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The cumulant representation of the Fourier path integral method is examined to determine the asymptotic
convergence characteristics of the imaginary-time density matrix with respect to the number of path variables
N included. It is proved that when the cumulant expansion is truncated at order p, the asymptotic convergence
rate of the density matrix behaves like N−�2p+1�. The complex algebra associated with the proof is simplified by
introducing a diagrammatic representation of the contributing terms along with an associated linked-cluster
theorem. The cumulant terms at each order are expanded in a series such that the asymptotic convergence rate
is maintained without the need to calculate the full cumulant at order p. Using this truncated expansion of each
cumulant at order p, the numerical cost in developing Fourier path integral expressions having convergence
order N−�2p+1� is shown to be approximately linear in the number of required potential energy evaluations
making the method promising for actual numerical implementation.
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I. INTRODUCTION

The path integral method �1–6� has proved to be an im-
portant and useful computational vehicle for obtaining ther-
modynamic properties of interacting many-particle systems
in the quantum domain. In all path integral approaches the
usual classical degrees of freedom in a system are augmented
by an infinite set of path variables that effectively describe
the quantum fluctuations about the classical trajectories. In
actual simulations the infinite set of path variables is trun-
cated, and an important issue is the rate of convergence to
the exact quantum result as a function of the number of path
variables actually included.

In one approach �2,4,7� to path integration the imaginary-
time propagator is discretized in coordinate representation
using a large set of intermediate coordinate states along with
the Trotter approximation �8�. The Trotter decomposition be-
comes increasingly accurate as the number of discretized
path variables is increased. The asymptotic convergence rate
of this discretized version of path integrals is known �4� to be
1 /N2, where N is the number of discretized points included.
For problems where pair potentials are adequate, the conver-
gence of the discretized method can be enhanced by, for
example, using more accurate pair propagators �4�.

In this work we focus on an alternate path integral method
�3,9,10� where the quantum paths are expanded in a Fourier
series, and the integration over all paths is replaced by a
Riemann integral with respect to the Fourier coefficients.
While exact results are obtained if the complete Fourier se-
ries containing an infinite set of terms is included, in practi-
cal applications, the number of coefficients included is trun-
cated at N terms. In its primitive form this Fourier path
integral method is known �11� to converge asymptotically to
exact results as 1 /N.

To enhance the asymptotic convergence rate of the Fou-
rier method, a set of useful approaches has been developed to
include approximately the contributions from the coefficients
excluded when the full Fourier series is truncated. The first

of these methods has been named “partial averaging,”
�3,12,13� because integrals over the high-order Fourier path
variables, the “tail integrals,” are included in an average
sense. Because partial averaging requires the evaluation of
the Gaussian transform of the interaction potentials associ-
ated with a particular problem, and because many interaction
potentials used commonly in simulations do not have finite
or readily available Gaussian transforms, alternative methods
have also been introduced that circumvent the need for a
Gaussian transform. Among such methods are the gradient
partial average method �3,13� and the reweighted path inte-
gral technique �14–19�. The asymptotic convergence rates of
the full partial average method �19� and the reweighted
method �14� are both 1 /N3, whereas the gradient partial av-
erage method converges as 1 /N2 �11�.

In a previous publication �20� we considered a suggestion
by Singer �21� to fit the Lennard-Jones potential, which does
not have a finite Gaussian transform, to a sum of two Gaus-
sians, which have Gaussian transforms that are both analytic
and finite. In that previous work we showed the fit potential
to be an accurate representation of a one-dimensional
Lennard-Jones system, and we explored the asymptotic con-
vergence characteristics using a variety of Fourier path inte-
gral methods. In that work we found numerically, for the
case studied, that the full partial average method reached its
asymptotic limit more rapidly than the reweighted method.
Recalling that the reweighted method has the same
asymptotic convergence rate as the full partial average
method, the results indicated that the full partial average
method can be advantageous.

The partial average method can be understood �3,13� as
the first term in a cumulant expansion �22,23� with respect to
the tail series of the quantum density matrix. Motivated by
the successful implementation of the partial average method
using Gaussian fit potentials, in this work we explore the
asymptotic convergence characteristics of the approach when
cumulants are included to arbitrary rather than just first or-
der. While the cumulant expansion for Fourier path integrals
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has been examined through second order in previous work
�23�, the properties of the full expansion have not been dis-
cussed before. The cumulant expansion by itself is not guar-
anteed to be convergent. In the current work we ignore po-
tential convergence issues with respect to cumulant order so
that we can explore the asymptotic convergence characteris-
tics of the cumulant expansion with respect to the number of
included path variables N when the cumulant expansion it-
self is truncated at an arbitrary but finite order p. The analy-
sis is complex, because at each cumulant order beyond p
=1, there are many terms having differing convergence char-
acteristics with respect to N. We find many of the resulting
terms cancel in a way that allows us to show that the result-
ing asymptotic convergence rate is N−�2p+1�. The analysis re-
quired is simplified by using a combination of algebraic and
diagrammatic methods. The diagrammatic approach allows
us to prove a linked-cluster theorem that tells us which of the
large number of terms at each order in p survive cancellation.
From the proved asymptotic convergence rate, the first-order
cumulant �partial averaging� converges asymptotically as
1 /N3, including the second-order cumulant enhances the
asymptotic convergence rate to 1 /N5 and so on. The deriva-
tion of the N−�2p+1� asymptotic convergence rate for cumu-
lants of order p is a principal finding of the current work.

The derivations of the asymptotic convergence rates rely
on certain expansions at each cumulant order. We show that
these expansions at each cumulant order, when truncated,
have the same asymptotic convergence characteristics as the
full cumulants. Furthermore, the truncated expansions at
each cumulant order enable the development of path integral
approaches that scale approximately linearly in the number
of required potential energy evaluations while retaining the
N−�2p+1� asymptotic convergence rate. This important finding
implies the developments described in this work are poten-
tially important from a numerical standpoint.

The contents of the remainder of this paper are as follows.
In the next section we present our theoretical developments.
Included is a review of the Fourier path integral method, the
full partial average method and the cumulant expansion. As
examples we derive explicitly the asymptotic convergence
rates of the first- through third-order cumulant terms. We
then present a diagrammatic representation of the cumulant
expansion that enables the derivation of the asymptotic con-
vergence rate at any finite order of cumulant truncation.
Much of the detailed examination of the convergence prop-
erties of the terms is given in two appendices. In Sec. III we
review our key findings and discuss the expected numerical
work required to implement the higher-order cumulants in
actual calculations.

II. THEORY

A. Fourier path integral representations of the density matrix
and partial averaging

In this subsection we introduce the path integral represen-
tation of the quantum imaginary-time density matrix, and
demonstrate the utility of the Fourier representation of the
paths in terms of a tail series. Some of the discussion in the
subsection can be found in previous literature �3,16�, but we

find it useful to repeat the details for clarity and to establish
the notation needed for the subsequent development. For
simplicity we assume a one-dimensional system with the ex-
tension to multidimensional systems to be presented with
numerical examples in a separate publication.

We consider the Fourier representation of the Feynman-
Kac formula for the quantum density matrix �6�

��x,x�;�� = � fp�x,x�;��K�x,x�;��

= � fp�x,x�;���
k=1

� ��
−�

� dak

�2�
exp	−

1

2
ak

2
�
�exp�− �V̄�x,x�,�ak;��� �1�

where � fp is the free-particle density matrix and �=1 / �kBT�
the inverse temperature with kB the Boltzmann constant. We
have used the notation

f̄ = �
0

1

f�x�u��du �2�

to represent an average of a function f with respect to the
“imaginary-time” variable u. In a similar manner, for a func-
tion g of two or more variables, we can write

ḡ = �
0

1

du1�
0

1

du2 . . . g�x�u1�,y�u2�, . . .� . �3�

Using this notation the time average of the potential in Eq.
�1� is

V̄�x,x�,�ak;�� = �
0

1

duV�xr�u� + �a� · �� �u�� , �4�

with

xr�u� = x + �x� − x�u , �5�

� =��2�

m
, �6�

a� = �a1,a2, . . .� , �7�

�� �u� = ��1�u�,�2�u�, . . .� , �8�

�k�u� = �2
sin��ku�

�k
, �9�

and m is the particle’s mass. The paths in Eq. �4�, starting at
coordinate x and ending at coordinate x�, are expanded in
Fourier series, and each path is parametrized by an infinite
set of Fourier coefficients �a1 ,a2 , . . .�. In order to calculate
integral over the paths in Eq. �1�, one needs to carry out an
infinite-dimensional integration over Fourier coefficients
a1 ,a2 , . . .. Because an infinite-dimensional integration is not
numerically feasible, we truncate to a finite dimensional in-
tegral. The resulting finite dimensional integration converges
to the exact result as the number of integration variables
increases. To this end, we divide infinite-dimensional integral
Eq. �1� into a finite dimensional integral over the first N
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variables a�N= �a1 ,a2 , . . . ,aN� and the tail integration �TI�
over the infinite-dimensional tail a�N+1= �aN+1 ,aN+2 , . . .�

K�x,x�;�� = �
k=1

N ��
−�

� dak

�2�
exp	−

1

2
ak

2
��exp�− �V̄��TI

�10�

where the TI denotes the tail integration

�exp�− �V̄��TI = �
k=N+1

� ��
−�

� dak

�2�
exp	−

1

2
ak

2
�
� exp�− ��

0

1

duV�xN�u�

+ �a�N+1 · �� N+1�u��� . �11�

In Eq. �11� we have introduced the notation

xN�u� = xr�u� + a�N · �� N�u� = xr�u� + �
k=1

N

ak�k�u� . �12�

The TI variables appear in the argument of potential function
linearly, which can be expressed as a scalar product

a�N+1 · �� N+1�u� = �
k=N+1

�

ak�k�u� . �13�

Equation �13� suggests a possible change of integration
variables to a set of projection variables onto the vectors
�� N+1�u�, so that integration in the subspace orthogonal to
this projection subspace might be performed trivially. The
problem with a direct realization of this idea is that Eq. �1�
contains an integration over u, and we have a continuum set
of vectors �� N+1�u�. However, we can use the linearity of the
integration operation allowing the order of integration in Eq.
�11� to be changed. To understand how the change of inte-
gration order helps evaluate Eq. �11�, we expand the expo-
nential function using a Taylor series

