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We report on an experimental study of the behavior of a number of commercially available quartz tuning
forks oscillating in a classical cryogenic fluid, in the form of either liquid helium I or gaseous helium,
extending our previous studies [M. Blazkova et al. Phys. Rev. E 75, 025302 (2007)]. Measurements of the
damping of the oscillations allowed us to deduce the drag on the prong of a fork, as a function of the velocity
with which the prong moves, for various sizes of fork and various oscillation frequencies. Transitions to
turbulent flow have been identified, and the dependence of the critical velocity, expressed as a dimensionless
critical Keulegan-Carpenter number, on the dimensionless Stokes number has been established. These mea-
surements have not allowed us to visualize the flow, so we have carried out visualization experiments with
oscillating rods in water, the rod dimensions, and the frequencies of oscillation, being chosen so that the
relevant dimensionless parameters are similar to those for the prongs of the forks. Some information about the
nature of the instability that leads to turbulence has been obtained in this way, and the results for the critical
Keulegan-Carpenter number for the rods in water have been compared with values for the tuning forks in a

cryogenic fluid.
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I. INTRODUCTION

During the past few years a number of papers have re-
ported applications of vibrating piezoelectric quartz tuning
forks in the study of cryogenic fluids [1-7]. Such forks are
available commercially at little cost since they are made in
large numbers as frequency standards for watches. The usual
frequency is 2'°=32 768 Hz, although forks with other fre-
quencies are also available. The forks are normally supplied
in cylindrical vacuum-tight metal cans, but removal of this
can allows the fork to interact with a surrounding fluid. The
piezoelectric properties of the quartz allow both controlled
application of a periodic driving force and the measurement
of the corresponding response, by purely electrical means.
Vibration of a fork at low velocities induces laminar flow in
the surrounding fluid, and this allows the fork to be used to
monitor the state of the fluid, such as its temperature or pres-
sure, a feature that is particularly valuable in cryogenic ap-
plications [2,4]. At higher velocities vibration of the fork can
induce turbulent flow, and studies have been reported of the
way in which the drag on the prongs of the fork varies with
velocity in the transition to fully turbulent flow [3,4,6,7].
This transition has been studied in both gaseous and liquid
helium, and in the latter case studies have included both the
normal and the superfluid phases. In the case of the super-
fluid phase we are dealing with quantum turbulence, and the
studies have contributed to our understanding of the way in
which such turbulence can be generated by a vibrating struc-
ture.

Laminar flow induced by vibration of a fork at low ve-
locities seems to be well understood in terms of well-
established theory [2,8]. The frequency with which the forks
vibrate is such that in either gaseous or liquid helium the
viscous penetration depth is small compared with the dimen-
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sions of a prong, and there is potential flow outside this
penetration depth. The amplitude of the oscillations in drag
force, F, per unit length of prong is then related to the ve-
locity amplitude of oscillation, U, through a relation of the
form

F=aSp(wv)'?U, (1)

where S is the surface area of a prong per unit length; p and
v are, respectively, the density and kinematic viscosity of the
fluid; w is the angular frequency of oscillation; and « is a
numerical factor, of order unity, which depends on the shape
of a prong. The drag force can also be expressed in terms of
a drag coefficient Cp,

S 1
Cp=2a—(wv)"*—, 2
p=2a(ov) " 2)
where A is the projected area of unit length of a prong on a
plane normal to its motion and Cj, is defined by the equation

F=1pACpU2. (3)

This paper is concerned with the behavior of a tuning fork
in a classical fluid when the velocity is increased through the
transition to turbulence. As we shall see, this behavior is
interesting in itself, but it is interesting also in connection
with the generation of quantum turbulence. A question that
arises in the study of quantum turbulence is the extent to
which quantum turbulence can mimic classical turbulence.
This question has arisen repeatedly in the study of the gen-
eration of quantum turbulence by various forms of oscillat-
ing structure [9], and it has arisen most recently, and perhaps
most vividly, in recent experimental studies of the generation
of quantum turbulence by an oscillating tuning fork [6,7].
The pursuit of this question has been hampered, as we shall
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see, by the fact that very little seems to be known about the
generation of turbulence by a tuning fork, or by similar struc-
tures, in a classical fluid.

