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In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in
the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distri-
bution functions through respective scalar kinetic equations and the magnetic field is governed by a vector
distribution function through a vector kinetic equation. The distribution functions are only coupled via the
macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty
of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice
Boltzmann framework. A 9-bit two-dimensional �2D� lattice scheme is used for the numerical computation of
the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation
of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
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I. INTRODUCTION

The multiscale mesoscopic lattice Boltzmann �LB� meth-
ods have already been proven to be an efficient and inexpen-
sive tool to simulate complex thermofluidic phenomena.
They have been successfully utilized as an alternative to the
conventional computational fluid dynamics �CFD� methods
for incompressible low-Reynolds number flows in topologi-
cally complex geometries, including porous media and par-
ticulate suspension multiphase flows. A distinct advantage of
this approach is that the method is fundamentally based on
microscopic particle models and mesoscopic kinetic equa-
tions, so that the microscale and mesoscale physics can be
elegantly bonded together. Another important advantage, in
comparison to the classical continuum based formulation, is
that it does not require an immediate explicit calculation of
fluid pressure, leading to time-efficient computations. Fur-
thermore, LB models are inherently parallelizable, since the
nonlocalities can be restricted to nearest-neighbor interac-
tions alone, and the only additional computations involved
are equivalent to that of a mere streaming step, which ren-
ders them suitable to address multiscale thermofluidic pro-
cesses over large-scale computational domains �1�.

Magnetohydrodynamics �MHD� has been a subject of in-
tense research for long time due to its overwhelming impor-
tance in numerous fields ranging from several natural phe-
nomena such as geophysics, astrophysics to many
engineering applications such as plasma confinement, liquid-
metal cooling of nuclear reactors, electromagnetic casting
and so on. Significant effort has so-far been directed toward
LB modeling of two-dimensional �2D� MHD flows �2–8�
to describe the isothermal hydro-magnetic interactions. Most
of them utilize a tensor distribution function fa

� �with �
=1, . . . ,S, where S is the total number of components in the
fluid system and a=0, . . . ,b, where b is the number of the

nearest-neighboring sites� whose moments produce all the
pertinent macroscopic quantities. However, this approach re-
quires the introduction of a second base vector for the dis-
crete particle velocities �5�. Although subsequent efforts have
also been devoted to optimize the approach by reducing the
complexity of the system, this formulation adds significant
burden on computation and consequently the extension to
three-dimensional �3D� geometry becomes reasonably cum-
bersome �9�. Dellar �10� proposed a better way to reduce the
computer memory by representing the magnetic field through
a vector valued distribution function, which obeys a kinetic
BGK �Bhatnagar-Gross-Krook�-type evolution equation. The
associated hydrodynamics is simulated by a typical BGK LB
model and the Lorentz force is introduced into the MHD
formulation by a heuristic extension of the equilibrium dis-
tribution function �EDF�. An important advantage of this for-
mulation is that the kinetic viscosity can be independently
adjusted from the magnetic resistivity. This model is ex-
tended to 3D in a straightforward manner by Breyiannis and
Valougeorgis �11� where the Lorentz force is introduced as a
pointwise force through a systematic and conventional ap-
proach based on the a priori derivation of the BGK equation
with an external acceleration term. It is to be emphasized
once again that all of the abovementioned LB models assume
an isothermal MHD flow and no serious attempt has so far
been made to compute the nonisothermal MHD flow in the
LB framework. However, recently, Niu et al. �12� developed
a LB model for ferrohydrodynamics to simulate temperature-
sensitive ferrofluids. The magnetic field is modeled in �12�
using a scalar magnetic potential and the model assumes the
collinear situation of magnetization and magnetic intensity in
a narrow range of magnetic field strength and temperature.