�exp�− �V̄��TI = 1 + �
p=1

�
�− ��p

p!
	p, �14�

where the TI of the pth power of V̄ defines the pth order
moment

	p ��	�
0

1

duV�xN�u� + �a�N+1 · �� N+1�u��
p�
TI

= �
0

1

¯�
0

1

du1 ¯ dup��
k=1

p

V�xN�uk�

+ �a�N+1 · �� N+1�uk���
TI

. �15�

In the second line of Eq. �15� we have interchanged the order
of integration over u-variables and the TI variables a�N+1. At a
fixed set of external time variables �u1 , . . . ,up, we now have

a fixed set of vectors ��� N+1�u1� , . . . ,�� N+1�up� on which the
vector a�N+1 is projected. To proceed further, we recognize
that in general, the �� vectors are not orthonormalized. It is
useful if we normalize the vectors and introduce nonorthogo-
nal unit vectors

g�k � �� N+1�uk�/�
�uk�, k = 1,2, . . . ,p �16�

where square of the normalization factor


�uk� = ��uk,uk� � �� N+1�uk� · �� N+1�uk� = �
n=N+1

�

�n
2�uk�

�17�

is a natural small parameter useful for much of the analysis
found in the remainder of this work. We write


�uk� �
1

N
, �18�

which, as explained and used in Ref. �20�, is a shorthand
notation for asymptotic behavior of an integral with respect
to u of the product of 
�u� and a smooth function f�u� ; i.e.,

�
0

1

du
�u�f�u� = O	 1

N

 . �19�

The set of vectors �g�k defined in Eq. �16� is normalized
but not orthogonal. It is useful to work with an orthogonal
set that can by obtained from �gk using Gramm-Schmidt
orthogonalization procedure

g�k = �
i=1

k

�kie�i, �
i=1

k

�ki
2 = 1, �20�

where the vectors �e�1 , ¯ ,e�p are expanded to ensure or-
thogonality; i.e., e�i ·e�k=ik. The coefficients �ki and the vec-
tors e�i can be easily calculated using the standard recurrence
relations, so that we obtain

e�k = 	g�k − �
i=1

k−1

�kie�i
/�kk, �21�

where

�ki = g�k · e�i, i = 1, ¯ ,k − 1, �22�

�kk =�1 − �
i=1

k−1

�g�k · e�i�2. �23�

Using these relations, we obtain, e.g., for the first three vec-
tors

e�1 = g�1, e�2 = �g�2 − g21g�1�/�1 − g21
2 ,

e�3 = �g�3 − g31g�1 − �g�3 · e�2�g�2�/�1 − g31
2 − �g�3 · e�2�2,

g�3 · e�2 = �g32 − g21g31�/�1 − g21
2 , �24�

where
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gik � g� i · g�k =
�ik

��ii�kk

�25�

and

�ik � ��ui,uk� = �� N+1�ui� · �� N+1�uk�

= min�ui,uk� − uiuk − �
n=1

N

�n�ui��n�uk� .

�26�

Using the orthonormal set of constructed vectors, Eq. �13�
becomes

a�N+1 · �� N+1�uk� = �
�uk��
i=1

k

�kia�N+1 · e�i = �
�uk��
i=1

k

�ki�i

�27�

where �i denotes a projection of vector a�N+1 onto e�i.
The TI in Eq. �15� can be geometrically interpreted as an

integration in an infinite-dimensional vector space whose el-
ements are all possible vectors a�N+1. If we choose �e�1 , ¯ ,e�p
as the first p basis vectors, then an arbitrary vector will have
the first p components ��1 , ¯ ,�p. Because the arguments of
the potential function do not depend on the orthogonal pro-
jections, the integral with respect to the infinite set of com-
ponents ��p+1 ,�p+2 ,¯ in the directions orthogonal to the
span of �e�1 , ¯ ,e�p can be evaluated analytically in Eq. �11�
to give unity. As a result the TI in Eq. �15� is reduced to a
p-dimensional Gaussian transform of the product of p poten-
tial functions

	p = Gp�u1, . . . ,up� � �
0

1

¯�
0

1

du1 . . . dupGp�u1, . . . ,up� ,

�28�

Gp�u1, . . . ,up� � ��
k=1

p

V�xN�uk� + �a�N+1 · �� N+1�uk���
TI

= �
j=1

p 	�
−�

� d� j

�2�
exp	−

1

2
� j

2


� �

k=1

p

V�xN�uk� + ��
�uk��
i=1

k

�ki�i� .

�29�

We can modify the arguments of the potential functions in
Eq. �29� to produce the partial average expression �13� for
the density matrix derived previously using alternate meth-
ods. We define �k using the expressions

xN�uk� + ��
�uk��
i=1

k

�ki�i = xN�uk� + ��
�uk��k + �k,

�30�

where

�k = ��
�uk��0, k = 1

�
i=1

k−1

�ki�i + ��kk − 1��k, k � 2� . �31�

From the definition of the coefficients �ki, i=1, . . . ,k−1, it
is evident the coefficients are small for large N. Then for
N→�, we observe that at k�2

�k � ��
�uk�	�
i=1

k−1

�ki�i −
1

2
�k�

i=1

k−1

�ki
2 
 . �32�

We can obtain the explicit asymptotic behavior for Eqs. �22�
and �32� by using the following asymptotic expressions de-
rived in Appendix A.

I2�k� � �
0

1 �
0

1

du1du2���u1,u2��kf1�u1�f2�u2�

= �O	 1

Nk+2
 , k is odd

O	 1

Nk+1
 , k is even� , �33�

where f i�ui�, i=1,2 are smooth functions and k=1,2. . ..
From Eqs. �22� and �32� and asymptotic estimates Eq. �33�, it
follows that

�ki � gki = ��uk,ui�/�
�uk�
�ui� ,

�ki �
1

N3 , �ki
2 �

1

N3

and

�k � �2�uk,ui�/�
�uk�
2�ui� � 1/N3/2.

If we neglect the �k terms at k�2 in Eq. �29� we find that
the integration over �1 , . . . ,�p variables in Eq. �29� is reduced
to a product of p one-dimensional integrals so that 	p=	1

p.
Consequently, the infinite power series is summed to produce
an exponential function

1 + �
p=1

�
�− ��p

p!
	1

p = exp�− �	1� , �34�

giving the so-called partial averaging �PA� formula first ob-
tained by Doll et al. �12�

B. Cumulant expansion of the density matrix

As shown elsewhere �23� the partial average method ex-
pressed in Eq. �34� is the first term in the cumulant expan-
sion of the density matrix. In this subsection we review the
cumulant expansion and derive the asymptotic convergence
characteristics of the various cumulant terms for the Fourier
representation of the quantum density matrix. Much of what
appears in the initial part of this subsection, in particular the
defining relations for the cumulants, can be found elsewhere
in the literature �22�. However, we find it useful to spell out
some well-known details to make the subsequent notation
and discussion clear.
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The cumulant expansion can be obtained from Eq. �14� by
writing

�exp�− �V̄��TI = 1 + �
p=1

�
�− ��p

p!
	p � exp�Vc� , �35�

where

Vc = ln	1 + �
p=1

�
�− ��p

p!
	p
 = − �

k=1

�
1

k�− �
p=1

�
�− ��p

p!
	p�k

= �
k=1

�
�− ��k

k!
	ck. �36�

The last line of Eq. �36� is obtained by collecting the terms
with the same power k of the potential function �or parameter
�� in

	ck = �
r=1

k
�− 1�r+1

r �
p1,¯,pr�Ckr

k!

p1! ¯ pr!
	p1

¯ 	pr
. �37�

The summation of the integer indices p1 , ¯ , pr�1 is re-
stricted by the relation

Ckr = ��p1, ¯ ,pr�:�
j=1

r

pj = k� . �38�

Using Eqs. �37� and �38�, the relations between the first four
cumulants and the moments are

	c1 = 	1,

	c2 = 	2 − 	1
2,

	c3 = 	3 − 3	2	1 + 2	1
3.

	c4 = 	4 − �4	3	1 + 3	2
2� + 12	2	1

2 − 6	1
4 �39�

Given that the PA approximation is the first-order cumulant,
the errors in the partial average method are determined by
the second, third and higher-order cumulant terms. In a simi-
lar fashion the error in the second-order cumulant is deter-
mined by the third-, fourth- and higher-order terms. Using
Eqs. �39�, one can also express the moments in terms of the
cumulants

	1 = 	c1,

	2 = 	c2 + 	c1
2 ,

	3 = 	c3 + 3	c2	c1 + 	c1
3 ,

	4 = 	c4 + 4	c3	c1 + 3	c2
2 + 6	c2	c1

2 + 	c1
4 . �40�

These equations relating the cumulants and the moments
can also be interpreted as recurrence relations that allow the
expression of the higher-order cumulants in terms of lower-
order ones. A general expression for the pth order moment
can be derived by comparing coefficients in the power series
expansion

1 + �
p=1

�
xp

p!
	p = exp	�

k=1

�
xk

k!
	ck
 = �

j=0

�
1

j!
	�

k=1

�
xk

k!
	ck
 j

�41�

From Eq. �41� we obtain

	p =
dp

dxp�
j=1

�
1

j!
�	�

k=1

�
xk

k!
	ck
 j�

x=0

=
1

1! �
k1=1

� 	ck1

k1!
� dpxk1

dxp �
x=0

+
1

2! �
k1,k2=1

� 	ck1
	ck2

k1!k2!
� dpxk1+k2

dxp �
x=0

+ . . .

= 	cp +
1

2! �
k1,k2=1

k1+k2=p

p!

k1!k2!
	ck1

	ck2
+ . . .

