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We derive the Euler-Lagrange equations for a large class of variational problems on curves. Our result
generalizes a recent result obtained in the literature. Moreover, it is simple and self-contained. It directly yields
Euler-Lagrange equations in the form of equilibrium equations for the internal force and moment.
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I. INTRODUCTION

In the past years there has been growing interest in one-
dimensional continuum models for rodlike objects arising in
biology and engineering. Recently, one-dimensional varia-
tional problems have turned out to be relevant also for the
description of pure bending deformations of thin elastic
sheets �cf. �1–3��. Several of these one-dimensional models
lead to variational problems on space curves which are in-
variant under rigid motions. The solutions to variational
problems usually satisfy the so-called Euler-Lagrange �or
equilibrium� equations associated with the given functional.

There exists a large body of literature in which variational
derivations of equilibrium equations for curves are given
�cf., e.g., �4,5��. The situation considered in this paper and,
more generally, in rod theory is somewhat more general than
that of a single curve �. Namely, one considers a framed
curve, i.e., a pair consisting of a space curve � together with
an adapted �right-handed� orthonormal frame r whose col-
umns are called Cosserat directors �cf. �6,7� and Chap. 8 in
�8��. For every space curve there is a natural adapted ortho-
normal frame: the so-called Frénet frame, consisting of the
tangent to the curve, the normal, and the binormal. However,
one can also choose other adapted frames. Since r takes val-
ues in SO�3�, it automatically satisfies an ordinary differen-
tial equation �ODE� of the form

r��t� = W�t�r�t� ,

where W�t� is a skew-symmetric 3�3 matrix for each pa-
rameter value t. In other words, there exist functions �, �,
and � satisfying Eq. �3�. They are determined by Eq. �3�, and
they are the curvatures and torsion of the framed curve �� ,r�.

There is also a large body of literature concerned with the
variational derivation of equilibrium equations for framed
curves; cf., e.g., �9–11�, Sec. 2.10 in Antman’s book �8�, Sec.
6.2 in �12�, as well as Chap. XI, Sec. 3 of Salencon’s book
�5�. The classical derivation as, e.g., in �11� usually amounts
to

�� = � + ��̇ + o���, r� = r + �ṙ + o��� �1�

in our notation. Here, the correction o��� in the second for-
mula is necessary because of the condition r��SO�3�, and
for the same reason the virtual displacement ṙ must be �up to
a rotation� a skew-symmetric matrix.

In �13,14� the authors used variations of the curve to ob-
tain the Euler-Lagrange equations associated with function-
als depending on the torsion and on the curvature of the
curve. Recently, certain formulas derived by Anderson in
�15� have been used to derive Euler-Lagrange equations for a
whole class of one-dimensional variational problems �cf.
�2,16��. The particular formulas from �15� that have been
used are slightly complicated, and their range of applicability
is limited. In addition, their derivation as given in �15� relies
upon a rather abstract and complicated mathematical ma-
chinery, called the variational bicomplex.

As observed in �2� it is, in principle, possible to derive the
Euler-Lagrange equations for energy functionals like Eq. �2�
making variations of the curve. However, it was observed in
�2� that such an approach can lead to rather complicated
expressions.

If the energy functional is of the form �2� then it seems
more natural to directly perform variations ��=�+��̇ and so
on and then to define the resulting varied curve and frame by
integration. This is the idea exploited in the present paper.
Calculating the variational derivative of an energy functional
like Eq. �2� under these variations is straightforward. One
useful difference to direct variations of the curve �i.e., adding
a virtual displacement to the curve� is that �� is automatically
parametrized by arclength. The idea of performing variations
of the curvatures is also at the heart of the example from �15�
which was used as a starting point in �16�. It has been sug-
gested that the formulas obtained using the machinery devel-
oped in �15� might be the only approach to derive equilib-
rium equations for some more complicated Lagrangians
among those considered in �16�.