We aim here to propose a lattice kinetic simulation strat-
egy for nonisothermal MHD flows in an incompressible limit
�which is the limit of small Mach number, Ma→0�. The
model originates from a conventional single fluid hydrody-
namic description based on a scalar kinetic equation and sub-
jected to an external electromagnetic �Lorentz� force. The
thermal field is obtained by another scalar kinetic equation
following the passive scalar approach of He et al. �13� and
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incorporating the Joule heating effect and the magnetic in-
duction is modeled by a vector kinetic equation following
Dellar �10�. The Lorentz force and the Joule heating source
term are introduced in the respective kinetic equations by the
most formal technique following the extended Boltzmann
equation �13�. Since three separate kinetic equations are used
to simulate the fluid momentum, thermal and magnetic
fields, the kinetic viscosity, thermal diffusivity, and magnetic
resistivity can be independently adjusted which makes the
model suitable for variable Prandtl �thermal as well as mag-
netic� number MHD flows.

The rest of the paper is organized as follows: Section II is
devoted to the formulation of the scheme. We briefly present
the macroscopic conservation equations and subsequently
the evolution of hydrodynamic, magnetic and thermal LB
schemes along with the pertinent macroscopic quantities. In
Sec. III, numerical simulations are performed for a noniso-
thermal Hartmann flow in a 2D channel and results are com-
pared with the analytical results. The final section �Sec. IV�
summarizes the present findings.

II. MODEL FORMULATION

A. Macroscopic conservation equations

We start with the macrodynamical behavior of a classical
MHD system in the low Mach number incompressible limit
through the following set of governing equations, which con-
sist of the momentum conservation, magnetic induction and
energy conservation, assuming a linear, isotropic conductive
media and neglecting any phenomenological cross effects as:

���tu + u · �u� = − �p + � · � + FL �1�

�tB + � · �uB − Bu� = ��2B �2�

�cp��tT + u · �T� = � · ��t � T� + �:�u + q . �3�

Here u, p, B, and T denote the macroscopic velocity, pres-
sure, magnetic flux density and temperature, �=�����u
+�uT�−2 /3�� ·u�I� is the viscous stress tensor, �, �, �, cp,
and �t are the density, kinematic viscosity, magnetic resistiv-
ity, specific heat, and thermal conductivity of the electrically
conducting fluid, FL=J�B is the electromagnetic Lorentz
force and q=J ·J /�e represents the Joule heating source
term, where J is the electric current density, which is given
by the Ampere-Maxwell’s law as: J= �1 /	�� �B with 	
and �e being the magnetic permeability and electrical con-
ductivity. The electric field has been eliminated in Eq. �3�
using Ohm’s law as per the usual resistive MHD approxima-
tion �10�. Additionally, the solenoidal constraints � ·u=0 and
� ·B=0 are imposed. We neglect here the natural and Ma-
rangoni convection, polarization and magnetization, electro-
static induction and electrochemical reactions in the present
formulation.

B. Hydrodynamic LB scheme

The lattice kinetic model for the MHD system presented
above can be initiated by constructing a scalar kinetic equa-
tion directly from the continuous Boltzmann equation with

single-relaxation-time BGK approximation through the space
and time evolution of a single particle density distribution
function �DDF� f�x ,� , t�, which monitors the hydrodynamics
in presence of an external forcing parameter �F� as:

�t f + � · �f = − �1/
 f��f − feq� + F , �4�

where � stands for the particle velocity vector, 
 f is the
relaxation time and feq is the local Maxwell-Boltzmann type
EDF. Equation �4� is subsequently integrated along its char-
acteristic using the second order trapezoidal rule �13� to yield
the evolution equation of the discrete DDF f i�x ,�i , t�
�i� �0,N��

f i�x + �i�t,�i,t + �t� − f i�x,�i,t�

= −
�t

2
 f
�f i�x + �i�t,�i,t + �t� − f i

eq�x + �i�t,�i,t + �t��

−
�t

2
 f
�f i�x,�i,t� − f i

eq�x,�i,t��

+
�t

2
Fi�x + �i�t,�i,t + �t� +

�t

2
Fi�x,�i,t� , �5�

where, the index i stands for the N base vectors of the un-
derlying lattice type and �t denotes the time step. The dis-
crete EDF and the forcing parameter can be constructed as:

f i
eq = wi��1 +

��i · u�
cs

2 +
uu:��i�i − cs

2I�
2cs

4 �
and

Fi = wi��i − u

cs
2 +

��i · u�
cs

4 �i� · FL.

