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Light irradiation can induce the vectorial motion of an aerosol particle. This phenomenon is often explained
in terms of inelastic collision between gas molecules and the aerosol particle under a temperature gradient. We
considered the photophoresis of a micron-sized liquid droplet in a rarefied gas atmosphere based on the
Boltzmann equation for the atmosphere coupled with the Navier-Stokes equation for the droplet. Two features
attributable to induced internal flow in the droplet are analyzed: the contribution of homogeneous energy
inflow to the motion of the droplet and the nonlinear scaling of the photophoretic velocity depending on the
irradiated light intensity.
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I. INTRODUCTION

The behavior of a fluid system depends on its tempera-
ture. In the presence of a local temperature distribution, a
fluid system is called a thermofluid system. The most char-
acteristic phenomenon seen in such a thermofluid system is
the mass flow induced by a temperature gradient. Within the
framework of classical fluid dynamics, a temperature gradi-
ent induces mass flow only when it couples with other forces
through a density variation, such a gravitational convection.
On the other hand, for a long time we have also been aware
of thermally driven mass flow beyond the above criterion.
For example, Marangoni convection arising from a
temperature- or surfactant-dependent surface tension has in-
terested many researchers in the field of nonlinear nonequi-
librium physics �1–3�.

For gas on a surface with a temperature gradient, we en-
counter another classical example of such flow. The most
famous example is a radiometer, and similar phenomena are
widely known and have been studied for a long time. For
example, under light irradiation, colloidal particles migrate
�4–10�. This phenomenon is called photophoresis and was
first recognized by Ehrenhaft in the early 20th century �4�.
Today, photophoresis is studied from various perspectives;
e.g., to understand astrophysical �geophysical� processes in
the atmosphere �11,12�, as a means of molecular segregation
�13,14�, to sort particles in conjunction with Brownian po-
tential ratcheting �15�, and for use in engineering applica-
tions �11,16�.

In principle, the photophoretic force arises from two
mechanisms. When an electromagnetic wave is scattered by
a colloidal particle, momentum is transferred between the
wave and the particle to preserve the total momentum of the
system. The force arising from this transfer is called photon
pressure or scattering force and can be calculated from the
ray optics �17� or directly from the Mie scattering solution
�18�. If the particle is not transparent, a radiation distribution
within the particle serves as a heat source through light ab-

sorption, which results in a temperature gradient on the par-
ticle surface. In this case, the momentum transfer between
gas molecules and the photophoretic particle through mo-
lecular collisions becomes asymmetric with regard to the
particle surface, and gas flow is induced �19�. The force aris-
ing from this mechanism is sometimes called the �T force
�11�.

In many cases, the photophoretic force applied to aerosol
particles in a laboratory environment is considered to be
mainly composed of the �T force �20�. In this case, photo-
phoresis is essentially equivalent to thermophoresis, in which
a temperature gradient of the ambient gas induces motion of
the particle. Thus, photophoresis is often discussed in the
same context as thermophoresis �21–23�. In the present pa-
per, we focused on this case.

Even if an analysis of photophoresis is limited to the �T
force, the exact physics of photophoresis are not simple.
First, to derive a function for the heat source �24,25�, we
must solve a scattering problem for the electromagnetic
wave. For a long time, the only analytical solution available
was for a spherical particle �26,27�. Recently, however a
nonspherical case �28–31� has been discussed, partly with
the help of computers. If the particle is volatile, the effect of
mass outflow due to evaporation should be considered
�21,23,32�. Furthermore, the effect of blackbody radiation
has sometimes been taken into account �23,32�.

The most essential component of the �T force should be
the detailed distribution of gas molecules around the particle
�i.e., a solution for a fluid equation� and the interaction at the
interface �i.e., a boundary condition�. Since momentum
transfer is essential in this phenomenon, a model equation
must include the velocity distribution. Consequently, the
Boltzmann equation with a kinetic boundary condition has
been studied as a model equation for describing photo-
phoretic or thermophoretic phenomena. Although kinetic
boundary conditions are derived, to a certain degree, from a
microscopic perspective, the true nature of the kinetics at the
interface is not actually known. The most frequently used
kinetic boundary condition for a particle-gas interface is
called the Maxwell-type boundary condition, which is a lin-
ear combination of specular reflection, where individual mol-
ecules are reflected completely elastically, and diffuse reflec-
tion, where the reflected molecules follow a Maxwellian
distribution according to the surface temperature. The weight
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of this diffuse reflection is called an accommodation coeffi-
cient.