The derivation given in the present paper shows that the
results of �16� can be derived without using this machinery.
In fact, our main result is more general than that in �16�.
Moreover, the derivation presented is simple and self-
contained. Instead of using the variational bicomplex formal-
ism, it is entirely based on easy calculations and on the
Lagrange multiplier rule. Thus it is, in spirit, quite close to
the classical ideas described above, and it might not be new
to specialists. Being self-contained, the derivation given be-
low is rather flexible. It can easily be adapted to a range of
related problems which do not fall into the framework of
�16�. For example, one can consider several kinds of bound-
ary conditions. At the end of this paper, we give some simple
examples for such extensions.

The Euler-Lagrange equations found here automatically
arise in the form of equilibrium equations for the internal*p.hornung@bath.ac.uk
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force and moment. Another advantage of the method pre-
sented here is that there are no hidden assumptions whereas,
when using a large machinery as a black box, it can some-
times be difficult to trace back the hypotheses.

The Euler-Lagrange equations derived in this paper can
be used as a general formula into which one can plug in the
energy density �or Lagrangian� of a given variational prob-
lem in order to obtain the corresponding equilibrium equa-
tions. However, we also emphasize the method of derivation.
It consists of few and simple steps, all carried out in detail
below and each of which can be modified as need arises.

II. LAGRANGIAN

We start by formulating the variational problems to which
we will apply our method. Let T	0 and let � : �0,T�→R3 be
an arclength parametrized curve, i.e., ����=1. Let r : �0,T�
→SO�3� be such that the first row agrees everywhere with
��. Assume that the pair consisting of � and r is an extre-
mum of an energy functional of the form

E��,r� = �
0

T

L����,���,���� . �2�

Here, L is the Lagrangian, �f�= �f , f� , f� , . . . , f �N�� �where N
is some integer fixed from the outset�, and f �k� denotes the
kth derivative of the function f . The functions �, �, and � are
curvatures and torsions of the framed curve consisting of �
and r, in the sense that r solves the following ordinary dif-
ferential equation:

r� = � 0 � �

− � 0 − �

− � � 0
�r . �3�

For instance, if ���0 and if we set v=�� / ���� and n=��
�v then r= ��� ,v ,n� is just the well-known Frenet frame of
�. It satisfies the Frenet equations, which are just Eq. �3�
with �	0. Hence, the situation considered here is more gen-
eral than that in �16�. One motivation to consider the more
general form �3� is that the general equilibrium equations for
inextensible elastic films derived in �1� arise from a varia-
tional problem on curves satisfying Eq. �3� with �	0, but
��0 and ��0. Any orthonormal frame r along a curve �
satisfies a system of the form �3�; cf. �13� for a more detailed
discussion of this fact and of various kinds of adapted ortho-
normal frames.

III. VARIATIONS

By translating and rotating our coordinate system, we
may assume with no loss of generality that ��0�=0 and that
r�0� agrees with the 3�3 unit matrix. By definition, the first
row of r agrees with ��. We denote the second row of r by v
and the third row by n, that is, r= ��� ,v ,n�T. Then the initial
data become ���0�= �1,0 ,0�, v�0�= �0,1 ,0�, and n�0�
= �0,0 ,1�.

In order to derive the Euler-Lagrange equations satisfied
by a critical point �� ,r� of E, we consider the natural varia-
tions ��=�+��̇, ��=�+��̇, and ��=�+��̇, where �̇, �̇, and

�̇ are arbitrary smooth functions on �0,T� with zero boundary
values. The associated frame r�= ���� ,v� ,n��T is obtained by
solving Eq. �3� with �+��̇ instead of �, etc., and imposing
the same initial values as the original frame, i.e.,
(����0� ,v��0� ,n��0�)= (���0� ,v�0� ,n�0�). The new �arclength
parametrized� curve �� is defined simply by integrating, i.e.,
���t�=
0

t ���.
Writing �̇�=��d /d����=0��� and so on, and taking derivatives

with respect to � in the analog of Eq. �3� satisfied by
���� ,v� ,n��, we see that ��̇� , v̇ , ṅ� solve the following system
of ODEs:

��̇�

v̇

ṅ
��

= � 0 � �

− � 0 − �

− � � 0
����̇

v̇

ṅ
� + � 0 �̇ �̇

− �̇ 0 − �̇

− �̇ �̇ 0
����

v

n
� .