The weights wi and the discrete velocities �i are so chosen
that the mass and momentum are conserved and the symme-
try requirements are satisfied. For example, in the 2D nine
velocity �D2Q9� �N=8� model �refer to Fig. 1� the weights
are given by w0=4 /9, wi=1 /9 for i=1–4, wi=1 /36 for

2
56

103

7 8
4

FIG. 1. Two-dimensional nine speed �0–8� �D2Q9� model used
for hydrodynamic and thermal simulation. Thick lines with five
speeds �0, 1, 2, 3, 4� �D2Q5� represent the lattice used for magnetic
field simulation �9�.
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i=5–8; the discrete velocities are given by �0=0, �i
=�i�cos i , sin i� with �i=�, i= �i−1�� /2 for i=1–4, and
�i=	2�, i= �i−5�� /2+� /4 for i=5–8 and the sound speed
of the model cs=	RT0=� /	3 with � and R being the lattice
speed and gas constant, respectively. The forcing parameter
Fi satisfies the properties: 
i=0

N Fi=0 and 
i=0
N �iFi=FL.

By using the Chapman-Enskog multiscale expansion and the
solvability conditions 
i=0

N fi
�n�=0, 
i=0

N �i f i
�n�=0 for n

=1,2 , . . ., Eq. �5� correctly recovers the Navier-Stokes equa-
tions in the incompressible limit setting the kinematic viscos-
ity as �=cs

2�
 f
�−0.5��t, where 
 f

�=0.5+ �
 f −0.5� /��x , t ,T� is
the modified relaxation time for the nonisothermal flows �14�
with ��x , t ,T� being the local particle density, which is cal-
culated as the local sum over the particle velocity distribu-
tion according to ��x , t ,T�=
i=0

N fi�x , t ,T�. The hydrody-
namic macroscopic quantities are obtained from �=
i=0

N fi
and �u=
i=0

N �i f i+ ��t /2�FL.

C. LB scheme for magnetic field

The next task is to formulate a lattice kinetic equation for
the magnetic induction. Since it is not possible to develop a
kinetic formulation for the induction equation using a scalar
distribution function �10�, a vector distribution function
�VDF� g�x ,� , t� is introduced for monitoring the macro-
scopic magnetic field. This distribution function may be used
in a lattice different from that used for the hydrodynamic
DDF �10�. The evolution of g obeys a vector kinetic equation
of the form:

�tg + � · �g = − �1/
g��g − geq� , �6�

where � corresponds to the particle velocity vector �not nec-
essarily the same as ��, 
g is the relaxation time, and geq is
the local EDF. A trapezoidal rule �13� is applied subsequently
to obtain the discrete form of the evolution equation

g j�x + � j�t,� j,t + �t� − g j�x,� j,t�

= −
�t

2
g
�g j�x + � j�t,� j,t + �t� − g j

eq�x + � j�t,� j,t + �t��

−
�t

2
g
�g j�x,� j,t� − g j

eq�x,� j,t�� , �7�

where g j�x ,� j , t� �j� �0,M�� is the discrete VDF with the
index j stands for the M base vectors of the lattice used for
magnetic field calculation. The discrete EDF takes the form
gj�

eq =Wj�B�+
� j�

cg
2 �u�B�−B�u��� with �, � denoting the spatial

directions and ���. � j and Wj are the discrete velocity
vectors and the weights of a symmetric lattice satisfying

 j=0

M Wj =1 and 
 j=0
M Wj� j�� j�=cg

2���. Furthermore, the sym-
metry of the lattice must ensure 
 j=0

M Wj� j�=0 and

 j=0

M Wj� j�� j�� j�=0. By applying the Chapman-Enskog
multiple scale expansion along with the solvability condi-
tions 
 j=0