The Boltzmann equation has been analyzed for two lim-
iting cases with regard to the Knudsen number �Kn� which is
the ratio of the mean free path �0 to the reference length
scale L. One case is a free-molecule regime �Kn→��, where
interactions between gas molecules can be omitted as a mat-
ter of fact �23,25,32�. In the case of thermophoresis, the ther-
mophoretic force does not greatly depend on the accommo-
dation coefficients �33�. In 1972, Phillips �34� considered the
case in which an accommodation coefficient in the tangential
direction �t and that in the normal direction �n have separate
values. He found that the thermophoretic force in the free-
molecule limit is in proportion to 1+ ��t−�n� /2. Experimen-
tally, in most gas-solid interfaces, �t is close to unity and
there is no inconsistency for �n close to unity, though we do
not know much about �n �35�. This universality regarding
accommodation coefficients is only applicable to a thermo-
phoretic force. In photophoresis, a specular reflection pro-
duces no photophoretic force. The mean free path under at-
mospheric pressure is about several tens of nanometers. The
free-molecule solution is applicable to nanometer- to
micrometer-sized particles in a medium- to high-vacuum
environment.

The other case is a continuum regime �Kn→0�, where the
velocity distribution is rapidly relaxed and the gas, except for
that in the vicinity of the particle, obeys the classical fluid
equation. In this case, the problem can be reduced to solving
the Navier-Stokes equations with slip boundary conditions
�21,22,25,29,30�. This asymptotic treatment was first re-
ported �36� before the quest for the free-molecule solution,
but it took a long time to identify the complete set of first-
order slip boundary conditions �37�. This perturbation ap-
proach has been extended to the third-order using the
Boltzmann-Krook-Welander �BKW� model for a collision
term by Sone and Aoki �38�. Although these results are only
valid in the regime of small Knudsen numbers, it has been
shown that Brock’s formula for the thermophoretic force
�37� acceptably agrees with the experimental data throughout
the entire region of Knudsen numbers when the best data are

used for the slip coefficients �35,39�. As a more rigorous
approach, the intermediate region has recently been analyzed
with a numerical solution for the linearized Boltzmann equa-
tion �40–43�.

A more detailed history of the Boltzmann equation is
available elsewhere �35�. A few experiments have been con-
ducted on the thermophoresis or photophoresis of organic
droplets �44,45�. However, so far, theoretical studies of ther-
mophoresis or photophoresis have only treated the situation
where there is no internal flow in the colloidal object or the
effect of internal flow is negligible. One reason for this lack
of interest is that most experimental studies have measured
the force applied to an object at rest. In this case, the main
contribution to an internal flow, i.e., the drag force due to air
flow, is restricted. In addition, when the internal flow remains
slow, the temperature distribution of the object is almost de-
termined by the diffusion equation, and the influence of the
flow velocity field is negligible. A few experimental studies
measuring the dependence on the radiation intensity �20�
have focused on the situation in which the photophoretic
force or velocity linearly scales with the radiation power �the
region of weak power�, which may be another reason for the
lack of a theoretical work on the effect of internal flow.

However, the effect of internal flow is a more interesting
problem from a physical viewpoint. When internal flow is
considered, two significant effects are expected. One is the
occurrence of migration induced by homogeneous energy in-
flux, and the other is the nonlinear scaling relationship be-
tween the photophoretic velocity and the magnitude of the
energy influx. In the present paper, we analyze the photo-
phoresis of a spherical micron-sized droplet based on the
Boltzmann equation for a gas region coupled with the
Navier-Stokes equation for the droplet and examine how the
above two effects occur. Figure 1 shows a schematic repre-
sentation of the considered problem. In Sec. II, we introduce
an asymptotic solution of the Boltzmann equation for a
spherical system, based on a discussion in a textbook �19�,
with a slight extension to the case where a spherical bound-
ary surface has a flow field. In Sec. III, we summarize the
theoretical formulation of the photophoretic problem of a
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FIG. 1. A schematic representation of the
problem considered in the present paper. Accord-
ing to the size and the complex refraction index
of a photophoretic particle, photophoresis occurs
in the positive and negative directions. While this
figure corresponds to the negative photophoresis,
we do not focus on a particular irradiation prob-
lem, but consider response to a general distribu-
tion of radiation within a droplet.
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solid sphere based on the above asymptotic solution. In Sec.
IV, we couple the Navier-Stokes equation with the Boltz-
mann equation and consider the slow velocity limit of the
internal flow. Finally, in Sec. V, we analyze this system for a
wide range of velocities with the aid of a numerical calcula-
tion, and discuss the physical properties of photophoresis
that are characteristic to a droplet with internal flow.