+
1

r! �
k1,. . .,kr=1

k1+. . .+kr=p

p!

k1! . . . kr!
	ck1

. . . 	ckr
+ . . . + 	c1

p

�42�

The general term in Eq. �42� contains the factor

p!

k1! . . . kr!
,

which defines the number of ways of grouping p objects into
r groups of sizes k1 ,k2 , . . . ,kr, when the order within each
group does not matter. These combinatorics imply that Eq.
�42� can be represented as a sum over all partitions of
�1, . . . , p vertices

	p = �
r=1

p

�
S1,S2,. . .,Sr

	c�S1�	c�S2� . . . 	c�Sr� , �43�

where we have introduced a partition S1 ,S2 , . . . ,Sr of a set
of natural numbers �1, . . . , p. As discussed elsewhere
�22�, if a partition S1 ,S2 , . . . ,Sr contains, respectively,
k1 ,k2 , . . . ,kr elements such that k1+k2+ ¯+kr= p, then
	c�S1�=	ck1

, . . . ,	c�Sr�=	ckr
. The term in Eq. �43� for r=1

corresponds to 	cp. The resulting expression is

	cp = 	p − �
r=2

p

�
S1,S2,. . .,Sr

	c�S1�	c�S2� . . . 	c�Sr� �44�

where the summation is performed over the “proper parti-
tions” when r�2. To illustrate the idea of partitions, we
show in Fig. 1 all possible partitions for case p=4 by con-
necting vertices 1,…,4 by lines. Figure 1 can be compared to
the last line of Eq. �40�. The first line from the top in Fig. 1
displays the “improper partition” S1= �1,2 ,3 ,4� at r=1,
which corresponds to the term 	c4 in Eq. �40�. The partitions
S1 ,S2 at r=2 divide vertices into two groups. The first group
shown in the second line consists of a cluster of three verti-
ces and a cluster containing a single vertex. The second
group shown in the third line consists of two clusters each
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containing two vertices. The fourth and fifth lines show the
partitions S1 ,S2 ,S3 at r=3 consisting of a cluster of two ver-
tices and two clusters each containing a single vertex. Fi-
nally, in the last line we find the partition S1 ,S2 ,S3 ,S4 at r
=4 consisting of 4 clusters each containing a single vertex.

C. Asymptotic convergence characteristics
of the cumulant terms

A key concern of any numerical path integral approach is
the rate of convergence to the exact result with respect to the
number of path variables included. In previous work �11,19�
we have examined the Fourier path integral method along
with partial averaging and gradient partial averaging, and
examined the asymptotic convergence rates with respect to
the number of included Fourier coefficients. As mentioned
previously, the partial average method is the first-order term
in the cumulant expansion. The motivation of the current
work is to derive the general convergence characteristics of
the cumulants truncated at any finite order.

We ignore the important and interesting question of the
convergence of the cumulant expansion itself when a finite

number of Fourier coefficients are included. We make the
assumption that if we truncate the cumulant expansion at a
finite order, the resulting expression for the quantum density
matrix will converge to the exact quantum density matrix in
the limit of an infinite set of Fourier coefficients.

In the following we first examine the convergence of the
first three cumulants, and then derive an expression for the
asymptotic convergence rates for cumulants of arbitrary, fi-
nite order. The analysis that follows is complex, mainly be-
cause the number of terms in high-order cumulants is large.
Many of the terms in each order have mixed asymptotic con-
vergence characteristics along with internal cancellations
within each order. We find a diagrammatic approach simpli-
fies the complexity of the problem.

Because �1� we are interested in the asymptotic conver-
gence rate with respect to the number of included path vari-
ables N, �2� 
�u��1 /N, and �3� the arguments of the poten-
tial functions in Eq. �29� contain 
�u�, we make use of the
Taylor series expansion for V around the point xN�uk�. For
simplicity we assume that the potential function V has a con-
vergent Taylor series to all orders. As a minimum require-
ment the potential energy must be infinitely differentiable.

1. First-order cumulant

Using the Taylor series expansion, we have

	c1 = �
0

1

du�
−�

� d�

�2�
exp	−

�2

2

V�xN�u� + ��
�u���

= �
0

1

du�
k=0

�
V�k��xN�u��

k!
�k
k/2�u��

−�

� d�

�2�
�k exp	−

1

2
�2


= �
k=0

�
�2k

�2k�!!�0

1

duV�2k��xN�u��
k�u� , �45�

where the first line in Eq. �45� contains the “partial averaged
potential,” VPA�xN�u��, which is the Gaussian transform of
the ordinary potential

VPA�xN�u�� = �
−�

� d�

�2�
exp	−

�2

2

V�xN�u� + ��
�u��� ,

�46�

and where we have denoted V�k��x��dkV�x� /dxk and
�2k� ! !=2 ·4 · . . . ·2k=2kk! if k=1,2 , . . . ��2k� ! !=1 at k=0�.
The Gaussian integral in Eq. �45� can be evaluated analyti-
cally resulting in the expression

�
−�

� d�

�2�
�k exp	−

1

2
�2
 = �0 if k is odd

�k − 1�!! if k is even
� .

�47�

Here �2k−1� ! !=1 ·3 · . . . · �2k−1� if k=1,2 , . . . ��2k−1� ! !
=1 at k=0�. Because integrals of 
k�u� multiplied by a
smooth function results in terms of order 1 /Nk, the last line
in Eq. �45� gives the sought asymptotic expansion in powers
of 1 /N.

There is an alternate derivation of the asymptotic expan-
sion that in later developments we find to be particularly
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FIG. 1. Graphical representation of set partitions that provide
the coefficients in the cumulant expansion. The top diagram repre-
sents the improper partition S= �1,2 ,3 ,4�. The second line repre-
sents all ways of partitioning three elements into one group with the
fourth element remaining. The third line shows all possible pair
partitions, the fourth and fifth lines represent partitions containing a
single pair, and the final line shows the last possibility consisting of
four clusters each with a single vertex. Each of the lines correspond
in order to the five terms in Eq. �40� with the corresponding product
of cumulants and associated coefficients indicated.

KUNIKEEV, FREEMAN, AND DOLL PHYSICAL REVIEW E 81, 066707 �2010�

066707-6



convenient for further generalizations. We rewrite the poten-
tial function as

V�xN�u� + ��
�u��� = exp��
�u��d̂�V�xN�u�� , �48�

where d̂��d / dx is a differential operator. Because d̂ opera-
tors generate a commutative algebra similar to that of c num-
bers, the resulting operator integral over � can be calculated
as an ordinary Gaussian integral,

g1�u, d̂� � �
−�

� d�

�2�
exp	−

�2

2
+ �
�u��d̂
 = exp	
�u�

2
d̂2
 .

�49�

Applying the right-hand side of Eq. �49� to the potential
function, we obtain

	c1 = �
0

1

dug1�u, d̂�V�xN�u�� = �
0

1

du exp�
�u�
2

d̂2�V�xN�u�� .

�50�

Using a Taylor series to expand the exponential, the result is
the asymptotic expansion for the PA potential

VPA�xN�u�� = exp�
�u�
2

d̂2�V�xN�u��

= �
k=0

� �
�u�
2

d̂2�k

k!
V�xN�u�� , �51�

formally identical to Eq. �45�. The primitive Fourier path
integral method corresponds to the first term, k=0, while the
“gradient partial average” approximation �3,13� is given by
the first two terms �k=0,1� in the expansion of Eq. �51�.

Numerical evaluation of the one-dimensional u integrals
can employ any convenient quadrature rule. We have found
the Gauss-Legendre quadrature formula �24� to be generi-
cally useful

	c1 = VPA�xN�u�� = �
i=1

Nq

wiVPA�xN�ui�� �52�

with wi being a Gauss-Legendre weight and Nq the number
of quadrature points. The evaluation of the integral Eq. �52�
requires Nq calls to calculate the potential function VPA,
whereas the wi coefficients do not depend on VPA and can be
precalculated.

2. Second-order cumulant

The second-order cumulant includes both the average po-
tential and the average of the square of the potential. The
average potential has already been discussed in Sec. II C 1,
so we consider the average of the square of the potential

function V̄, Eq. �29� at p=2. Using the operator representa-
tion �Eq. �48�� twice, we obtain

G2�u1,u2� = �V�xN�u1� + ��
�u1��1�V�xN�u2�

+ ��
�u2���21�1 + �22�2���TI

= g2�u1, d̂1,u2, d̂2�V�1�V�2� �53�

where

g2�u1, d̂1,u2, d̂2� = �
−�

� �
−�

� d�1d�2

2�
exp	−

�1
2 + �2

2

2



� exp��
1�1d̂1�exp��
2��21�1 + �22�2�d̂2� .

�54�

In Eqs. �53� and �54� we have introduced the notation

V�i� � V�xN�ui��, 
i � 
�ui�, d̂i = �
d

dxi
, i = 1,2.

�55�

The differential operators d̂1 and d̂2 act, correspondingly, on

potential functions V�1� and V�2�. The operators d̂1 and d̂2
commute and generate a commutative operator algebra.
Evaluating the Gaussian integral Eq. �54�, we obtain

g2�u1, d̂1,u2, d̂2� = exp	1

2
�
1d̂1

2 + 
2d̂2
2� + �21d̂1d̂2


= exp	1

2 �
i,j=1

2

�ijd̂id̂j
 , �56�

where �21 is defined in Eq. �26�. In the second line, we have
made use of the symmetry property �ij =� ji and the relation

i=
�ui�=��ui ,ui�=�ii. Using the defining relation expressed
in Eq. �49�, Eq. �56� can also be rewritten as

g2�u1, d̂1,u2, d̂2� = g1�u1, d̂1�g1�u2, d̂2�f2��21� , �57�

where

f2��21� = exp��21� , �58�

�21 = �21d̂1d̂2. �59�

From Eqs. �28�, �50�, and �53� we have

	2 = G2�u1,u2� ,

G2�u1,u2� = g1�u1, d̂1�g1�u2, d̂2�f2��21�V�1�V�2�

= f2��21�VPA�1�VPA�2� , �60�

	1
2 = �

0

1 �
0

1

du1du2g1�u1, d̂1�g1�u2, d̂2�V�1�V�2�

= �
0

1 �
0

1

du1du2VPA�1�VPA�2� �61�

and

	c2 = 	2 − 	1
2 = Gc2�u1,u2� ,
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Gc2�u1,u2� = fc2��21�VPA�1�VPA�2� �62�

where

fc2��21� = f2��21� − 1 = exp��21� − 1. �63�

The integrand in 	1
2 is separable in the u1 and u2-time vari-

ables

VPA�xN�u1��VPA�xN�u2�� � VPA�1�VPA�2� . �64�

The integrations with respect to the variables 	1
2 over u1 and

u2 are independent, and we call such terms that factor uncor-
related. In contrast 	c2 is proportional to �21

Gc2�u1,u2� = �exp��21� − 1�VPA�1�VPA�2�

= �
k=1

�
�21

k

k!
VPA�1�VPA�2�

= �
k=1

�
�21

k

k!
�d̂1

kVPA�1���d̂2
kVPA�2�� , �65�

and

�21 = 2 �
n=N+1

�
sin��nu1�sin��nu2�

��n�2

= �
n=N+1

�
cos �n�u2 − u1� − cos �n�u2 + u1�

��n�2 �66�

cannot be factored into a product of two separate functions of
the time variables u1 and u2. The function �21 establishes a
time correlation between time variables u1 and u2. The inte-
grand Eq. �65� does not contain uncorrelated terms. All the
uncorrelated terms cancel; i.e., if �21→0, then Gc2�u1 ,u2�
→0 and 	c2→0.