�4�

One can use the variation of constants formula to deduce
from this the expression for ��̇� , v̇ , ṅ�. Defining


 = − �̇�� − �̇v − �̇n �5�

and ��t�=
0
t 
, the result can be concisely written as follows:

�̇� = � � ��,

v̇ = � � v , �6�

ṅ = � � n .

Let us check the correctness of these formulas: using Eqs. �3�
and �6� we have

�� � v�� = � � �− ��� − �n� + 
 � v

= − ��̇� − �ṅ − �̇�� − �̇n .

Performing similar calculations with n and �� instead of v,
we find that ����� ,��v ,��n� solves the ODE system
�4�. Since �̇��0�= v̇�0�= ṅ�0�=0 and since ��0�=0, the
uniqueness of solutions to ODEs �cf., e.g., �17�� proves that
Eqs. �6� are correct.

IV. CONSTRAINTS ON THE VARIATIONS

The constraints on the variations that were used in �16�
are

���T� = ��T� , �7�

„����T�,v��T�,n��T�… = „���T�,v�T�,n�T�… . �8�

These constraints are implicitly imposed in �16� because they
are imposed in �15�. They are quite natural, because they
arise automatically if one considers variations of � that van-
ish near the end points, but they are not the only possible
ones; see Sec. 3 in �13� and the examples below.

It is useful to strip off redundancies from constraint �8�:
obviously, since the frames are in SO�3�, we do not need
nine equations to ensure Eq. �8�. Thus, we replace this con-
straint with the equivalent one,
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R��T� = 0, �9�

where we have introduced

R� = �v� · n��� − ���� · v�v + ���� · n�n .

Clearly, Eq. �8� implies Eq. �9� because ��, v, and n are
orthogonal to each other. Conversely, if Eq. �9� holds, then
v��T� ·n�T�=����T� ·v�T�=����T� ·n�T�=0. It is easy to prove
that this implies Eq. �8�, provided that � is small. Of course
there are other equivalent ways of expressing Eq. �9�, but
this one is particularly convenient, as will be seen below.

A key observation is that constraints �7� and �9� are
just some integral constraints on ��, ��, and ��: setting
G1��� ,�� ,���=���T� and G2��� ,�� ,���=R��T�, they have
the general form

G1���,��,��� = 0, G2���,��,��� = 0. �10�

Notice that G1 and G2 are just some smooth nonlinear func-
tionals defined on the function space in which the triple
�� ,� ,�� lives �typically L2(�0,T� ,R3), thus allowing for very
irregular �, �, and �, if needed�.

V. EULER-LAGRANGE EQUATIONS

Define the energy functional E on the space of curvatures
by

E��,�,�� = �
0

T

L����,���,���� .

Since �� ,r� is an extremum for E under constraints �7� and
�9�, the triple �� ,� ,�� is an extremum for E under these
constraints—now interpreted in form �10�. Thus, the
Lagrange multiplier rule �cf., e.g., �18�� tells us that there
exist �0�R and �1 ,�2�R3, with at least one among �0, �1,
and �2 being nonzero, such that the following equation
holds:

�0�
0

T� d

d�
�

�=0
L���,��,���

= �1 ·� d

d�
�

�=0
���T� + �2 ·� d

d�
�

�=0
R��T� . �11�

The case �0=0 cannot be ruled out a priori. It arises if the
boundary conditions contain redundancies. Ours do not con-
tain any, unless the solution curve is degenerate. We will
prove this later. Now we consider the generic case when
�0�0, so after dividing Eq. �11� by �0 we may assume with-
out loss of generality that �0=1. After integrating by parts,
the left-hand side of Eq. �11� is simply

�
0

T �
k=0

N

�− 1�k����k�L��k���̇ + �
0

T �
k=0

N

�− 1�k����k�L��k���̇

+ �
0

T �
k=0

N

�− 1�k����k�L��k���̇ . �12�

As before, f �k� denotes the kth derivative of f .

To calculate the right-hand side of Eq. �11�, we use Eq.
�6� to find that simply

� d

d�
�

�=0
R��T� = ��T� ,

� d

d�
�

�=0
���T� = �

0

T

�̇� = �
0

T

� � ��.

