreasing function of �, which is maximal at �=0. When
p� at �=0 slightly exceeds the critical value p�c, the varia-
tion of the magnetic field on the size of the hole is small as
compared with �B. This justifies expansion of the function
P��� ,B� to the Taylor series around the critical values �c
and Bc. Putting the expansion to the left-hand side of Eq. �2�
yields

�
�P�

��
+ ��

�2P�

�� � �
+

�3

6

�3P�

��3 =
H2�z�

8�
− P�, �8�

where �= ��c−�� /�p, �= �B−Bc� /�B, and the function P�

and its derivatives are evaluated at �=�=0. By order of
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FIG. 1. �Color online� The dependency P� on
B is nonmonotonic above the mirror instability
threshold. It exhibits a peak, most prominent at
the plasma axis ��=0�, which dissolves toward
the column edge ��=�p�. The intersections of
the curve P��� ,B� with horizontal lines P�

=H2 /8� correspond to the roots of Eq. �2�. Non-
realizable roots are shown with empty circles,
and the actual roots in solid circles. Allowed
ranges of the magnetic field variation within the
plasma column at a given section H=const are
encircled by elongated ovals.
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magnitude, all the derivatives of P� are equal to p�� with
minor refinement that �2P� /���� is negative. Being a rising
function of z, the right-hand side of Eq. �8� passes through
zero near the turning point. Let it occurs at z=0. Expanding
the right-hand side around z=0, we can write it in the form

1
8�Hc

2z /L, where L stands for the gradient length of the
vacuum magnetic field, and Hc is the vacuum magnetic field
in the plane z=0. Dividing Eq. �8� by �3P� /��3 finally
yields

1
6�3 − �� = z/� − �� , �9�

where

 = −
�2P�

�� � �
� �3P�

��3 , � =
�P�

��
� �3P�

��3 ,

� = � �3P�

��3 � 1

8�
Hc

2�L .

Note that ��
cL, and one of the coefficients  and � can be
equated to 1 by renormalization of the parameter �; using
this opportunity, we set �=1 below.

The parameter � can take negative or positive values not
exceeding �c=�c /�p. For ��0, Eq. �9� has 3 real roots, if
its right-hand side falls in the range from −�2��3/2 /3 to
�2��3/2 /3 near zero, otherwise it has a single real root. We
assume that multiple roots are numbered in ascending order
so that �1 designates a minimal real root whereas �3 stands
for the maximal one. By continuity, we keep these notations
for single roots matching corresponding multiple roots. Thus,
there remains a single root �1 if �2 merges with �3, and there
remains �3 if �2 merges with �1. The roots are arranged so
that

�1 � − 	2� � �2 � 	2� � �3,

where the equality occurs if �2 merges either with �1 or with
�3.

Following the logic, described above, the intermediate
root �2 should never be chosen, and a “regular” solution
��� ,z� is glued from �3 and a part of �1. The regular solution
jumps from �1=−2	2� on the “internal” side of the surface
discontinuity to �3=	2� at the “outer” side of the surface.
Accordingly, the magnetic field jumps by the quantity of
3	2��B.

At the surface of discontinuity, the left-hand side of Eq.
�9� takes the value − 1

3 �2��3/2. Consequently, the position of
the discontinuity in the coordinates �� ,z� is computed from
the equation

z/� = � − 1
3 �2��3/2. �10�

Regular solution monotonically rises radially from the
plasma axis toward its periphery, and axially from the system
midplane toward the magnetic mirror. It means that no local
mirror trap appears in the plasma as it occurs in the result of
mirror instability development in a homogeneous magnetic
field. In this particular sense, the inhomogeneity stabilizes
the mirror instability.

To find the shape of the magnetic field lines in the coor-
dinates �r ,z�, we put B=B0�bc+�b�� to the right-hand side
of Eq. �4� and write down it in the form

�r2

��
= − a2 + a2�b

bc
� , �11�

where a=	�p /�B0bc�rp. A formal integrations with the
boundary condition r2=0 at �=�c gives

r2 = a2��c − �� + a2�b

bc
�

�c

�

���,z�d� . �12�

Since ��� ,z� experiences a jump at the discontinuity surface,
the function r�� ,z� has a kink there; hence, the derivative
�r /�z, that characterizes a slope angle of the field line to the
system axis, breaks at the surface of discontinuity.