The demonstrated dependence of 	c2 on the operator �21
can be graphically illustrated using a diagrammatic notation
that proves to be especially valuable in simplifying the alge-
bra for the higher-order cumulants. For 	c2 the diagrams are
shown in Fig. 2�a�. We let small solid circles represent ver-
tices 1 and 2 with the corresponding vertex functions VPA�1�
and VPA�2�. The line that connects vertices 1 and 2 in the
middle diagram of Fig. 2�a� represents the interaction via
�21, which acts on the vertex functions via the differential

operators d̂1 and d̂2. The two lines connecting vertices 1 and
2 shown in the right diagram, correspond to �21

2 entering in
Eq. �65� with the weight coefficient 1/2!. In general, the kth
power of a �12 term, with weight coefficients 1 /k!, can be
conveniently depicted by a diagram with the k lines connect-
ing the two vertices. Summing the diagrams with the number
of connecting lines from k=1 up to � produces a diagram-
matic representation of the series expansion given in Eq.
�65�. Corresponding to these two-vertex connected diagrams,
we define a second-order cumulant function 	c2��21�, with
the characteristic property that 	c2��21�=0 if �21=0. In other
words, the cumulant function takes a zero value on the cor-
responding disconnected vertex diagram, which is defined as
two vertices not connected by a line that corresponds to the
limiting case �21→0 �the left diagram in Fig. 2�a��.

Using the expansion given in Eq. �65�, the second cumu-
lant function can be written as a sum

	c2 = �
k=1

�

	c2
�k�, �67�

where 	c2
�k� is the corresponding contribution from the kth

order derivative of the potential function VPA

	c2
�k� = �

0

1 �
0

1

du1du2
�21

k

k!
�d̂1

kVPA�1���d̂2
kVPA�2�� . �68�

Expressions for the integrals given in Eq. �68� are derived in
Appendix A �see Eq. �A1��. Using the results of Appendix A,
we find

	c2
�k� =

2k�2k

k! �
n1,¯,nk=N+1

�
1

��n1�2
¯ ��nk�2

� ��
0

1

du sin��n1u� ¯ sin��nku�
dkVPA�xN�u��

dxk �2

�69�

from which it follows that each term 	c2
�k��0 and, as a con-

sequence, their sum, Eq. �67�, is non-negative.
As discussed for the first-order cumulant �see Eq. �52��,

	c2
�k� can be calculated numerically using the Gauss-Legendre

quadrature formula
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FIG. 2. Diagrammatic representation of the cumulants. Each
solid circle represents a vertex function VPA�i� and each line repre-
sents an interaction �ij �see text for definitions�. In �a� the contri-
butions to the second-order cumulant is shown, with the first dia-
gram in �a� being unlinked and contributing 0. Contributions to the
third-order cumulant are shown in �b�, with the first three diagrams
representing terms in the second line of Eq. �92� and the last dia-
gram being an example of a loop diagram. In �c� three fourth-order
diagrams are shown demonstrating consecutive, centered, and loop
diagrams, respectively.
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	c2
�k� = �

i,j=1

Nq

�ij
�k�d

kVPA�xN�ui��
dxk

dkVPA�xN�uj��
dxk , �70�

where the symmetric semi-positive definite matrix

�ij
�k� �

�2k

k!
wi�

k�ui,uj�wj �71�

does not depend on the potential function, and its matrix
elements can be precalculated. The evaluation of the double
integral sum in Eq. �70� requires Nq calls to calculate the kth
order derivative of the potential function VPA. Using the
Cholesky decomposition �25�

��k� = ��k���k�T, �72�

where ��k� is a unique lower triangular matrix with positive
diagonal entries, Eq. �70� can be rewritten as

	c2
�k� = �

i=1

Nq ��
j=1

i

� ji
�k�d

kVPA�xN�uj��
dxk �2

. �73�

From Eq. �33� follows that 	c2
�1� and 	c2

�2� are of the same
order of magnitude, 1 /N3, and

	c2 = 	c2
�1� + 	c2

�2� + O	 1

N5
 . �74�

Using the asymptotic estimates, Eqs. �A11�–�A22�, derived
in Appendix A, the asymptotically leading terms 	c2

�1� and
	c2

�2�, can be written as

	c2
�1� = �2�

0

1 �
0

1

du1du2�21
dVPA�xN�u1��

dx

dVPA�xN�u2��
dx

= �
n=N+1

�
2�2

��n�4�dV�x�
dx

− �− 1�ndV�x��
dx

�2

+ O	 1

N5

=

2�2

3�4N3�	dV�x�
dx


2

+ 	dV�x��
dx


2�
+

2�− 1�N�2

�4N4

dV�x�
dx

dV�x��
dx

+ O	 1

N5
 , �75�

and

	c2
�2� =

�4

2
�

0

1 �
0

1

du1du2�21
2 d2VPA�xN�u1��

dx2

d2VPA�xN�u2��
dx2

=
�4

6�4N3�
0

1

du�d2VPA�xN�u��
dx2 �2

+ O	 1

N5
 , �76�

Combining the above asymptotic formulas, we obtain

	c2 =
�2

3�4N3�2�	dV�x�
dx


2

+ 	dV�x��
dx


2�
+

�2

2
�

0

1

du�d2VPA�xN�u��
dx2 �2�

+
2�− 1�N�2

�4N4

dV�x�
dx

dV�x��
dx

+ O	 1

N5
 . �77�

In the first two lines, we have collected terms of third order,
while in the second line the terms of fourth and higher orders
are included. Equation �77� confirms previous work �19� that
shows that the PA approximation has a third-order conver-
gence rate. Our numerical investigation of the PA conver-
gence rate in a one-dimensional �1D� model �20� is consis-
tent with this asymptotic convergence rate. The calculation
of the convergence constants in Eq. �77� �the expression in
the curly brackets� can be reduced to a one-dimensional in-
tegration over u.

Equation �70� is comprised of Nq
2 terms composed of a

product of kth-order derivatives of the potential energy. The
product of the two derivatives of the same order implies that
for each k, the kth-order derivative of VPA�xN�ui�� at each
grid point ui needs to be evaluated only once. In that way the
Nq

2 operations required to evaluate 	c2
�k� in Eq. �70� require

only Nq evaluations of the derivatives of the potential energy.
Because the computational work can be expected to be domi-
nated by the evaluation of the potential energy and its deriva-
tives, the work required to determine Eqs. �70� and �73�
should scale nearly linearly in Nq. From Eq. �74� only 	c2

�1�

and 	c2
�2� are required to attain an N−5 order asymptotic con-

vergence rate further emphasizing that we can attain the
same asymptotic convergence rate as the full cumulant with
truncated algorithms that scale nearly linearly in Nq.

The above conclusions about the convergence rate are im-
plicitly based on the assumption that the higher-order cumu-
lant terms, 	ck, k�3, contribute at a faster rate. We check
this assumption for the third cumulant term in the next sec-
tion where we demonstrate that 	c3 is fifth order in 1 /N.

3. Third-order cumulant

Using methods identical to those employed in the deriva-
tion of Eq. �60�, we obtain for the third-order moment

	3 = G3�u1,u2,u3� , �78�

=�
0

1 �
0

1 �
0

1

du1du2du3g3�u1, d̂1,u2, d̂2,u3, d̂3�

�V�1�V�2�V�3� , �79�

where

g3 = �
−�

� �
−�

� �
−�

� d�1d�2d�3

�2��3/2 exp�−
1

2
��1

2 + �2
2 + �3

2� + �
1�1d̂1

+ �
2��21�1 + �22�2�d̂2 + �
3��31�1 + �32�2 + �33�3�d̂3� .

�80�

Evaluating the Gaussian integral Eq. �80�, we obtain
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g3 = exp	1

2�
i=1

3


id̂i
2 + �

i�j=1

3

�ijd̂id̂j

= exp	1

2 �
i,j=1

3

�ijd̂id̂j
 = ��
i=1

3

g1�ui, d̂i�� f3��12,�23,�13� ,

�81�

where

f3��12,�23,�13� = exp	 �
i�j=1

3

�ij
 �82�

and

�ij = � ji = �ijd̂id̂j . �83�

Using Eqs. �49� and �81�, we then obtain

G3�u1,u2,u3� = f3��12,�23,�13�VPA�1�VPA�2�VPA�3�
�84�

and

	c3 = 	3 − 3	2	1 + 2	1
3 = Gc3�u1,u2,u3� ,

Gc3�u1,u2,u3� = fc3��12,�23,�13�VPA�1�VPA�2�VPA�3� ,

�85�

where

fc3 = f3��12,�23,�13� − f2��12� − f2��23� − f2��13� + 2.

�86�

We now show that the uncorrelated terms, −3	2	1+2	1
3

sum to zero in the expression for 	c3. We introduce the con-
venient notation

�1 � �23, �2 � �13, �3 � �12. �87�

and rewrite fc3

fc3��1,�2,�3� = exp	�
i=1

3

�i
 − �
i=1

3

exp��i� + 2

= �
k=1

�
��1 + �2 + �3�k − �1

k − �2
k − �3

k

k!

