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Breathers in a nonautonomous Toda lattice with pulsating coupling
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We study a nonautonomous Toda lattice, with a periodically switched on-off coupling coefficient, describing
a pulsating strength of neighbor particle interaction. It is shown that when the uncoupled oscillations are linear
and under appropriate conditions for the duration of the time intervals where the coupling is switched off,
breather solutions can be obtained analytically. Their dynamics and collisions are related to the soliton dynam-
ics of the corresponding autonomous Toda lattice, while a “ratchet” effect is shown to result in breather
deceleration, providing a mechanism for breather velocity and collision control.
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I. INTRODUCTION

Systems of coupled nonlinear oscillators forming finite or
infinite lattices are widely utilized to model a large variety of
phenomena in different areas of pure and applied science.
The respective studies have been initiated as early as in 1953
by numerical experiments on the well-known FPU (Fermi-
Pasta-Ulam) model [1]. A few years latter the continuum
limit of the FPU model, namely the Korteweg—de Vries
(KdV) equation, was shown to have self-localized soliton
solutions that remain invariant under propagation and inter-
act elastically [2]. Although integrability, required for soliton
formation, is a very strict property which is very rarely met
in physical models, there are many physical systems that can
still have self-localized waves exhibiting robust propagation
which are called solitary waves. The stability properties and
the collisional characteristics of the latter are much more
complex than those of their integrable counterparts.

Solitons and integrable systems of infinite degrees of free-
dom have been the subject of intense theoretical research and
a set of integrable lattice equations have been studied and
solved with utilization of the inverse scattering transform
technique [3]. Such equations include for example the Toda
lattice [4], the Ablowitz-Ladik equation [5], and the
Calogero-Moser N-body problem [6]. From a more practical
point of view, applications of soliton theory have been
emerged in many different areas of physics in addition to
mechanical systems [7,8], including solid state physics of
polymers [9], biophysics [10], and Josephson junction arrays
[11]. More recently, discrete solitons have been the subject of
increasing interest in the field of nonlinear optics, where they
can be experimentally observed in periodic photonic struc-
tures and waveguide arrays and provide potentiality for tech-
nological applications [12-16]. Furthermore, similar dis-
cretelike soliton formation and dynamics are encountered in
Bose-Einstein condensates trapped in optical periodic poten-
tials [17,18].

There are several cases of physical interest where the re-
spective lattice models explicitly depend on time, i.e., the
underlying dynamical system is nonautonomous. Such a de-
pendence may result from the application of a driving force
or an external field and appears either as an additional time-
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dependent term or as a time-dependent parameter in the lat-
tice equations of motion [19-27]. The explicit time depen-
dence of the lattice equations result in qualitatively different
dynamics with respect to the time-independent cases, since it
adds an additional (external) degree of freedom. When the
time dependence can be considered as a small perturbation to
a time-independent integrable Hamiltonian system the well-
known Kolmogorov-Arnold-Moser (KAM) theorem [28] al-
lows for the qualitative study of the perturbed system. Ac-
cording to KAM theorem, for small enough perturbations the
invariants of the motion persist although slightly modified,
while resonances between the degrees of internal degrees of
freedom and the external time dependence modify drastically
the local topology of the phase space. On the other hand,
there exist no systematic methods for studying cases where
the time dependence is strong enough to be considered as a
perturbation. However, the strong explicit time dependence
of certain characteristics of the lattice is related to interesting
effects corresponding to parametrical driving and respective
control capabilities of lattice dynamics.

II. NONAUTONOMOUS LATTICES WITH PULSATING
COUPLING

A. Model

In this work we study a specific form of strong parametric
driving of a nonlinear lattice, where the coupling between
nearest neighbors depends explicitly on time. More specifi-
cally we study the case of a lattice with a periodically on-off
switched coupling, describing a pulsating strength of neigh-
bor particle interaction. It is shown that, when the uncoupled
oscillations are linear and under appropriate conditions for
the duration of the time intervals where the coupling is
switched off, the existence of solitons and their dynamics
under collision in the respective autonomous system with
nonzero coupling, results in the existence of breathers with
similar dynamics in the parametrically driven nonautono-
mous system. In general, the results apply in cases where the
respective autonomous nonlinear lattice (when the coupling
is switched on) is either integrable or nonintegrable.