If we ignore the fact that a tuning fork has two prongs,
and that the velocity with which a prong moves varies along
its length, we see that the oscillation of such a fork in a fluid
must be closely related to the transverse oscillation of a bar
of rectangular cross section. Many experimental and theoret-
ical studies have been published relating to the transverse
oscillation of a rod of circular cross section in a fluid (for
example, [10-15]), with the experiments having included
both measurements of the drag coefficient through the tran-
sition to turbulence and visual observations of the flow at
different stages in this transition. However, to our knowledge
no corresponding studies have been made for a bar of rect-
angular cross section. This paper, which is an extension of
our previous studies [3], is a contribution to the filling of this
gap in our knowledge. Our measurements include studies of
the drag-force—velocity relationship for a range of tuning
forks in helium, supplementing the results presented in [3],
together with visual observations of the flow induced in wa-
ter by transverse oscillations of a rectangular bar, for which
the dimensionless parameters are chosen to match those rel-
evant to the tuning forks. Our results suggest that there may
be significant differences between the behaviors of a rod of
circular cross section and that of our rectangular bars, al-
though we cannot be sure of the reason and further experi-
ments are clearly required.

In presenting our experimental results we shall use the
dimensionless parameters that are commonly used in the
classical literature. The drag will be described by the dimen-
sionless drag coefficient, defined by Eq. (3). At a finite fre-
quency this drag coefficient must be a function of two inde-
pendent dimensionless parameters, which we take to be the
Keulegan-Carpenter number, defined by the equation

2ma
=", (4)
and the Stokes number, defined by the equation
wd?
=—, 5
2y ®)

where a is the amplitude of oscillation of the structure and d
is a characteristic dimension. In terms of these dimensionless
parameters Eq. (2) becomes

S
CDZ(SW)I/ZQZB_I/ZKE‘I- (6)

At velocities exceeding those at which there is laminar flow
the form of Eq. (6) becomes generally more complicated,
although it is often the case that in the limit of very large K.
the drag coefficient tends to a constant value of order unity,
which we denote by T'.

II. EXPERIMENTAL RESULTS: DRAG ON THE
VIBRATING TUNING FORKS

Details of the quartz forks that we have studied are sum-
marized in Table I, with the dimensions being defined in Fig.
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TABLE 1. Description of quartz forks.

Frequency L T w D

Fork (kHz) (mm) (mm) (mm) (mm)
Al 32 3.71 0.42 0.35 0.21
Bl 32 3.65 0.68 0.46 0.18
C3 32 2.51 0.25 0.10 0.13
Ul 4 19.70 2.20 0.80

U2 8 9.50 0.45 0.90 0.50
L2 32 2.17 0.21 0.10 0.12
L1 32 2.17 0.21 0.10 0.12
K1 32 3.9 0.39 0.28

1. The surfaces of the forks are rough on a scale of a few
microns, as shown in Fig. 1. The way in which our experi-
mental results have been obtained was described in earlier
papers.

A typical plot of observed drag coefficient against
Keulegan-Carpenter number, for a fixed value of Stokes
number, is shown in Fig. 2. We see that there is a smooth
(monotonic) transition between the laminar behavior, de-
scribed by Eq. (6), and a limiting constant value Cp=1I" at
high velocity, where the constant I" is close to unity. We find
that this smooth transition can be represented to a good ap-
proximation by the equation

S
Cp=(8m'a f7K +T, (7)

which describes all solid lines in Fig. 2.

We note that this smooth variation is different from that
observed with a circular cylinder, where Cp, often varies with
K in an oscillatory way in the region of the transition to
turbulent flow [10]. Furthermore, there is evidence that the
limiting value of the drag coefficient for a circular cylinder,
although of order unity, does in fact decrease systematically
and significantly with increasing . This suggests that the
physical processes occurring in the transition region may be
different in character in the two cases, although—as we dis-
cuss later—part, at least, of the difference might be due to
the fact that the transverse velocity with which a fork vi-
brates must vary along its length.