II. BOLTZMANN EQUATION FOR A SPHERICAL SYSTEM

We consider a gas of identical molecules interacting
through a spherical potential. In the coarse-grained model,
the state of gas is represented by the time-dependent local
ensemble of velocities f�X ,� , t�, where X is a position vec-
tor, � is a velocity vector, and the distribution function is
normalized to satisfy �=�f�X ,� , t�d�, where � is a local
mass density of the gas. Unless the interaction between par-
ticles is long range or the density of the gas is too high, the
time evolution of the velocity distribution function f�X ,� , t�
is determined by the Boltzmann equation:

�t f + � · �Xf + ���Ff� = J�f , f� , �1�

where �X and �� are, respectively, the divergence with re-
spect to the position vector and the velocity vector, F is an
external force, and J�f , f� is the collision term that depends
on the molecular model.

Usually, the Boltzmann equation is solved around some
objects. When there is no mass flux across the boundaries of
these objects, the Maxwell-type condition is widely used as
the boundary condition for the objects.

f�X,�,t� = �1 − ��f�X,� − 2��� − vw� · n�n,t� +
��w

�2�RTw�3/2

	exp�−
	� − vw	2

2RTw

 ��� − vw� · n 
 0� , �2�

�w = − � 2�

RTw

1/2�

��−vw�·n�0
�� − vw� · nf�X,�,t�d� , �3�

where Tw and vw are the temperature and velocity of the
boundary, respectively, and n is the unit vector normal to the
boundary with a direction from the solid to the gas. The
accommodation coefficient � varies from 0 to 1. The case
�=1 is called the diffuse-reflection condition, and this part in
the Maxwell-type condition is the origin of the radiometric
effect �thermophoresis�.

The Boltzmann equation expresses a generalized conser-
vation law, which includes classical hydrodynamic equa-
tions. Macroscopic variables used in classical hydrodynam-
ics are defined as follows:

vi =
1

�
� �i f�X,�,t�d� , �4�

3RT =
1

�
� ��i − vi�2f�X,�,t�d� , �5�

pij =� ��i − vi��� j − v j�f�X,�,t�d� , �6�

qi =� 1

2
��i − vi��� j − v j�2f�X,�,t�d� , �7�

where R is the specific gas constant, T is the temperature, pij
is the stress tensor, and qi is heat-flow.

We now consider the case where the system is not far
from the uniform Maxwell distribution f0 with no flow;

f0 =
�0

�2�RT0�3/2exp�−
�i

2

2RT0

 , �8�

where �0 is the reference density and T0 is the reference
temperature. The reference pressure p0 is given from the
definition as p0= pii /3=R�0T0. When we introduce a refer-
ence length scale L and a reference time scale t0, we obtain
the following nondimensional variables:

xi = Xi/L , �9�

t̂ = t/t0, �10�

�i = �i/�2RT0, �11�


 = f/f0 − 1, �12�

w = �/�0 − 1, �13�

ui = vi/�2RT0, �14�

� = T/T0 − 1, �15�

Pij = pij/p0 − �ij , �16�

Qi = qi/�p0
�2RT0� , �17�

where �ij is the Kronecker delta.
Since 
�1, the Boltzmann equation �without external

force� may be approximated by the following linearized
form:

Sh
�


� t̂
+ �i

�


�xi

 =

1

k
L�
� , �18�

where Sh=L / �t0
�2RT0� is called the Strouhal number and

k=���0 / �2L�, where �0 is the mean free path of the gas in
the equilibrium state, is the Knudsen number Kn multiplied
by �� /2. Hereafter, we also call the number k the Knudsen
number. The collision term L�
� is the linear part of the
normalized J�f , f� in Eq. �1�. For simplicity, we adopt the
BKW model equation, for which the linearized expression is

L�
� = − 
 + w + 2�iui + ��i
2 −

3

2

� . �19�

On the boundary, the modified diffuse-reflection condition
according to linearization is


 = �̌w + 2� · uw + �	�	2 −
3

2

�w ��� − uw� · n 
 0� ,

�20�
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�̌w = ��uw · n −
1

2
�w − 2���

��−uw�·n�0
� · n
Ed� . �21�

The macroscopic variables are obtained in the following lin-
earized form:

w =� 
Ed� , �22�

ui =� �i
Ed� , �23�

3

2
� =� ��2 −

3

2


Ed� , �24�

Pij = 2� �i� j
Ed� , �25�

Qi =� �i�
2
Ed� −

5

2
ui. �26�

Linearization of the macroscopic variables is not always re-
quired because once 
 is given, all macroscopic variables
can be calculated in a straightforward manner. From a prac-
tical standpoint, however, the linearization of macroscopic
variables is consistent and offers a good approximation as
long as the linearized Boltzmann equation works well.