By integration by parts, the right-hand side of Eq. �11� there-
fore equals

�
0

T

�1 · � � �� + �2 · 
 = �
0

T


 · ̃ , �13�

where we have introduced

̃ = �2 − �1 � �
t

T

��.

The functions �̇, �̇, and �̇ are arbitrary and mutually inde-
pendent. Thus, inserting Eqs. �12� and �13� into Eq. �11� and
recalling definition �5� of 
, we obtain the “constitutive”
Euler-Lagrange equations,


k=0

N

�− 1�k����k�L��k� = − 3,


k=0

N

�− 1�k����k�L��k� = − 2,


k=0

N

�− 1�k����k�L��k� = − 1, �14�

where 1= ̃ ·�� and 2= ̃ ·v and 3= ̃ ·n. Set 
= �1 ,2 ,3�T and �= ��1 ,�2 ,�3�T, where �1=�1 ·��, �2

=�1 ·v, and �3=�1 ·n. Then using ̃�=�1��� and Eq. �3�,
we find that  and � satisfy the “structural” equations

� = � 0 � �

− � 0 − �

− � � 0
� + � 0

�3

− �2
� , �15�

�� = � 0 � �

− � 0 − �

− � � 0
�� . �16�

Coupling system �14�–�16�, we obtain the closed Euler-
Lagrange system.

VI. DEGENERATE CASE

To complete the proof, we finally consider the degenerate
case when �0=0 in Eq. �11�. This amounts to having zero on
the left-hand sides of system �14�, i.e.,

 = 0 �17�

identically. Hence, �=0, so Eq. �15� implies that �3=�2
=0. Hence, their derivatives vanish as well, so Eq. �16�
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implies that �1�=0, that ��1=0, and that ��1=0. Hence,
�1=0 unless both � and � vanish identically. But if � and �
vanish identically, then Eq. �3� implies that ��=0, i.e., that �
is a straight line, and one can explicitly solve Eq. �3�. Hence,
in this case the solution is trivial. It remains to rule out the
case that �1=�2=�3=0. By definition of these functions, this
implies that �1=0. But then Eq. �17� implies that also �2
=0. This contradicts the fact that not all multipliers �0, �1,
and �2 are zero. Thus, the only possibility is the trivial one
considered above when � and � vanish identically and � is a
straight line.

VII. RELATION TO A RECENT RESULT
IN THE LITERATURE

The system �14�–�16� generalizes the system obtained in
�16�. To see this, replace the symbols Ft, Fn, and Fb in �16�
with −�1, −�2, and −�3, and the symbols Mt, Mn, and Mb
in �16� with −1, −2, and −3. Moreover, recall that mul-
tiplication of a skew-symmetric matrix is equivalent to tak-
ing the vector product with an appropriate vector: we define
�= �−� ,−� ,��T. �Up an irrelevant sign convention regarding
�, this is the same � as in �16�, except that in �16� one has
�	0.� Then Eq. �16� is equivalent to

�� + � � � = 0, �18�

and Eq. �15� is equivalent to

� + � �  + �1,0,0�T � � = 0. �19�

Observe that the symbol t in formula �3� of �16� is just the
vector �1,0 ,0�T, according to their notational convention.
Now evidently Eqs. �18� and �19� are equivalent to Eq. �3� in
�16� and the first and third equations in Eq. �14� are equiva-
lent to Eq. �4� in �16�. The second equation in Eq. �14� ap-
pears because we allowed � to be nonzero. Finally, notice
that if, as in �16�, the Lagrangian L also depends on some
further functions �1 , . . . ,�m and their derivatives, then one
trivially obtains further Euler-Lagrange equations of the
form

��k
L − ���k

L�� + ���k
L�� + ¯ = 0

simply from the variations ��k��=�k+��̇k. This is Eq. �5� in
�16�.

VIII. MODIFICATIONS AND EXAMPLES

As the results obtained above generalize those in �16�, all
examples considered in that paper fall into the present frame-
work. We have proven that the Euler-Lagrange system
�14�–�16� holds for them.