= �
k=2

� � �
p1,p2,p3�0

p1+p2+p3=k

�1
p1�2

p2�3
p3

p1!p2!p3!
−

�
i=1

3

�i
k

k! � .

�88�

The inner summation in Eq. �88� is restricted to non-negative
integer indices p1 , p2 , p3 with the additional requirement p1
+ p2+ p3=k. It is clear from the second line of Eq. �88� that
the term at k=1 is zero. If any two of three indices take a
zero value, say, p1= p2=0, then p3=k and the corresponding
term

��1
p1�2

p2�3
p3

p1!p2!p3!
�

�p1=0, p2=0, p3=k�
=

�3
k

k!
�89�

cancels in Eq. �88�. We then find

fc3 = �
k=2

�

�
p1,p2,p3�Ck

�1
p1�2

p2�3
p3

p1!p2!p3!
, �90�

where the following constraints on the indices are imposed

Ck = �p1,p2,p3� = �p1,p2,p3 � 0, p1 + p2 + p3 = k ,

at least two of indices are nonzero.
�

�91�

As a consequence of the constraints, we find Eq. �90� is
proportional to the cross terms only and does not contain
terms arising from the uncorrelated terms, −3	2	1+2	1

3, the
terms with at least two zero indices.

As with the second-order cumulant it is useful to intro-
duce a diagrammatic notation for the various contributions.
We define a diagram with three vertices 1, 2, 3 and corre-
sponding vertex functions. In Fig. 2�b�, the three vertices are
shown to be connected by lines that correspond to the pair-
wise vertex couplings �12, �23, �31. As follows from Eqs.
�86� or �90� the third cumulant function 	c3��12,�23,�31� is
zero whenever the underlying diagram is disconnected. We
find disconnected diagrams when any two of the vertex cou-
plings are zero. For example, we obtain zero if �12=�23=0,
from which it follows that 	c3�0,0 ,�31�=0. In this case ver-
tex 2 is disconnected from vertices 1 and 3, which are con-
nected by a line that corresponds to the �31�0 coupling.

We now examine the cross terms up to third order; i.e.,
the terms with k=2,3 in Eq. �90�. We find

fc3 � �
k=2

3

�
p1,p2,p3�Ck

�1
p1�2

p2�3
p3

p1!p2!p3!

= �1�2 + �2�3 + �1�3 + �1�2�3

+
1

2
��1

2�2 + �1�2
2 + �2

2�3 + �2�3
2 + �1

2�3 + �1�3
2� .

�92�

In Fig. 2�b�, we display the diagrams that correspond to the
terms in the second line of Eq. �92�. Using the asymptotic
formulas derived in Appendix A �Eqs. �A31� and �A32��, we
find that terms in the second line of Eq. �92� are fifth order

�1�2 + �2�3 + �1�3 + �1�2�3 = �23�13d̂1d̂2d̂3
2 + �13�12d̂1

2d̂2d̂3

+ �23�12d̂1d̂2
2d̂3

+ �12�23�13d̂1
2d̂2

2d̂3
2, �93�

and the terms in the third line are of the higher order;
namely, they produce a sixth order contribution. For ex-
ample, if we examine a typical term of the third line in Eq.
�92�

�1
2�2 = �23

2 �13d̂1d̂2
2d̂3

3. �94�

and considering Eqs. �33�, we find that
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�23
2 �13 � 1/N6 �95�

and

�1
2�2 �

1

N6 . �96�

After substituting Eq. �93� into Eqs. �92� and �85�, we find

	c3 = �6�
0

1 �
0

1 �
0

1

du1du2du3�12�13�23

�
d2VPA�1�

dx2

d2VPA�2�
dx2

d2VPA�3�
dx2

+ 3�4�
0

1 �
0

1 �
0

1

du1du2du3�12�13

�
d2VPA�1�

dx2

dVPA�2�
dx

dVPA�3�
dx

+ O	 1

N6
 . �97�

In Eq. �97�, the first integral is a contribution from the loop
diagram, the second line of Fig. 2�b�, corresponding to the
�12�23�31 term, whereas the second one represents a com-
bined contribution, which is included by a factor 3 in front of
the integral, from the degenerate diagrams shown in the first
line of Fig. 2�b�.

As with the second-order cumulant terms, Eq. �97� im-
plies that we can attain a N−6 asymptotic convergence rate by
retaining only the first two terms on the right-hand side. The
work required when the integrals are evaluated numerically
using Gauss-Legendre quadrature with Nq quadrature points
for a single one-dimensional imaginary-time integration, re-
sults in a total of 2Nq calls of the first and second derivatives
of the potential function VPA. From the asymptotic estimates
Eqs. �A31� and �A32� obtained in Appendix A for the above
fifth-order contributions, the integrals expressed in Eq. �97�
can be rewritten as

	c3 =
�4

5�6N5��2�
0

1

du�d2V�xN�u��
dx2 �3

+ 3
d2V�x�

dx2 �dV�x�
dx

�2

+ 3
d2V�x��

dx2 �dV�x��
dx

�2� + O	 1

N6
 . �98�

The calculation of the convergence constant in Eq. �98� is
seen to be reduced to a one-dimensional integration over u.

D. Higher-order cumulants and the linked-cluster
theorem

In principle, to calculate or estimate the asymptotic be-
havior of the higher-order cumulants 	ck, k�4, one can use
Eq. �37� as used in the previous sections to examine 	c2 and
	c3. However, with increasing cumulant order the number of
terms to be estimated in Eq. �37� grows rapidly. Moreover, as
we found in previous sections there are certain rules associ-
ated with connected diagrams, which help identify the terms
that give nonzero contributions to the cumulants. The pur-
pose of the present section is to generalize the results ob-
tained for the second and third-order cumulants to higher

orders. In particular, we derive asymptotic estimates for the
higher-order cumulants.

By inspection of the results obtained for the first three
moments 	p, p=1,2 ,3, Eqs. �50�, �56�, �60�, �78�, and �81�,
we can generalize the integral expressions for the moments
to an arbitrary index p,

	p = �
0

1

¯�
0

1

du1 ¯ dupgp�u1, d̂1, ¯ ,up, d̂p�V�1� ¯ V�p�

�99�

where

gp�u1, d̂1, ¯ ,up, d̂p� � �
−�

�

¯�
−�

� d�1 ¯ d�p

�2��p/2

�exp	−
1

2�
i=1

p

�i
2 + �

k=1

p


k
1/2d̂k�

i=1

k

�ki�i

= exp	1

2 �
i,j=1

p

�ijd̂id̂j
 . �100�

Equation �100� is derived in Appendix B.
It is useful to examine the diagonal terms in the exponent

of Eq. �100�

�
i=1

p

�g1�ui, d̂i�V�i�� = �
i=1

p

VPA�i� �101�

so that we can rewrite Eq. �99� as

	p = �
0

1

¯�
0

1

du1 ¯ dupfp���iji�j=1
p �VPA�1� ¯ VPA�p� ,

�102�

where

fp���iji�j=1
p � = exp	 �

i�j=1

p

�ij
 . �103�

The total number of couplings �k��ij, where i� j and i , j
=1, . . . , p, p�2, between all possible pairs of p vertices is

Kp � Cp
2 =

p�p − 1�
2

. �104�

We now define L1 and L2 to be an arbitrary partition
among p vertices such that the first cluster contains k1 verti-
ces and the second one k2 vertices, with the total number of
vertices being k1+k2= p. Without loss of generality, we as-
sume that the first cluster contains vertices with numbers
from 1 to k1, L1��1, . . . ,k1, and the second cluster contains
vertices from k1+1 to p, L2��k1+1 , . . . , p. Using this par-
tition we call the exponent of Eq. �103� the “Hamiltonian”
H12 of the system of p vertices �using an analogy with a real
Hamiltonian system�, which can be divided as

H12 = �
i�j=1

p

�ij = H1 + H2 + V12, �105�

where
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H1 = �
i�j=1

k1

�ij ,

H2 = �
i�j=k1+1

p

�ij �106�

are, respectively, the “Hamiltonians” of the first and second
clusters. The expression

V12 = �
i�L1,j�L2

�ij �107�

is the “interaction” between the clusters.
In accord with other diagrammatic approaches in physics,

we define a diagram that has all vertices connected to be
linked. If L1 and L2 are two linked diagrams, we call L1
+L2 linked if the resulting diagram is linked. In contrast, if
the interaction between the two diagrams V12=0 in L1+L2,
the resulting diagram must be disconnected or unlinked. In
the unlinked case, the factorization property given in Eq.
�108� is valid

	p = 	k1
	k2

. �108�

Additionally, if Eq. �108� is satisfied, then diagrams corre-
sponding to the product of two moments must be unlinked.

In previous sections we have shown that the contributions
to the second and third-order cumulants are zero when the
corresponding diagrams are disconnected. The cancellation
of disconnected diagrams found in the second and third cu-
mulants is an example of the linked-cluster theorem, which
applies not only in the present context, but in quantum field
theory, many-body theory and cumulant expansions in statis-
tical physics �22,26–34�.

1. Linked-cluster theorem

We now prove that only the terms that can be represented
by linked diagrams make nonzero contributions to the corre-
sponding cumulants. This statement is often called the
linked-cluster theorem. We have already checked directly
this statement for the second- and third-order cumulants. Us-
ing the diagrammatic approach discussed in the previous
subsection, we are now in a position to prove the linked-
cluster theorem for an arbitrary order cumulant term using
the method of mathematical induction. We assume that cu-
mulants from the second up to the pth order take zero values
on the corresponding disconnected diagrams. Further, with-
out loss of generality we assume that a disconnected p+1
cluster of vertices is made of two linked clusters L1 and L2 of
sizes k1 and k2, respectively, such that k1+k2= p+1. Conse-
quently, the interaction between the two clusters V12=0. It is
straightforward to generalize the proof to the case of a dis-
connected cluster that is made of several linked clusters. In a
second induction step, we must prove that the same property
remains valid for this disconnected, p+1-vertex diagram;
i.e., we must prove that 	c�p+1�=0. Rewriting Eq. �44� for the
cumulant term of order �p+1�, we obtain

	c�p+1� = 	p+1 − �
r=2

p+1

�
S1,S2,. . .,Sr

	c�S1�	c�S2� . . . 	c�Sr� .