M g j
�n�=0 for n=1,2 , . . ., the macroscopic magnetic

induction equation �Eq. �2�� can be recovered from Eq. �7�
provided �=cg

2�
g−0.5��t. Hence the magnetic resistivity
may be adjusted independently of the kinematic viscosity.
Since the fourth order symmetry is not required in deriving
the induction equation, we may use a lattice with less sym-

metry than the nine-speed lattice used for hydrodynamics.
We choose a 5-bit lattice configuration �refer to Fig. 1� in 2D
�D2Q5� �M =4� for the magnetic field �10�. The correspond-
ing weights are W0=1 /3 and Wj =1 /6 for j=1–4 and cg
=� /	3 �same as 9-bit lattice�. The macroscopic magnetic
field vector can be obtained as B=
 j=0

M g j.

D. Thermal LB scheme

A relatively stable thermal LB model for the nonisother-
mal MHD flow can now be constructed from a passive scalar
kinetic equation following He et al. �13� through the space
and time evolution of a separate temperature distribution
function �TDF� h�x ,� , t� as:

�th + � · �h = − �1/
h��h − heq� + R + Q , �8�

where 
h is the relaxation time, heq is the local EDF,
R=RI+RII+RIII, with RI=−f��−u� · ��tu+ �u ·��u� /R,
RII=−feq���−u���−u� :�u� /R, and RIII=−�f − feq����
−u���−u� :�u� /R being respectively associated with the ki-
netic energy, compression work and viscous heat dissipation
�15�. In the incompressible limit �Ma→0�, RI, and RII

become negligible. Q in Eq. �8� represents a source term
taking into account the effect of the magnetic field. One may
obtain the evolution equation of the discrete TDF hi�x ,�i , t�
�i� �0,N�� by integrating the kinetic equation �Eq. �8�� using
a trapezoidal rule �13�

hi�x + �i�t,�i,t + �t� − hi�x,�i,t�

= −
�t

2
h
�hi�x + �i�t,�i,t + �t� − hi

eq�x + �i�t,�i,t + �t��

−
�t

2
h
�hi�x,�i,t� − hi

eq�x,�i,t��

+
�t

2
Ri�x + �i�t,�i,t + �t� +

�t

2
Ri�x,�i,t�

+
�t

2
Qi�x + �i�t,�i,t + �t� +

�t

2
Qi�x,�i,t� . �9�

The discrete EDF takes the form hi
eq=wi�cpT�1+

��i·u�
cs

2

+
uu:��i�i−cs

2I�
2cs

4 �=cpTfi
eq and Ri=Ri

III=−T�f i− f i
eq����i−u���i

−u� :�u� /cs
2, Qi=wiq�1+

��i·u�
cs

2 �+wicpT
�i·FL

cs
2 . The two terms

appearing in the expression of Qi represent, respectively, the
effects due to Joule heating and electromagnetic force field.
The second term specifically implies that the evolution of
the TDF is affected by the applied electromagnetic field
not only through the Joule heating term but also through
the force field �16�. In some limiting case where the Joule
heating term is negligibly small, the influence of the source
term Qi still exists. Clearly, Qi satisfies the properties:

i=0

N Qi=q and 
i=0
N �iQi=uq+cpTFL. By invoking the

Chapman-Enskog procedure along with these properties, it is
possible to recover the macroscopic energy conservation
equation �Eq. �3�� from Eq. �9� by setting the thermal diffu-
sivity as �=�t /�cp=cs

2�
g−0.5��t. Hence, the thermal diffu-
sivity can now be adjusted independently of the kinematic
viscosity and the model becomes suitable for varying Prandtl
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number flows. The thermal model is implemented in the
same lattice �D2Q9� used for the flow field calculation. The
macroscopic temperature can be computed as �cpT=
i=0

N hi
+ ��t /2�
i=0

N �Ri+Qi�.