However, the method outlined above allows one to con-
sider modifications of these examples as well. For instance, it
allows more general constraints than just Eqs. �7� and �8�. In
other words, it allows one to study not only extrema among
all curves with a fixed end point and running into this end
point by a fixed angle, but also extrema among a class of
curves with other kinds of conditions at the end points. For
instance:

�i� One very natural and straightforward modification is to
drop constraint �8�. If we interpret � as the centerline of a
rod, then this amounts to fixing the end point of the center-
line while allowing the directors to be twisted and letting �
run into its end point from arbitrary angles. The correspond-
ing Euler-Lagrange equations are obtained from the above by
setting �2=0. This can be checked by going through the
above derivation, but without including condition �8�.

What does �2=0 imply for system �14�–�16�? To see this,
we check how that Lagrange multiplier appears in that sys-
tem: looking at the definition of the i, we see that �2=0
if and only if 1�T�=2�T�=3�T�=0. Thus, we have
proven that if � ,r is a nontrivial �i.e., � is not a straight
line� extremum of Eq. �2� under the boundary condition
�7� alone, then there exist solutions  ,� of system
�15� and �16� such that Eqs. �14� are satisfied and such that
1�T�=2�T�=3�T�=0.

�ii� Another simple modification is to allow the curve to
slip within a certain plane rather than fixing its end point. A
motivation for this comes from the Euler-Lagrange equations
for developable surfaces as derived in �1�. It corresponds to
imposing constraint �8� together with the constraint

����T� − ��T�� · w = 0, �20�

for some fixed vector w�R3. Thus, Eq. �20� replaces the
stronger end point fixing constraint �7�. In order to include
this constraint we now define

G1���,��,��� = ����T� − ��T�� · w .

Then Eq. �11� becomes

�0�
0

T� d

d�
�

�=0
L���,��,���

= �̂1 ·� d

d�
�

�=0
���T� · w + �2 ·� d

d�
�

�=0
R��T� .

We could now repeat the whole procedure outlined above.
However, we can also observe that this equation becomes
Eq. �11� if we set

�1 = �̂1w .

Therefore, analogous to the vanishing of �2 in the previous
example, here we have the extra bit of information that �1 is
parallel to w. �One has more information because Eq. �20� is
only one constraint, whereas Eq. �7� is three.� How does this
knowledge appear in system �14�–�16�? Looking at the defi-
nition of � we see that it means that ��0� is parallel to w.

We conclude that if � ,r is a nontrivial �i.e., � is not a
straight line� extremum of Eq. �2� under the boundary con-
ditions �8� and �20�, then there exist solutions  ,� of system
�15� and �16� such that Eqs. �14� are satisfied and such that
��0� is parallel to w.

�iii� One can also impose an extra constraint like 
0
T�

=const as in �13�, simply by including G3���=
0
T� as a third

constraint functional. Summarizing, imposing other con-
straints than Eqs. �7� and �8� above will simply lead to dif-
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ferent constraint functionals G1 ,G2 ,G3 , . . . to which one can
still apply the same scheme as the one carried out above for
cases �7� and �8�.

�iv� A natural example which falls into our framework
arises in a variant �obtained in �1�� of the equilibrium equa-
tions from �2�. It involves lines of curvature �instead of
geodesics as in �2�� on a surface. A line of curvature can be
regarded as a curve together with an orthonormal frame r,
called the Darboux frame, which satisfies Eq. �3� with �
	0, but neither � nor � vanishes identically.

Observe that none of the above modifications �i�–�iii� sat-
isfies the conditions required in �16�. Also example �iv� does
not fall into the framework of �16�.

IX. CONCLUSION

It is possible to generalize the results from �16�, and to do
so by a different method than the one used in �16�. This

different method has several features: it is simple and self-
contained, and it makes no hidden assumptions. It also al-
lows the Lagrangian to depend on three curvatures rather
than just two. This allows one to study framed curves, which
arise, e.g., in problems for curves lying on a nonflat surface.
In fact, it applies to any situation where one has some ortho-
normal frame along the curve. Finally, it allows one to con-
sider more general boundary conditions �cf. Sec. VIII�. From
a formal viewpoint, an interesting feature of the method de-
scribed above is that it is basic and self-contained �up to the
use of the Lagrange multiplier rule�.
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