�109�

In view of the factorization property Eq. �108�, we have

	p+1 = 	k1
	k2

�110�

The summation in Eq. �109�

�
r=2

p+1

�
S1,S2,. . .,Sr

covers all possible “proper” partitions S1 ,S2 , . . . ,Sr, r�2
among p+1 vertices. Some members of these partitions, that
we identify using the notation Sdisc� �1, . . . , p+1, contain
vertices from both clusters, L1��1, . . . ,k1 and L2��k1
+1 , . . . , p+1. Consequently, diagrams corresponding to
these partition members are disconnected. Moreover, be-
cause r�2 the maximum size of Sdisc, the maximum pos-
sible number of vertices in Sdisc, is less or equal to p, and by
induction, we have 	c�Sdisc�=0. We then find that nonzero
contributions to the sum in Eq. �109� are expected to arise
only from partition clusters that belong either to L1 or L2.
Equation �109� can be rewritten as

	c�p+1� = 	k1
	k2

− �
l1=1

k1

�
S1

�1�,. . .,Sl1
�1�

	c�S1
�1�� . . . 	c�Sl1

�1��

� �
l2=1

k2

�
S1

�2�,. . .,Sl2
�2�

	c�S1
�2�� . . . 	c�Sl2

�2�� , �111�

where S1
�1� , . . . ,Sl1

�1� and S1
�2� , . . . ,Sl2

�2� are, respectively, parti-
tions of L1 and L2. Finally, from the representation given in
Eq. �43�, it follows that 	c�p+1�=0. The linked-cluster theo-
rem is then proved.

2. Asymptotic convergence rates for the truncated
cumulant expansion

According to the linked-cluster theorem, the expression
given in Eq. �37� for cumulants includes only the terms that
correspond to linked or connected diagrams. For this reason,
we must omit terms in Eq. �37� having r�2, the terms made
of products of moments, whose diagrams are disconnected.
The pth order cumulant can then be written as

	cp = �
0

1

¯�
0

1

du1 ¯ dupfcp���kk=1
Kp �VPA�1� ¯ VPA�p� ,

�112�

where
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fcp = exp	�
k=1

Kp

�k

c

= �
k=0

� 	�
k=1

Kp

�k

c

k

k!

= �
k=p−1

�

�
p1+¯+pKp

=k

��1
p1
¯ �Kp

pKp�c

p1! ¯ pKp
!

.

�113�

Here, the subscrit c equivalently denotes “cumulant” and
“connected.” The inner summation over non-negative inte-
gers p1 , p2 , . . . , pKp

is performed under the restrictions that
p1+ p2+ ¯+pKp

=k and that all the vertices in the expansion
should be connected by �k��ij couplings. The connectness
of vertices is stressed by the subscript c. Using the last re-
striction, the outer summation over k, starts at p−1, because
p vertices cannot be connected by less than p−1 pairwise
lines or couplings.

The lowest order contribution to Eq. �113� is the term
k= p−1

fcp = �
linked diagrams

�k1
�k2

¯ �kp−1
, �114�

where �k1
,�k2

, . . . ,�kp−1
are pairwise couplings such that all

p vertices are linked. Among all possible vertex connections
we distinguish consecutive and centered ones. Figure 2�c�
illustrates the notion of consecutive, centered, and loop dia-
grams in case of p=4. Consecutive connections are those
whose vertices, ordered in an arbitrary way, are linked con-
secutively one after another. If we label a set of ordered
vertices from 1 to p, a consecutive connection corresponds to
the following chain of operators

�12�23 ¯ ��p−1�p. �115�

If a vertex is linked to all other p−1 vertices, then such a
connection will be called centered. The corresponding “cen-
tered to vertex 1” operator chain takes the form

�12�13 ¯ �1p. �116�

For a consecutively linked cluster �Eq. �115��, the contribu-
tion to the cumulant term is

	cp
cons = �2�p−1��

0

1

¯�
0

1

du1 ¯ dup�12�23 ¯ ��p−1�p

�
dVPA�1�

dx

d2VPA�2�
dx2

d2VPA�3�
dx2 ¯

d2VPA�p − 1�
dx2

�
dVPA�p�

dx
. �117�

The numerical evaluation of the p-dimensional integral Eq.
�117� with the Gauss-Legendre quadrature formula requires
in total 2Nq calls to calculate the first and second derivatives
of the potential function VPA, where Nq is the number of
quadrature points in a single dimension.

In Appendix A, we derive an asymptotic estimate �Eq.
�A44�� for integrals of the type Eq. �A33�, from which we
obtain an estimate for

	cp
cons �

Cp
cons

N2p−1 , �118�

where Cp
cons is a convergence constant. Moreover, in Appen-

dix A we estimate the contribution �Eq. �A45�� from the loop
diagram

�12�23 ¯ ��p−1�p�p1, �119�

which includes p �-couplings. We find that the correspond-
ing loop diagram contributes

	cp
loop = �2p�

0

1

¯�
0

1

du1 ¯ dup�12�23 ¯ ��p−1�p�p1

� ��
i=1

p
d2VPA�i�

dx2 � �120�

to the cumulant. According to Eq. �A48�, Eq. �120� is of the
same order as the consecutive term; i.e.,

	cp
loop �

Cp
loop

N2p−1 �121�

For a centered diagram representing Eq. �116� we obtain

	cp
cent = �2�p−1��

0

1

¯�
0

1

du1 ¯ dup�12�13 ¯ �1p

�
dp−1VPA�1�

dxp−1 ��
i=2

p
dVPA�i�

dx � . �122�

In Appendix A, we estimate this type of integral �Eq. �A51��
finding

	cp
cent �

Cp
cent

N2p−1 . �123�

Collecting all estimates Eqs. �118�, �121�, and �123� we can
conclude that the total pth cumulant term scales as

	cp �
Cp

N2p−1 , �124�

From Eq. �124�, one can obtain an asymptotic estimate for
the convergence rate of the cumulant expansion. If the cu-
mulant expansion is truncated at order p, then the conver-
gence rate of the truncated cumulant expansion is defined by
the asymptotic behavior of the next cumulant term of order
�p+1�. The resulting term scales as N−�2p+1�, a central result
of this work.

III. DISCUSSION

We have developed an asymptotic analysis of the cumu-
lant expansion for the Fourier path integral representation of
the quantum, imaginary-time density matrix. Starting from
the Feynman-Kac formula expressed in Eq. �1�, we have
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used the perturbation series given in Eqs. �10� and �14�, ex-
panded in powers of the path averaged potential energy de-
fined in Eq. �15�. For the moments 	p, p=1,2 , . . . generated
by this perturbation expansion we have found the compact
integral representation expressed in Eq. �102�. The integrand
of the p-dimensional integral given in Eq. �102� is defined as
the exponential function �Eq. �103�� of a linear combination
of differential operators �ij acting on the product of p poten-
tial functions VPA�1� , ¯VPA�p�. The operator �ij is propor-
tional to the �ij function �Eq. �26��, which asymptotically
behaves as �i�j �1 /N3, which in the limit N→� goes to 0.
In the same limit the exponential operator function given in
Eq. �103� reduces to the identity operator. Using the relation

�1 /N, we can conclude that VPA, defined in Eq. �51�, tends
to V. Consequently, in the limit of large N we obtain a fac-
torization of 	p→ �V̄�p, which results in Taylor’s series ex-
pansion for the original exponential representation given in
Eq. �14�.

When calculating the Feynman-Kac formula, it would be
impractical to use the perturbation series truncated at p
= pmax, because 	p considered as a function of N does not go
to zero as N→�. As we have demonstrated, the cumulant
expansion given in Eq. �36� behaves well asymptotically. In
particular the pth-order cumulant term 	cp scales as N−�2p−1�.
At large enough N, the truncated cumulant expansion is ex-
pected to provide a good approximation to the exact density
matrix, with the error scaling as N−�2pmax+1�.

Using the polynomial expansion in products �1
p1
¯�Kp

pKp of

powers of �k=�ij =�ijd̂id̂j for the exponential operator func-
tion given in Eq. �113�, the integrand of the p-dimensional
integral given in Eq. �112� can be represented as a sum of
products of p potential functions VPA�1� , ¯VPA�p� and their
derivatives times the corresponding polynomial of � func-
tions. Only the linked diagrams corresponding to the chains
of operators �1

p1
¯�Kp

pKp contribute to the final result. A nu-

merical evaluation of the p-dimensional integral can be per-
formed using, e.g., a p-dimensional Gauss-Legendre quadra-
ture formula, with Nq quadrature points.

To find an optimal numerical scheme to evaluate the cu-
mulants, it is important to estimate the amount of numerical
work required. A reasonable estimate of this time is the num-
ber of potential function calls Ncall required to compute the
integral given in Eq. �112�. To minimize the time required to
calculate the potential energy function at a fixed argument, it
is useful to have an analytic expression for the VPA function.
It is well known that the Gaussian transform expressed in Eq.
�46� can be evaluated analytically either for a polynomial or
a Gaussian-type potential function. In general, we can as-
sume that V can be fitted by a finite combination of polyno-
mial and/or Gaussian-type potential functions. For example,
we have shown that a fit to the Lennard-Jones potential using
two Gaussians gives numerical results that are indistinguish-
able to within statistical fluctuations of Monte Carlo path
integral simulations �20�.