E. Macroscopic quantities

In order to avoid implicitness of Eqs. �5�, �7�, and �9�, we
further introduce:

f̄ i = f i +
�t

2
 f
�f i − f i

eq� −
�t

2
Fi,

ḡ j = g j +
�t

2
g
�g j − g j

eq� ,

and

h̄i = hi +
�t

2
h
�hi − hi

eq� −
�t

2
�Ri + Qi� .

Consequently, the discretized evolution equations for f̄ i, ḡ j

and h̄i becomes

f̄ i�x + �i�t,�i,t + �t� = f̄ i�x,�i,t� −
�t

�
 f + 0.5�t�
� f̄ i�x,�i,t�

− f i
eq�x,�i,t�� +


 f�t

�
 f + 0.5�t�
Fi�x,�i,t� ,

�10�

ḡ j�x + � j�t,� j,t + �t� = ḡ j�x,� j,t� −
�t

�
g + 0.5�t�
�ḡ j�x,� j,t�

− g j
eq�x,� j,t�� , �11�

h̄i�x + �i�t,�i,t + �t� = h̄i�x,�i,t� −
�t

�
h + 0.5�t�
�h̄i�x,�i,t�

− hi
eq�x,�i,t�� +


h�t

�
h + 0.5�t�
�Ri�x,�i,t�

+ Qi�x,�i,t�� . �12�

The macroscopic quantities are now obtained from f̄ i, ḡ j, and

h̄i as, �=
i=0
N f̄ i, �u=
i=0

N �i f̄ i+ ��t /2�FL, b=
 j=0
M ḡ j, and

�cpT=
i=0
N h̄i+ ��t /2�
i=0

N �Ri+Qi�. The current density can
be computed from the moment of ḡ �10� as:

J� =
1

	
�� � B��

= −
1

cg
2
g	

�����

j=0

M

� j�ḡj� − �u�B� − B�u��� , �13�

where ���� is the alternating Levi-Civita tensor.

III. SIMULATION RESULTS

We simulate a thermohydrodynamically fully developed
Hartmann flow in a rectangular channel. The Hartmann flow

is a classical benchmark MHD problem, which is essentially
a stationary flow of an incompressible conductive fluid
between two parallel plates subjected to a uniform transverse
magnetic field. The two plates are located at y=+L and
y=−L. The fluid and the plates are kept initially at the same
temperature T0 and a uniform magnetic field of flux density
b0êy is applied perpendicular to the plates. The plates are
assumed electrically insulating and the thickness of the
plates is infinitesimally small such that any temperature
variation within the plate itself can be neglected. The flow is
considered to be along the x direction with only one compo-
nent of velocity u=uxêx. The flow induces an additional
magnetic field of flux density bxêx having only a x compo-
nent. Consequently, the total magnetic field becomes b
=bxêx+b0êy. From the divergence free conditions along with
the fully stabilized flow consideration we obtain �ux /�x=0,
�bx /�x=0, and �T /�x=0. Consequently the nonlinear terms
of the Navier-Stokes, magnetic induction and energy equa-
tions vanish. Further, neglecting the kinetic energy and com-
pression work and considering that all variables depend only
on y we obtain the simplified governing equations in an in-
compressible limit as �8,10,17�:

1

�

dp

dx
= �

d2ux

dy2 +
b0

�	

dbx

dy
�14�

b0
dux

dy
+ �

d2bx

dy2 = 0 �15�

�t
d2T

dy2 + ���dux

dy
�2

+
1

�e	
2�dbx

dy
�2

= 0. �16�

Equations �14�–�16�, subjected to the boundary conditions
ux��L�=bx��L�=0 and T��L�=T0, can be solved analyti-
cally �17� to obtain:

Ux�Y� =
Ha�cosh Ha − cosh�HaY��

Ha cosh Ha − sinh Ha
, �17�

FIG. 2. Dimensionless velocity profiles for different Hartmann
numbers. Comparison between analytical �solid lines� and LB �+�
results.
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Bx�Y� =
Rm sinh Ha