FIG. 1. Schematic sketch of a quartz tuning fork and a micro-
graph of the surface of tuning fork Al (the marker is 25 wm long).
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FIG. 2. (Color online) Upper left panel: the observed drag co-
efficient plotted against Keulegan-Carpenter number for a 32 kHz
fork of type B1. Lower left panel: the same drag coefficient multi-
plied by velocity (normalized to unity)—this quantity indicates a
departure from linearity more clearly. The (blue) dashed-dotted line
indicates the fully turbulent drag. The right panels show detailed
view of the departures from linear regime indicated by the (black)
dashed-dotted line. In all panels the 5% departure criterion is
marked by the (red) dashed line and the critical Keulegan-Carpenter
numbers are marked with vertical black dotted lines.

We shall be interested in defining a critical Keulegan-
Carpenter number K¢ associated with this transition. It is
tempting to define this number as that at which the two terms
on the right-hand side of Eq. (7) are equal, so that

- S
K - (877)1/2%;,8‘”2. (8)

We note that this form implies that the corresponding critical
velocity scales as (wv)!? for a given oscillating structure, a
form of scaling that was noted in Ref. [3]. However, this
scaling is an automatic consequence of the limiting forms of
Cp in the laminar and fully turbulent regimes; it has no spe-
cial physical significance in the sense that the critical veloc-
ity does not correspond to any special change in the character
of the flow [6]. Of more significance is the value of K. at
which the first instability appears in the laminar flow. Unfor-
tunately, since the observed variation of Cj is quite smooth,
it is not possible to identify this critical condition. The best
we can achieve is to identify the value of K¢, K¢'(x), at
which Cp, differs from its laminar value by an arbitrary factor
(1+x), where x<1.

In Figs. 3 and 4 we show plots of the observed values of
K" and K2(0.05) against Stokes number. We see from Fig.
3 that K" varies with Stokes number as 87'/2, in accord with
Eq. (8). We see from Fig. 4 that KZ'(0.05) also varies with
Stokes number as 37!/, within the (considerable) experimen-
tal error. This strongly suggests (but perhaps does not yet
conclusively prove) that the critical Keulegan-Carpenter
number at which the laminar flow first becomes unstable also
varies with Stokes number as 8~"2. In this respect an oscil-
lating fork seems to behave differently from an oscillating
rod of circular cross section, for which the critical Keulegan-
Carpenter number at the first onset of instability (the Honji
instability [12], discussed below) varies less rapidly with
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FIG. 3. (Color online) The critical Keulegan-Carpenter number
K%m plotted against Stokes number B for different forks as indi-
cated, vibrating in normal liquid “He and in cold pressurized helium
gas at liquid-nitrogen temperature. The solid (red) line represents
the expected instability for circular cylinders and the (blue) dashed
line represents the observed square-root behavior as indicated.

Stokes number (as S~"* for large B [10]). This less rapid
variation with 8 may be related to the fact, noted above, that
the value of I' seems to decrease systematically with increas-

ing 5.

III. VISUALIZATION

These experimental results leave unanswered a number of
important questions. To what extent is the behavior of a fork
influenced by the sharp corners on the prongs and by rough-
ness of the surface of a prong? To what extent is it influenced
by the close proximity of two prongs and the nonuniform
transverse velocity of a prong? And what is the nature of the
first instability as the Keulegan-Carpenter number is in-
creased?
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FIG. 4. (Color online) The critical Keulegan-Carpenter num-
bers, K& and K&'(0.05), plotted against Stokes number for differ-
ent forks as indicated, vibrating in normal liquid “He and in cold
pressurized helium gas at liquid-nitrogen temperature. The (red)
solid line represents the expected instability for circular cylinders;
the other lines are the individual observed square-root dependences.
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FIG. 5. (Color online) Schematic diagram of the apparatus used
to visualize the flow produced by an oscillating bar in water. For a
detailed description, see the text.