The Hamiltonian describing particle dynamics in a lattice
with an additional external on-site potential has the form
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where y, denotes the displacement of the nth particle from
the equilibrium position, @ is the potential energy of the
nearest-neighbor interaction and @, is the on-site potential.
Note that without the explicit time dependence of the poten-
tials ® and ®, the lattice is autonomous and the Hamiltonian
is a constant of the motion. The equations of the motion are

y.n +(I),(yn_yn—l’t) _(I),(yn+l _yn’t) +(I)(,)(ynat) =O» (2)

where the dot denotes time differentiation and the prime de-
notes differentiation with respect to y,. The explicit time
dependence of the interaction and the on-site potential can be
due to various physical mechanisms parametrically driving
the lattice. For the on-site potential the time dependence can
be caused by any external field acting either uniformly
[P5(y,,1)=0] or nonuniformly [Pg(y,.)#0] on all sites.
The latter can have the form of a wave standing or propagat-
ing along the lattice. Lattice dynamics are drastically af-
fected by such a parametric driving and soliton motion de-
pends crucially on the amplitude and the frequency of the
drive [23,24]. On the other hand, the explicit time depen-
dence of the interaction potential results in time-dependent
(linear and/or nonlinear) diffraction properties of the lattice.
Various physical mechanisms can be the source of such an
explicit time dependence. For example, in a chain of motile
elements the interactions may depend on time due to internal
variables with autonomous dynamics which can modify the
coupling strength or alternate the character of the interaction
between attractive or repulsive. Such a interaction potential
could have the form ®(y,-y,_1.0=V,(0,1,...,0,) ¥,
—¥,_1), where 6, (i=1...M) are internal variables represent-
ing the state of each motile element [25]. Another case of
time-dependent interaction potential is a system consisting of
moving particles connected by bonds which are sensitive to
temperature variations or light incidence. In such lattices, the
free equilibrium rest lengths are time dependent according to
the varying external field, inducing an explicit time depen-
dence on the interaction potential P(y,—y,_;.t)=V(y,
—y,-1+a,(t)). For example, this is the case of a Frenkel-
Kontorova chain consisting of nanosize clusters (particles)
and photochromic molecules (bonds) where a modulated in-
cident light determines the time dependence of the interac-
tion [26]. Such systems have interesting applications in con-
cepts related to microscopic engines on the atomic scale
where directed motion of the chain can perform useful func-
tions [27]. In general, it can be shown, by appropriate change

PHYSICAL REVIEW E 81, 066601 (2010)

u(t)
1 p—
T+c < > <>
M Tf)
u
o L 4
T
-C
1t 4
0 T

FIG. 1. (Color online) General form of the function u(z).

of variables, that an external driving term gives rise to time-
dependent interaction potentials. Considering the system

).in+ (I),(y” _yn—l) - CI),(yn+l _yn) +(I)(,)(yn) =fn(t) (3)

and transforming to a new variable set x,=y,+g,() with
gn(t)z_fn(t) we have

jc.n + q),(xn — Xyt Agn([)) - (I),(xn+l - Xt Agn+l(t))
+Do(x, +8,(1) =0, 4)

where Ag,(1)=g,(t)—g,-,(¢) and the interaction potential de-
pends explicitly on time.

Since the explicit time dependence of the interaction po-
tential is in general due to external fields with parameters
that can be selected at will, it is interesting to study the
relation between the dynamics of an autonomous lattice and
a corresponding nonautonomous lattice and investigate the
potentiality of controlling soliton formation and propagation
properties by appropriate external fields. In the following we
consider a case where the interaction potential in Eq. (1) has
the following form:

CD(yn_yn—l’t)zu(t)q,(yn_yn—l) (5)

with u representing the effect of the time-varying external
fields to the interaction potential. This form of time depen-
dence corresponds to flashing ratchet potentials [21]. More
specifically, we focus on the case where the coupling (inter-
action potential) is periodically on-off switched, so that u(z)
is a periodic piecewise constant function taking the values 0
and *1, with the sign change corresponding to alternation
between an attractive and repulsive character of the interac-
tion. Therefore, u(¢) is defined as

+1, kKT<t=kT+T,.
KT+ T, <t=kT+T, +T"

u(t) =

-1, KT+ T, +TV <t=kT+T, +TV+T.,

(6)

0, kT+T,.+ Tf,l) +T_ <t=kT+T,.+ Tfll) +7T_.+ Tff)
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where k=0, =1, +2,... The durations of the time intervals
where the coupling is on and off are 7., Tftl’z), respectively,
and T=T, +T_.+ Tf})+T§t2) is the period of u(r) (Fig. 1). Un-
der such a time dependence, the evolution of the system is
determined in two alternating phases: (a) in the coupled
phase where the coupling with the nearest neighbors is
switched on, the system evolves as in the case of the respec-
tive autonomous lattice; (b) in the uncoupled phase where
the coupling is switched off each particle (lattice site) oscil-
lates independently in the external on-site potential. In the
following, we show an example of the critical dependence of
lattice soliton formation and dynamics on the durations of
time intervals T ., Tfll’z) and investigate their capabilities as
control parameters.