Ha cosh Ha − sinh Ha
�Ha cosh�HaY�

sinh Ha
− Y� ,

�18�

��Y� =
Ha2

�Ha cosh Ha − sinh Ha�2�1 − Y2

2
sinh2 Ha

+
cosh 2Ha − cosh 2HaY

4

−
2 sinh Ha�cosh Ha − cosh HaY�

Ha
� , �19�

where X=x /L, Y =y /L, P= p /�us
2, Ux=ux /us, Bx=bx /b0, �

=�t�T−T0� /��us
2, Hartmann number Ha=b0L	�e /��, kinetic

Reynolds number Re=usL /�, magnetic Reynolds number
Rm=usL /� with us= 1

2L−L
L ux�y�dy as the characteristic ve-

locity.
Simulation starts from an initial equilibrium state with

constant density �=1 and uniform magnetic field b0 in the y
direction. The normalized velocity, temperature and the hori-
zontal induced magnetic fields are set to zero initially
throughout the entire computational domain. It should be
mentioned here that the present kinetic scheme for magnetic
induction preserves a consistent discrete approximation to
� ·B=0 to machine round-off error �10�. To drive the flow a
small pressure gradient is imposed along x direction. For all
simulations an array of 400�50 cells are used and the simu-
lations are carried out until a dynamic steady state is reached.
The nonequilibrium extrapolation method �18�, which has a
good numerical accuracy and stability, is adopted to imple-
ment the boundary conditions. The central difference scheme
is adopted to discretize the term Ri. In the present study, we
explored values of relaxation parameters 
 f ,
g ,
h�0.5,
which are necessary for the stability of the numerical scheme
�19�.

Simulation results are obtained for Ha=1, 5, 10, and 20.
The Hartmann number is varied by changing the magnitude

of the uniform magnetic flux density b0. Figure 2 depicts the
streamwise dimensionless velocity profiles for different Hart-
mann numbers. It is observed that the relatively flatter veloc-
ity profiles at somewhat higher values of Ha tend to become
parabolic in nature, as Ha gradually decreases due to the
well-known Hartmann effect. The normalized horizontal in-
duced magnetic fields for various Hartmann numbers are
shown in Figs. 3 and 4 represents the dimensionless tempera-
ture. The temperature is found to increase as usual with in-
creasing Hartmann numbers due to increased Joule heating.
The corresponding analytical results are shown simulta-
neously in the figures and an excellent agreement with the
numerical simulation is observed. Similar trends for the ve-
locity and magnetic fields have also been found in �10�.
However, the present model differs with the existing isother-
mal LB MHD models �2–10� in the sense that it is capable
of capturing the temperature field driven by the viscous and
Joule heating through a passive scalar formulation in the LB
framework.

IV. SUMMARY

A LB model for simulating nonisothermal transport phe-
nomena encountered in classical MHD flows in 2D is pre-
sented in this article. The model uses three separate distribu-
tion functions and relaxation time �
 f �
g�
h� to monitor
the associated hydrodynamics, magnetodynamics and ther-
modynamics. Accordingly, it offers better flexibility to inde-
pendently control the fluid viscosity, magnetic resistivity and
thermal diffusivity. Additionally, the model satisfies the di-
vergence free constraint of the magnetic field and it can be
extended to 3D in a straightforward manner. The results for
the classical Hartmann flow show excellent agreement with
the corresponding analytical solution. This suggests that the
proposed model can be considered as a starting point for
simulating more complex nonisothermal MHD flows in the
LB framework.

FIG. 3. Dimensionless induced magnetic fields for different
Hartmann numbers. Comparison between analytical �solid lines�
and LB �+� results.

FIG. 4. Dimensionless temperature profiles for different Hart-
mann numbers. Comparison between analytical �solid lines� and LB
�+� results.
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