As suggested in the previous paragraph, the computa-
tional cost in path integral simulations is dominated by the
computational overhead required to evaluate the potential en-
ergy. Efficiency gains resulting from improved asymptotic
convergence rates must be balanced with any possible in-

crease in the number of calls required to evaluate the system
potential. We have shown in Eq. �112� that we can attain the
asymptotic convergence behavior at a given cumulant order
p without including all terms in the series expansion for the
cumulant. By truncating the expansion we are able to mini-
mize the number of potential energy evaluations without sac-
rificing the improved asymptotic convergence rate. An im-
portant example is the case of the second-order cumulant
discussed in the main text. We can attain the N−5 asymptotic
convergence rate by including only the two terms repre-
sented in Eqs. �70� and �74�. By virtue of the truncation,
Ncall=3Nq, resulting in a scaling that is linear in Nq. As a
result of Eq. �112� this linear scaling in Nq is maintained at
all cumulant orders p so that Ncall= �rmax+1�Nq where rmax is
the maximum order of the derivative of the potential function
VPA needed in the expansion to ensure the asymptotic con-
vergence rate is N−�2p+1�. Even though the current paper has
examined the simple case of one-dimensional systems, by
using the expansion, the remarkable linear scaling in Nq is
maintained even for many-particle systems. Of course, if Nq
must be increased with cumulant order to obtain sufficiently
accurate evaluations of the integrals with respect to the
imaginary-time variable, the scaling with cumulant order
might be more severe than linear. Only numerical experience
will enable a full understanding of the scaling with Nq. How-
ever, from the purely formal results, we expect to be able to
extend partial averaging to higher-order cumulants in a vari-
ety of important quantum problems.

In Ref. �20�, we have numerically investigated conver-
gence characteristics for the energy and heat capacity calcu-
lated with the first cumulant term in a one-dimensional
Lennard-Jones model. Effects of the higher-order cumulant
terms and their convergence properties for N-body systems
are the subject of a separate publication.
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APPENDIX A: ASYMPTOTIC ESTIMATES
FOR INTEGRALS

The purpose of this appendix is to derive the asymptotic
behavior of the integrals encounted in the main text. First,
we examine the behavior of the two-time integral defined in
Eq. �33� in the asymptotic limit �N→��

I2�k� = �
0

1 �
0

1

du1du2���u1,u2��kf1�u1�f2�u2�

= 2k �
n1,¯,nk=N+1

�
1

��n1�2
¯ ��nk�2�

0

1

du1

�sin��n1u1� ¯ sin��nku1�f1�u1�

� �
0

1

du2 sin��n1u2� ¯ sin��nku2�f2�u2� �A1�
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where f1�u� and f2�u� are smooth functions of u and k�1 is
an integer. In the second line we have used expansion given
in Eq. �66� for �. Expanding both f1 and f2 �denoted gener-
ally by f1,2� in a Fourier series we obtain

f1,2�u1,2� = �
m1,2=0

�

f̃1,2�m1,2�cos��m1,2u1,2� . �A2�

If Eq. �A2� is substituted into Eq. �A1�, the trigonometric
integrals can be evaluated analytically resulting in the ex-
pression

I2�k� = 2k �
n1¯nk=N+1

�
1

��n1�2
¯ ��nk�2 �

m1,m2=0

�

f̃1�m1� f̃2�m2�

� J�m1,n1, ¯ ,nk�J�m2,n1, ¯ ,nk� , �A3�

where

J�n0,n1, ¯ ,nk� � �
0

1

du cos��n0u�sin��n1u� ¯ sin��nku�

=
1

2k+1ik �
�0,�1,¯,�k=�1

�1 ¯ �k

�� 1 if � = 0

�− 1�� − 1

i��
if � � 0� ,

� = �
j=0

k

nj� j . �A4�

We assume that f i, i=1,2 are quadratically integrable. For
such functions, to order 
, these functions are well repre-
sented by a finite series with M
1,2 terms

��
0

1

du	 f1,2�u� − �
m=0

M
1,2

f̃1,2�m�cos��mu�
2�1/2

� 
 .

�A5�

In the asymptotic limit we recognize the condition N
�M
1,2. Because the integral in Eq. �A4� is real, we observe
the separate contributions for even and odd values of k. At
k=1 and 2 we obtain, respectively,

J�n0,n1� =
1 − �− 1�n0+n1

��n1��1 − �n0/n1�2�
=

1 − �− 1�n0+n1

�n1
�
j=0

� 	n0

n1

2j

�A6�

and

J�n0,n1,n2� =
1

8
�n1,n2+n0

+ n1,n2−n0
+ n2,n1+n0

+ n2,n1−n0
 ,

�A7�

where n,m is the Kronecker delta. After substituting Eq. �A6�
into Eq. �A3�, we obtain

I2�1� = �
n=N+1

�
2

��n�4 �
j1,j2=0

�
�− 1� j1+j2

��n�2�j1+j2�

���− 1�nf1
�2j1��1� − f1

�2j1��0��

� ��− 1�nf2
�2j2��1� − f2

�2j2��0�� , �A8�

where the following equalities have been used:

�
m=0

M


�− 1�mf̃�m�m2j =
�− 1� j

�2j f �2j��1� , �A9�

�
m=0

M


f̃�m�m2j =
�− 1� j

�2j f �2j��0� . �A10�

The functions on the right-hand side of Eqs. �A9� and �A10�
are 
-approximants using a truncated Fourier series. The
leading term in Eq. �A8� is seen to be of third order

I2�1� = �
n=N+1

�
2

��n�4 ��− 1�nf1�1� − f1�0��

� ��− 1�nf2�1� − f2�0�� + O�N−5� . �A11�

Equation �A11� can be rewritten

I2�1� =
2

�4� 1

3N3 �f1�0�f2�0� + f1�1�f2�1��

− S4�N��f1�1�f2�0� + f1�0�f2�1��� + O�N−5� ,

�A12�

where

Sk�N� � �
n=N+1

�
�− 1�n

nk . �A13�

The asymptotic behavior in N can be estimated separately for
even and odd values of N. At even N, we have

Sk�N� = �
n=1

�
1

�N + 2n�k − �
n=0

�
1

�N + 2n + 1�k

=
1

Nk−1��n=1

�
1/N

	1 + 2
n

N

k − �

n=0

�
1/N

	1 +
2n + 1

N

k�

�
1

Nk−1��1/N

� dx

�1 + 2x�k − �
0

� dx

	1 +
1

N
+ 2x
k� = −

1

2Nk ,

�A14�

whereas at N odd, one finds the same estimate by modulus,
but with the opposite, “+” sign. Consequently, at any large N
we obtain

Sk�N� =
�− 1�N+1

2Nk . �A15�

After substituting Eq. �A7� into Eq. �A3�, we obtain
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I2�2� = �
n=N+1

�
1

��n�4� f̃1�0� f̃2�0�

+
1

2 �
m=1

M


f̃1�m� f̃2�m�
1 + 	m

n

2

�1 − 	m

n

2�2�

� �
n=N+1

�
1

��n�4� f̃1�0� f̃2�0� +
1

2 �
m=1

M


f̃1�m� f̃2�m�

+
3

2n2 �
m=1

M


m2 f̃1�m� f̃2�m�� , �A16�

where M
=min�M
1 ,M
2�. After integrating by parts, we
find

Kj � �
0

1

duf1
�2j��u�f2�u�

= �
0

1

duf1�u�f2
�2j��u�

=  j,0 f̃1�0� f̃2�0� +
1

2 �
m=1

M


��m�2j f̃1�m� f̃2�m� , �A17�

where j=0,1 ,¯. Using Eq. �A17�, Eq. �A16� can be rewrit-
ten as

I2�2� = K0 �
n=N+1

�
1

��n�4 + 3K1 �
n=N+1

�
1

��n�6 + ¯ ,

�A18�

with

K0 = �
0

1

duf1�u�f2�u� , �A19�

and

K1 = �
0

1

duf1
�2��u�f2�u� . �A20�

We observe that

�
0

1 �
0

1

du1du2�2�u1,u2� = �
n=N+1

�
1

��n�4 �
1

3�4N3 ,

�A21�

so that the leading term of Eq. �A18� is of the third order,
while the next term is of the fifth order. Moreover, as N
→� the “normalized” function �2�u1 ,u2� function becomes
a Dirac delta function

lim
N→�

�2�u1,u2�

�
0

1 �
0

1

du1du2�2�u1,u2�
= �u1 − u2� . �A22�

Equation �A22� has been proved in Appendix B of Ref. �19�.
For k�2 the number of terms in Eq. �A4� grows expo-

nentially with k, and the corresponding expressions for
asymptotic constants quickly become quite unwieldy. How-
ever, we can still obtain asymptotic estimates at k�3 by
replacing the summations involved with integrations. By vir-
tue of the Euler-MacLaurin summation formula �35�, these
replacements become exact in the limit that N→�. To dem-
onstrate the approach, we examine Eq. �A3� noticing that the
summation indices n1 , . . . ,nk begin with N+1. We next re-
place these summation indices with continuous variables x1
=n1 / �N+1� , . . . ,xk=nk / �N+1� and approximately replace
the summation over indices by an integration over the corre-
sponding x-variables with the integration range being defined
from 1 to �. For odd values of k=2p+1, p=0,1 , . . ., the
J-functions in Eq. �A3� are inversely proportional to ��N,
so that asymptotically we obtain

I2�k = 2p + 1� �
1

N2p+3�
1

�

¯�
1

� dx1 ¯ dxk

x1
2
¯ xk

2 �k�x1, ¯ ,xk�

=
Ck

Nk+2 . �A23�

Here, there is no need to specify the function �k; the only
requirement is the finiteness of the integral. At even values of
k=2p+2, p=0,1 , . . ., the J-functions in Eq. �A3� are propor-
tional to Kronecker deltas, which asymptotically tend to
Dirac delta functions as N→�. As a result, we obtain k−1
independent integration variables, which we set to be
x2 , . . . ,xk, with x1 being a function of these k−1 variables.
The asymptotic expression for the integral takes the form

I2�k = 2p + 2� �
1

N2p+3�
1

�

¯�
1

� dx2 ¯ dxk

x1
2
¯ xk

2 �k�x1, ¯ ,xk�

=
Ck

Nk+1 . �A24�

We next examine the asymptotic behavior of the three-
time integrals of the type encountered in Eq. �97�

I3�1,1,1� = �1 �
0
� du1du2du3f�u1�f�u2�

�f�u3���u1,u2���u2,u3���u1,u3� �A25�

and

I3�0,1,1� = �1 �
0
� du1du2du3f1�u1�

�f2�u2�f2�u3���u1,u2���u1,u3� . �A26�

Using the Fourier expansion of Eq. �A2�, we obtain
asymptotic results accurate to fifth order
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I3�1,1,1� =
1