B. Analytical breather solutions

In the following we focus on the case where during the
uncoupled phases, the external potential corresponds to a lin-
ear restoring force, i.e.,

w2
(1) =00y +u W), (7)

where \Iff)"l)(yn) is a nonlinear on-site potential acting only at
the coupled phase and v(r) is any function which is piece-
wise constant at the coupled and uncoupled phases. Note that
a constant linear restoring force, corresponding to wv(r)
=const is included as a special case.

In such cases, during the uncoupled phases, every particle
oscillates linearly, with the same frequency w, independently
of the initial conditions (isochronicity property). For the case
where the durations of the uncoupled linear phases T{ul’z) are
integer multiples of the period of the oscillations, that is
when

70 = (1220, m=1,2, ... (8)

the system, after evolving in the linear phase, returns at ex-
actly the same state that it was at the end of the previous

r;\:l()l(t - k(T+c - T—c))’

Agll‘k) sin(wyt + ai,l‘k)) ,

rn(t) = rSUZ(_ r+ (1 - k)(T_H + kT—c))’

n
Aff’k) sin(wqt + aflz’k)),

with (Aii’k),a,(f’k)), i=1,2 determined from matching condi-
tions at the boundaries of the respective time intervals "%
according to

ssol ¢ (ik)y |2 172
AR ([rflol(t(z,k))]Z_'_ {M] ) , (15)
o

0
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coupled phase. In an alternative description, in a
2N-dimensional Poincare surface of section of the
2N+ 1-dimensional extended phase space of the nonautono-
mous system, each point maps to itself after evolving in the
linear uncoupled phase. Therefore, the existence of solutions
of the autonomous coupled lattice directly implies the exis-
tence of related solutions of the nonautonomous lattice with
pulsating coupling [29].

These arguments hold for any kind of lattice including
integrable and non integrable ones as well as any kind of
solutions including periodic or localized solitary solutions. In
the following, we focus on the Toda lattice which is known
to be integrable and more specifically on its soliton solutions
and show that these are directly related to breather solutions
of the respective nonautonomous lattice. For the Toda lattice
the interaction potential is exponential,

Wy, = Y1) = € Orn) o)
and the function v(z) is taken as
v =1-w0) (10)

to ensure that the on-site potential is zero in the coupled
phase as for a Toda lattice. Applying the canonical transfor-
mation from (y,,y,) to (r,,s,) where

T'n=Yn=Yn-1- (11)

mynzsn_snﬂ (12)

and considering m=1, Toda lattice solitons are given in the
form

(1) = = In(B? sech®(an F Br) + 1), (13)

where B=sinh(a). These solitons move with a velocity v,
=B/« which increases with the height of the pulse.

Following the previous arguments, under the condition
(8), the respective solutions of the nonautonomous lattice can
be written as

kKT<t=kT+T,,
KT+ T, <t=kT+T, +T

14
kT+T+L.+Tfll)<tSkT+T+C+T(u1)+T_C (14)

kT + T+C+Tf¢1)+T_C< t=kT+ T+C+Tf4”+T_C+ Tf)

I
) r,wl(t(i,k))>
k) _ 1] ©@0Tn

a,””’ =tan - . 16
n ( fznl(t(l"vk)) ( )

These solutions describe localized waves propagating as
Toda solitons in the time intervals where the coupling is
switched on, and oscillating periodically in the time intervals
where the coupling is switched off. Note that in the time
interval when u(f)=—1 the soliton travels in the opposite
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FIG. 2. (Color online) Evolution of a breather having an initial form of a Toda soliton with a=1 with T,C=Tf¢2)=0, T,.=2, and 74141)

=m2m/ wy with m=0 (a), m=2 (b), m=3 (c), m=6 (d).

direction in comparison to the time interval when u(r)=+1
while the velocity of the wave is zero during the uncoupled
phases. Therefore, the mean velocity of the wave is

<U> — ( T+c - T+c ) :8
Toe+ T+ TV 4+ T?

with Tﬁl’z) taking one of the discrete values shown in Eq. (8).
Therefore, the periodically pulsating coupling results in a
“ratchet” effect on soliton (breather) dynamics, since de-
pending on the parameters of the function u(z) it can decel-
erate the wave accordingly. Note that the ratio of the mean
velocity in the nonautonomous lattice over the soliton veloc-
ity in the respective autonomous lattice is the same for all
solitons having different heights and velocities and is deter-
mined by the form of u(z).