It is difficult to answer these questions with the forks
themselves. They cannot easily be modified to answer the
first two questions. Establishing experimentally the nature of
the first instability requires a visualization of the flow, for
which the required technique does not exist for such a small
structure immersed in a cryogenic fluid. We have therefore
started to investigate the behavior of large metal rods of rect-
angular cross sections oscillating in water, aiming by suitable
scaling at ranges of values of K- and @ similar to those
relevant to the forks. Ideally, we should have measured the
drag coefficients for such systems, but as yet we do not have
the equipment necessary for such measurements. But we
have attempted to visualize the flow, using both the Baker
solution technique [16] and a Kalliroscope solution [17].

A. Experimental technique

The apparatus based on the Baker pH technique is shown
schematically in Fig. 5. Approximately 25 1 of Baker solution
composed of water, small concentrations of NaOH and HCl,
and thymol blue pH indicator (labeled 1) were contained in a
tank of dimensions 20 X 30X 25 cm?. The oscillating rod (2)
was pivoted at the base of the tank with a spherical knob
fitting into a Teflon holder. Oscillation of the rod about the
pivot in a vertical plane was driven via two thin rods by a
large bass loudspeaker (7), driven by the oscillator (5), over
a range of frequencies from 1 to 12 Hz. The loudspeaker was
used in its linear mode, so that the amplitude of oscillation
was proportional to the applied ac signal. In the experiment,
the oscillating rod could move along its sides only and was
pivoted at its lower end in order for its motion to be similar
to that of a prong of a tuning fork. The surface of the rod was
biased by a dc voltage of 10-15 V relative to the brass elec-
trodes (3), in accordance with the recipe given in Ref. [16].
When the dc bias voltage is applied, an electrochemical re-
action starts on the surface of the rod, affecting the concen-
trations of the dissociated ions locally thus increasing the
local pH, and forcing the pH indicator in the vicinity of the
rod to change its color from orange-red to dark blue. This
“ink” then freely drifts in the liquid, marking its flow pattern
accurately at low velocities up to about 5 cm/s. The same
tank, without the electrodes, was used for experiments with
the Kalliroscope solution, which outlines the flow pattern via
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small reflective platelets contained in it. Calibration of the
displacement and velocity of the rod was carried out with a
video camera that recorded the position of the top of the
system of thin rods as a function of time relative to the scale

(3).

B. Existing observations

Before we present our own observations of the flow of
water round our oscillating rods, we shall describe existing
observations of flow round an oscillating rod of circular
cross section [10,12], together with one previous unpub-
lished observation of the flow round an oscillating rod of
square cross section [18]. Comparison between the different
observations will prove instructive.

An important and detailed study of the flow of water
round a rod of circular cross section oscillating in a direction
at right angles to its length was reported by Honji [12]. Simi-
lar observations, together with corresponding measurements
of the drag coefficient versus Keulegan-Carpenter number,
were reported by Sarpkaya [10]. The observed flows can be
summarized in a slightly oversimplified way as follows. At a
small velocity (or K), within the laminar regime, oscillation
leads to not only an oscillating boundary layer, but also to a
steady streaming flow [19,20]. The streaming flow is two
dimensional in the sense that the streaming velocity points in
a direction normal to the length of the rod. It arises from a
nonlinear effect when flow in the oscillating boundary layer
varies with position in the direction in which the flow takes
place; for the case of an incompressible fluid the equation of
continuity demands that there must then be some flow nor-
mal to the plane of oscillation. The relevant theory was given
by Schlichting and was discussed by Batchelor [21]. At a
higher Keulegan-Carpenter number the flow starts to exhibit
a three-dimensional structure involving mushroom-shaped
vortices moving away from the surface (see, for example,
Ref. [12], Fig. 10). It is now accepted that this flow arises
from an instability of the flow in the boundary layer when
the rigid boundary has convex curvature, with the instability
leading to the generation of Taylor-Gortler vortices [15]. As
long as these vortices remain in the thin boundary layer they
are hard to see, but the steady streaming flow causes them to
be swept away from the cylinder, so that they appear very
clearly in the form of the mushroom-shaped vortices to
which we have referred. Theory [15] leads to the prediction
that the critical Keulegan-Carpenter number at which the
Taylor-Gértler vortices are formed (the initial instability) is
given in the limit of large 8 by

K& = 57783714, (9)

This dependence on 3, to which we have already referred,
has been verified experimentally [10].