8 �
m1,m2,m3=0

f̃�m1� f̃�m2� f̃�m3�

� �
n1,n2,n3=N+1

1

��n1�2��n2�2��n3�2 � �n2,n3+m1

+ n2,n3−m1
��n3,n1+m2

+ n3,n1−m2
��n2,n1+m3

+ n2,n1−m3
� �

1

5�6N5�3

4 �
m1,m2=0

f̃�m1

+ m2� f̃�m1� f̃�m2� +
1

4
� f̃�0��3� �A27�

and

I3�0,1,1� = �
m1,m2,m3=0

f̃1�m1� f̃2�m2� f̃2�m3�

� �
n1,n2,n3=N+1

1

��n1�2��n2�2

�
1

2
�n1,n2+m1

+ n1,n2−m1
�

��1 − �− 1�n1+m2�
n1

��n1
2 − m2

2�

� �1 − �− 1�n2+m3�
n2

��n2
2 − m3

2�

� �
n=N+1

1

��n�6 �
m1,m2,m3=0

f̃1�m1� f̃2�m2� f̃2�m3�

� �1 − �− 1�n+m1+m2��1 − �− 1�n+m3� . �A28�

With some algebra it can be verified that

�
0

1

du�f�u��3 =
3

4 �
m1,m2=0

f̃�m1 + m2� f̃�m1� f̃�m2� +
1

4
� f̃�0��3,

�A29�

�
m1,m2,m3=0

f̃1�m1� f̃2�m2� f̃2�m3�

��1 − �− 1�n+m1+m2��1 − �− 1�n+m3�

= f1�0��f2�0��2 + f1�1��f2�1��2 − �− 1�nf2�0�f2�1�

��f1�0� + f1�1�� �A30�

Using Eqs. �A29� and �A30�, Eqs. �A27� and �A28� can be
rewritten

I3�1,1,1� �
1

5�6N5�
0

1

du�f�u��3 �A31�

and

I3�0,1,1� �
1

5�6N5 �f1�0��f2�0��2 + f1�1��f2�1��2� .

�A32�

We can also obtain an asymptotic estimate for the
p-dimensional integral corresponding to a consecutively
linked diagram

Ip
cons = �

0

1

¯�
0

1

du1 ¯ dup��u1,u2�

���u2,u3� ¯ ��up−2,up−1���up−1,up�

� f1�u1�f2�u2�f2�u3� ¯ f2�up−2�f2�up−1�f1�up� .

�A33�

Substituting the expansion given in Eq. �66� for the
�-function, we obtain

Ip
cons = 2 �

n1,. . .,np−1=N+1

�
J1�n1�J1�np−1�

��n1�2
¯ ��np−1�2

� J2�n1,n2�J2�n2,n3� ¯ J2�np−2,np−1� , �A34�

where

J1�n� = �
0

1

du sin��nu�f1�u� , �A35�

J2�n1,n2� = �
0

1

du�cos ��n1 − n2�u − cos ��n1 + n2�u�f2�u� .

�A36�

Assuming the indices n ,n1 ,n2�N+1, N→� are large, one
can estimate the first integral using integration by parts. The
second integral can be estimated by neglecting the contribu-
tion from the highly oscillating cos ��n1+n2�u function. We
then obtain the following estimates:

J1�n� �
f1�0� − �− 1�nf1�1�

�n
, �A37�

J2�n1,n2� → J2�n1 − n2� = �
0

1

du cos���n1 − n2�u�f2�u� .

�A38�

Using the Fourier expansion �Eq. �A2�� and the property of
orthogonality of the cosine functions, the last integral can be
reduced to

J2�n1 − n2� =
1

2
�1 + �n1−n2�,0� f̃2��n1 − n2�� �A39�

Substituting Eqs. �A37� and �A39� into Eq. �A34�, we obtain
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Ip
cons = 23−p �

n1,. . .,np−1=N+1

�
�f1�0� − �− 1�n1f1�1���f1�0� − �− 1�np−1f1�1��

��n1�3��n2�2
¯ ��np−2�2��np−1�3

� �1 + �n1−n2�,0� f̃2��n1 − n2�� ¯ �1 + �np−2−np−3�,0� f̃2��np−2 − np−1�� . �A40�

It is convenient to replace the set of integer variables
n1 , . . . ,np−1 running from N+1 to infinity to the set of diag-
onal and off-diagonal integer variables

�n1,n2, . . . ,np−1� → �n1,�n2 = n2 − n1, . . . ,�np−1 = np−1 − n1� ,

�A41�

so that the denominator in Eq. �A40� in the new variables
becomes

D = ��n1�3���n1 + �n2��2
¯ ���n1 + �np−2��2

����n1 + �np−1��3. �A42�

When the diagonal variable n1� ��n2� , . . . , ��np−1�, we can
set �n2= . . . =�np−1=0 and obtain to leading order

D = ��n1�2p. �A43�

The arguments of functions in the second line of Eq. �A40�
depend only on the off-diagonal variables. For quadratically

integrable functions the Fourier coefficients f̃2���n��→0 as
��n�→�, and to 
 error, the function can be well approxi-
mated by a finite Fourier series, Eq. �A5�, with M
+1 terms.
The second line of Eq. �A40� makes sizable contributions to
the sum only at finite values of the off-diagonal variables
��n2� , . . . , ��np−1�, restricted from above by the number M
.
This upper bound implies that asymptotically at N�M
 the
approximation for denominator, Eq. �A43�, is justified and
Eq. �A40� can estimated to give

Ip
cons � C �

n1=N+1

�
1

��n1�2p = O	 1

N2p−1
 . �A44�

This asymptotic estimate is consistent with Eqs. �A12� and
�A32�, obtained in the particular cases p=2 and 3.

We can also examine the integral that corresponds to a
loop diagram

Ip
loop = �

0

1

¯�
0

1

du1 ¯ dup

���u1,u2���u2,u3� ¯ ��up−1,up���up,u1�

� f�u1� ¯ f�up� . �A45�

Substituting the expansion of the �-function as in Eq. �A40�,
the loop integral can be reduced to

Ip
loop = �

n1,. . .,np=N+1

�
1

��n1�2
¯ ��np�2

� J�n1 − np�J�n1 − n2� ¯ J�np−2 − np−1�J�np−1 − np� ,

�A46�

where

J�n� = �
0

1

du cos��nu�f�u� =
1

2
�1 + �n�,0� f̃�n� . �A47�

Here, the f̃�n�’s are the Fourier coefficients in the Fourier
expansion of the function f�u�. Using similar methods, we
obtain the same asymptotic relations for

Ip
loop = O	 1

N2p−1
 . �A48�

Similar arguments can be made to obtain the asymptotic
behavior for consecutive and loop diagrams given in Eqs.
�A44� and �A48�. In the case of a consecutive diagram we
have two end vertices 1 and p. Integration with respect to the
variables associated with the end vertices, u1 and up, gives
two extra factors in the denominator D of Eq. �A40�,
��n1�2→ ��n1�3 and ��np−1�2→ ��np−1�3. These limits arise
from the asymptotic estimate given in Eq. �A37�. For verti-
ces not at the ends, we obtain an extra ��u1 ,up� function
coupling vertices 1 and p, which adds an extra factor ��np�2

to the denominator of Eq. �A46�. Using the diagonal approxi-
mation n1= . . . =np−1 or n1= . . . =np for consecutive or loop
diagrams, we find that in both cases, the denominator has the
same scaling as ��n1�2p, from which the same asymptotic
expressions, Eqs. �A44� and �A48�, follow. We have already
faced the consecutive and loop diagrams for the particular
cases p=2 and 3, when we have observed the same
asymptotic behavior for the integrals I2�1� and I2�2� �com-
pare Eqs. �A12� and �A18��, and for the integrals I3�0,1 ,1�
and I3�1,1 ,1� �compare Eqs. �A32� and �A31��.

In the case of a centered diagram we need to estimate the
integral

Ip
cent = �

0

1

¯�
0

1

du1 ¯ dup��u1,u2���u1,u3� ¯ ��u1,up�

� f1�u1���
i=2

p

f2�ui�� . �A49�

Using the asymptotic expansion for the � function �Eq.
�A37�� and the Fourier expansion for function f1, we obtain
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Ip
cent = 2p−1 �

n1,. . .,np−1=N+1

� ��
i=1

p−1
f2�0� − �− 1�nif2�1�

��ni�3 �
� �

m=0

�

J�m,n1, . . . ,np−1� f̃1�m� , �A50�

where J�m ,n1 , . . . ,np−1� is defined in Eq. �A4�. Equation
�A50� is similar in structure to Eq. �A3�, and we use the
method of rescaled variables x1=n1 / �N+1� , . . . ,xp−1
=np−1 / �N+1� in analogy to the method used in deriving Eqs.
�A23� and �A24�. Separately examining the cases for even or
odd values of p, we find the same asymptotic behaviors in
both cases

Ip
cent = O	 1

N2p−1
 �A51�

APPENDIX B: PROOF OF EQ. (100)

Taking the Gaussian integral Eq. �100� over �1 , ¯ ,�p, we
obtain

gp = exp	1

2�
i=1

p ��
k=i

p


k
1/2�kid̂k�2


= exp	1

2�
i=1

p

�
k,k�=i

p


k
1/2
k�

1/2�ki�k�id̂kd̂k�
 �B1�

We next write the exponent of Eq. �B1� as

�p �
1

2�
i=1

p

�
k,k�=i

p


k
1/2
k�

1/2�ki�k�id̂kd̂k� =
1

2 �
k,k�=1

p

ckk�d̂kd̂k�,

�B2�

where the coefficients are defined by

ckk� � 
k
1/2
k�

1/2 �
i=1

min�k,k��

�ki�k�i. �B3�

We assume temporarily that k��k. After the scalar multipli-
cation of Eq. �21� by the vector g�k�, we obtain

gk�k � g�k� · g�k = �
i=1

k

�ki�k�i �B4�

Evidently, if k�k� Eq. �B4� remains valid if k↔k� so that

gk�k = gkk� = �
i=1

min�k,k��

�ki�k�i �B5�

at any k and k�. Consequently, we have

ckk� = 
k
1/2
k�

1/2gkk� � �kk�, �B6�

which proves Eq. �100�.
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