The integral in Eq. �12� can be computed with the aid of
Eq. �9�. The result of computation,

�
�c

�

���,z�d� = �z

2�
−

�2

8
��2 + F�z� ,

involves a function F�z� to be determined separately for the
regions inside and outside the hole, where �=�1 and �=�3,
respectively.

The two expressions for F�z� are determined from the
condition that the entire integral is zero for �=�c and is also
continuous at the surface of discontinuity. Simple calcula-
tions give

r2 = a2��c − �� + a2�b

bc
z

2�
��1

2 − �1c
2 � −

1

8
��1

4 − �1c
4 �� ,

�13�

inside the hole, and

r2 = a2��c − �� + a2�b

bc
z

2�
��3

2 − �1c
2 � −

1

8
��3

4 − �1c
4 � −

9

2

2z2

�2 � ,

�14�

outside it; here �1c=�1��c ,z�. The shape of the hole is
found by substituting �1=−2�2z /��1/2 to Eq. �13� or �3
= �2z /��1/2 to Eq. �14�. Excluding � and �c with the aid of
Eq. �9� gives

rh
2 = a2 �zc − z�

�
+

23/23/2a2

3

�zc
3/2 − z3/2�

�3/2 − O��b/bc� ,

�15�

where zc is the coordinate where the surface of discontinuity
intersects the axis z; it is determined from the equation

�c =
zc

�
+

1

3
�2zc

�
�3/2

, �16�

which follows from Eq. �12� at �=�c, z=zc, and �
=−2�2zc /��1/2. The discontinuity surface has approximately
the shape of a truncated paraboloid of revolution that termi-
nates at the plane z=0; thus, zc is the length of the hole, and
rc=a	zc /� is its radius.
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The validity of the paraxial approximation is limited by
two requirements.

First, it is necessary for the slope of the magnetic field
lines to be small, ��r /�z��1. The derivative �r /�z is for-
mally infinite at z→0, near the nose of the paraboloid, but it
becomes sufficiently small if

zc − z � zc�a/L�2. �17�

Second, it is necessary to justify the use of approximate
equality Eq. �2� instead of the exact Eq. �3�. Since the de-
rivative �r /�z breaks on the surface of discontinuity, the cur-
vature � contains a delta function, �= ��r /�z���z−zh�, where
��r /�z� denotes the magnitude of the jump, and zh=zc
− �rh /a�2� its coordinate. Hence, P� has a jump on the sur-
face of discontinuity. This jump is negligible provided the
condition

zc − z � a2/4� �18�

holds, which is more stringent than Eq. �17�.
Figure 2 shows a deep magnetic hole near the turning

point of sloshing ions for a special case when all ions
have same energy and their angular distribution is des-

cribed by the Gaussian function with the angular width
such that �b=0.1 and the turning point is located at
b�=2.

In conclusion, we emphasize that the mechanism of the
magnetic hole formation, discussed in this Letter, might be
responsible for similar phenomena in cosmic plasmas �5�,
where the origin of the magnetic holes and humps is still
disputable. We also note that in a pulsed experiment, such as
gas-dynamic trap �GDT� �7,8�, the angular spread �	 and,
hence, the parameter �b increases with time, so that the
magnetic hole finally disappears, even if the total number of
sloshing ions continues to rise. The bifurcation from the
magnetic hole to a smooth field profile occurs in a very nar-
row range of values of �b. Thus, pushing a large number of
fast ions from the magnetic hole looks like an abrupt event.
We assume that this phenomenon is observed in GDT, where

 in the turning point exceeds 50%, although only direct
measurements of the spatial structure of the magnetic field
could prove that the magnetic hole is indeed formed. Figure
3 shows the diamagnetic signals from two loops located at
the mirror ratios b=1 and b=2. They exhibit anticorrelated
abrupt changes at the end of neutral beam injection after t
=3.5 ms. Accompanying measurement of the neutron flux in
the experiment with deuterium plasma shows no significant
change of the total flux, which means that the total number
of sloshing ions is conserved though the bifurcation.
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FIG. 2. �Color online� Magnetic hole near the turning point of
sloshing ions for the case 
=0.1 at b=1, b�=2, �b=0.1, �p=1, and
B0=1.
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FIG. 3. Diamagnetic signals from two diamagnetic loops located
near the midplane �solid curve 1� and near the turning point �dotted
curve 2� of sloshing ions.
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