The only study of flow induced by the transverse oscilla-
tion of a rod of rectangular cross section of which we are
aware has been carried out by Hershberger and Donnelly
[18]. They used Kalliroscope to visualize the flow, and their
bar oscillated with a velocity amplitude that was uniform
along its length. They did not report any observation of
steady streaming at low velocities, but they did observe
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FIG. 6. (Color online) A photograph of the (brass or stainless
steel) rods of square cross section that we have studied. They have
cross sections of 5X 5, 3 X3, 2X2 (with rounded corners), 2 X2,

and 1 X1 cm?.

mushroomlike vortices formed along the whole length of the
bar at higher velocities, with the vortices being arranged in a
regular pattern along the length of the bar. They did not carry
out a complete study, and the precise location of the mush-
room vortices remains unclear.

C. Present observations

Photographs of the rods that we have studied are shown in
Figs. 6-8. The 2 X2 cm? rod with rounded edges showed no
transition within the range of velocities available to us. All
the others showed a transition in which vortex motion leaves
the surface, as shown in the typical photograph reproduced
in Fig. 9. These vortices are not arranged in the regular pat-
tern along the rod as observed by Hershberger and Donnelly,
and they first appear at the top of the rod (we neglect struc-
tures shed by the upper edge). On increasing the amplitude
of oscillation further above the critical value, vortices start
appearing further away from the top of the rod. These fea-
tures are consistent with the fact that the transverse velocities
with which our rods move are not uniform along their
lengths, but increase from zero at the bottom to a maximum
value at the top of each rod. We identify a critical velocity as
that velocity at the top of a rod at which the first vortices are
observed to be produced 0.5-1 cm below the upper edge.
The corresponding critical Keulegan-Carpenter numbers are
plotted against the Stokes number in Fig. 10.

FIG. 7. (Color online) Left: the detail of the trimmed edge (after
the second trimming) of the 3 X3 cm? brass rod. Right: the detail
of the roughened gold-plated surface of the 2 X2 cm? brass rod.
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FIG. 8. (Color online) A photograph of two brass cylinders of
square cross section 2 X2 cm?. The surface of the lower one was
roughened by soldering small brass shavings to it; this surface was
then electrochemically cleaned and gold plated.

We see from Fig. 10 that most of the data are consistent
with a critical Keulegan-Carpenter number K¢ that is pro-
portional B8!2, as was the case with the tuning forks. The

FIG. 9. A photograph showing a typical pattern of vortices pro-
duced by an oscillating rod of cross section 3 X3 cm? at a velocity
amplitude well above the transition.
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FIG. 10. (Color online) The critical Keulegan-Carpenter number
plotted against Stokes number for various rods of square cross sec-
tion oscillating in water. All the data were obtained by visualization,
and relate to the first appearance of vortices being shed by the rod
about 0.5 cm below the upper edge. The data in the main graph
were obtained with the Baker pH technique; those in the inset were
obtained by the Kalliroscope technique. In the main graph, filled
(blue) circles, filled (orange) squares, filled (red) triangles, and
(green) crosses represent the data observed with rods of 1 X1, 2
X2,3%3,and 5X5 cm? square cross sections, respectively; (ma-
genta) stars and (black) triangles show how the critical Keulegan-
Carpenter number changes when the sharp edges of the 3 X3 cm?
rod are trimmed successively. The inset shows the critical
Keulegan-Carpenter number for the 2 X2 cm? rod, obtained with
the Kalliroscope technique before [upper (dark green) symbols] and
after [lower (cyan) symbols] roughening of the surface. The dotted
straight line corresponds to K%ﬁt: 178712 (c.f. Fig. 3) and the solid
line is K&'=7.587"2.