First, we consider the case where u(r) takes only the val-
ues 0,1 in the respective time intervals, that is T_C:Tff):O.
In Fig. 2, the evolution of a breather having an initial form of
a Toda soliton given by Eq. (13) with a=1, is shown for the
case where T,.=2. Figure 2(a) depicts the evolution of an
autonomous Toda soliton (this is equivalent to considering
m=0 in Eq. (8), and (b), (c), (d) a Toda lattice with periodi-
cally pulsating coupling with the duration of the uncoupled
phase Tfll) given by Eq. (8) for m=2,3,6, respectively. The
frequency of the uncoupled oscillations wy is taken equal to
211, without loss of generality. In the coupled phase the so-
lution of the nonautonomous system coincides with the soli-
ton solution of the autonomous Toda lattice, while in the
uncoupled phase the solution oscillates sinusoidally, with no
transverse velocity. The intermittent transverse motion of the

(17)

a

wave results in the reduction of the mean wave velocity
given by Eq. (17). When the condition (8) is not met, the
solitary wave deforms, splits and disperses under propaga-
tion as shown in Fig. 3 for the case corresponding to a Toda
soliton with a=1 and a u(r) having T_C=Tf{2)=0, T..=2,
Tfll)=277/ wy+0.01. In Fig. 4, collisions between two breath-
ers with velocities of opposite sign are shown for the case of
two identical breathers corresponding to a=1 and m=1 as
well as two different breathers with a;=1, ,=0.5, and m
=1. The breathers undergo completely elastic collisions and
remain intact.

In Fig. 5 we show the evolution of a Toda soliton with
a=1 for the case of a u(r) taking the values 0, =1 in the
respective time intervals. The durations of the uncoupled

FIG. 3. (Color online) Evolution of an initial form as in Fig.
2(b), but with 74" =27/w,+0.01.
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FIG. 4. (Color online) Collisions between two breathers with velocities of opposite sign corresponding to Toda solitons having «
=w,=1 (a), @;=1, a,=0.5 (b). The parameters of the function u(r) are T_C=Tflz)=0, T,.=2 and Tftl)=277/ -

phases are Tfll)szf)=27T/ . Depending on the values of 7.
and T_. the breather can have a positive [Fig. 5(a)] or nega-
tive [Fig. 5(b)] mean velocity according to Eq. (17). When
T,.=T_. the mean velocity is zero and the breather under-
goes a periodic “swinging” motion, the amplitude of which
depends on the value of T., [Fig. 5(c)]. Therefore, although
the original Toda soliton of the respective autonomous lat-
tices has always a definite nonzero velocity, depending on
the form of the function u(f) we can control the mean
breather velocity of the breather of the nonautonomous sys-
tem. Moreover, we can control breather collisions as shown
in Fig. 6, where depending on 7,. and 7_. we can either
prevent collisions [Fig. 6(a)] or make two breathers collide
periodically [Fig. 6(b)].

III. CONCLUSIONS

In conclusion, we have obtained analytical breather solu-
tions of a nonautonomous Toda lattice with periodically pul-
sating coupling under certain conditions for the duration of
the uncoupled phases of the system. These breathers are di-
rectly related to solitons of the respective autonomous Toda
lattice and have the property of undergoing purely elastic
collisions. Moreover, it is shown that depending on the du-
ration of the uncoupled phase these breathers undergo a
“ratchet” effect. The latter provides capabilities of breather

FIG. 5. (Color online) Evolution of a breather having an initial form of a Toda soliton with =1 with T<ul)=7f12)=277/ wy and T, .=2,

T_=1(a), T,=1,T_=2 (b), T,.,=2, T_.=2 (c).
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FIG. 6. (Color online) Evolution of two breathers corresponding to Toda solitons with a=1 with Tfl])=Tfl2)=27T/ wy and T,.=T_.=2 (a),

T,.=T_.=4 (b).

velocity and collision control. The results can be readily ap-
plied to a larger class of lattices with pulsating coupling,
where the dynamics of the coupled lattice system are de-
scribed by models being different from Toda’s, which can be

either integrable or nonintegrable. Finally, it is worth men-
tioning that the same arguments and results of this work
apply not only for solitons and solitary waves but also for the
cases of periodic solutions.
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