only exception is the rod with cross section 5X5 cm?, the
anomalous behavior of which may be associated with the
fact that its length is not sufficiently large compared with its
width to ensure that end effects are not important. We note
that the absolute values of KCC“t for our rods, for a given value
of B, are closely similar to those of K¢'(0.05) for the tuning
forks, suggesting that our “5% criterion” in the latter case
does indeed indicate reasonably accurately the first instabil-
ity, as observed with the bars in water. _

To check the influence of sharpness of the edges on K¢
experimentally, we have successively trimmed the edges of
the 3X3 cm? rod. This trimming has been done very accu-
rately using a milling cutter (see Fig. 7), so that the size of
the trim was 1 and 2 mm, respectively, after the first and the
second trimming. The fact that K" for the rod of cross sec-
tion 3X3 cm? is increased when the sharp corners are
trimmed suggests that the onset of the first instability in the
laminar flow is associated with these sharp corners. In con-
trast with a rod of circular cross section, the overall width of
the rod may therefore be irrelevant to this instability, and this
difference may account for the different dependence of K¢
on B in the two cases; instead of the overall width, what may
be important is either the radius of curvature at the sharp
edge or the radius of curvature of the outer surface of the
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viscous penetration depth, whichever is the larger. The fact
that roughening the surface of the rod of cross section 2
X 2 cm? has such a small effect is surprising, in view of the
fact that the scale of the roughness is larger than the viscous
penetration depth. It does, however, suggest that surface
roughness may not be an important factor in the behavior of
the tuning forks. Our experiments do not tell us whether the
proximity of the two prongs of a tuning fork is important.

IV. CONCLUSIONS

Commercially available quartz tuning forks are being
used increasingly in various applications at cryogenic tem-
peratures. We have measured the damping of the oscillations
of a range of such forks in classical cryogenic fluids (helium
I and helium vapor), and we have observed the transition
from laminar to turbulent flow. The critical Keulegan-
Carpenter number chm corresponding to the initial departure
from laminar behavior, and so to the initial instability of
laminar flow, is found probably to be proportional to 8"/,
where 3 is the Stokes number. In order to throw more light
on the behavior of these forks, we have carried out experi-
ments on rods of square cross section (to mimic a prong of a
fork) oscillating in water, with the dimensions and frequency
of oscillation being chosen to correspond to values of the
relevant dimensionless parameters that are close to those for
the forks. Visualization of the flow of the water suggests that,
as is known to be the case with rods of circular cross section,
the transition to turbulence involves an initial instability
within the viscous penetration depth, with the resulting vor-
tex motion being dragged away from the surface by the
steady streaming that is known to be associated with oscilla-
tory motion of a curved structure in a classical fluid. Values
of K& obtained from the visual observations display the
same dependence on B as was observed with the tuning
forks. When the sharp corners of a rod were trimmed the
value of K¢ was found to increase significantly. This sug-
gests that the initial instability is associated with the small
radius of curvature at these corners. The dependence of K¢
on 3 that we observe (87!?) is different from that reported
for rods of circular cross section (874 at high velocities).
We suggest that this difference arises because the relevant
radius of curvature is the overall radius in the case of a rod of
circular cross section, while it is the radius of curvature as-
sociated with the corners of a rod of square cross section,
with this latter radius being the actual radius or the radius of
curvature of the outer part of the viscous penetration depth,
whichever is the larger. In the case of a rod of circular cross
section the drag coefficient tends to oscillate in value with
increasing f3, in the neighborhood of the transition, while the
drag coefficient that we observe with our forks varies
smoothly. While this difference may reflect a different type
of flow, it may also be associated, at least in part, with the
fact that the velocity with which a prong of one of our forks
moves varies along its length. Roughening the surface of one
of our rods was observed, surprisingly, to have little effect on
the value of K¢,
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