To obtain an analytical solution for a steady state, two
approximation methods are known for two limiting cases
where the Knudsen number k is much less than 1 and much
greater than 1, respectively. As described above, the Knudsen
number k is the ratio of the mean free path �0 to the reference
length L. The mean free path of air molecules at room tem-
perature at 1 atmosphere is 0.067 �m. For a micrometer-
sized particle, k is below 0.1, and this situation corresponds
to the case where k�1. In this case, an asymptotic solution
can be obtained as the sum of the Grad-Hilbert expansion
�46� and the Knudsen-layer correction �19�. In the Grad-
Hilbert expansion, a moderately varying solution 
G can be
written as a power series of k;


G = 
G0 + 
G1k + 
G2k2 + ¯ . �27�

According to the order of k, the linearized Boltzmann equa-
tion is split into a series of integral equations:

L�
G0� = 0, �28�

L�
Gm� = �i
�
Gm−1

�xi
. �29�

According to the Grad-Hilbert expansion of the velocity dis-
tribution function, macroscopic variables can be written in a
similar expansion form. A series of partial differential equa-
tions for these macroscopic variables is then derived from
the above equations.

For the Knudsen-layer correction, a solution 
K is consid-
ered, which varies rapidly in the direction of the normal vec-
tor on the boundary. This additional term is introduced

to complement the Grad-Hilbert solution to satisfy the
Maxwell-type boundary condition. If we introduce Knudsen-
layer variables �� ,�1 ,�2� as

xi = k�ni��1,�2� + xwi��1,�2� , �30�

where ni is the normal vector and xwi represents the boundary
surface. For 
K, the linearized Boltzmann equation is split
into the following series:

L�
K0� = �ini
�
K0

��
, �31�

L�
Km� = �ini
�
Km

��
+ �i� ��a

�xi



0

�
Km−1

��a
, �32�

where the parentheses � �0 indicate that the enclosed quantity
is evaluated at �=0.

While the asymptotic analysis explained above can be
performed in a straightforward manner, the actual calculation
procedure �see, e.g., Sone �19�� is slightly complicated. In
the linearized equation, the superposition principle of the so-
lution holds true. Thus, we can treat an arbitrary problem as
a combination of several elementary problems. In the present
paper, we consider the gas around a spherical object, which
can be reduced to the following elementary problems. The
Cartesian coordinates and spherical coordinates are related as
�x1 ,x2 ,x3�= �r cos � ,r sin � cos � ,r sin � sin ��.

Problem 1: the surface of the object has a homogeneous
temperature �w=0 and no velocity uw=0. At infinity, the gas
has a flow velocity u= �1,0 ,0�, with a homogeneous density
w=0 and a homogeneous temperature �=0.

Problem 2: the surface of the object has a temperature
gradient �w=cos � but has no velocity uw=0. At infinity, the
gas is at rest �u= �0,0 ,0�� with a homogeneous density w
=0 and a homogeneous temperature �=0.

Problem 3: the spherical object has internal flow. The flow
velocity on the surface is given by uwr=0, uw�=sin �, and
uw�=0. The temperature of the surface is homogeneous �w
=0. At infinity, the gas is at rest �u= �0,0 ,0�� with a homo-
geneous density w=0 and a homogeneous temperature �=0.

Here, we describe the solution of the linearized Boltz-
mann equation for problem 1 as 
d, that for problem 2 as 
1,
and that for problem 3 as 
v. Macroscopic variables corre-
sponding to each solution are distinguished by superscript
�d�, �1�, and �v�, respectively. For the linearized Boltzmann
equation, these boundary problems are introduced only for
convenience because the deviation from the equilibrium state
in the solution of 
 is too large to justify linearization for
these boundary values. In the actual analysis, we consider the
case where the boundary values are multiplied by small
quantities.

The solutions for problems 1 and 2 up to the third-order
term are found in the textbook �19�. It is numerically known
that these solutions are applicable to, at least, the range of the
Knudsen number k from 0 to about 0.1. Macroscopic vari-
ables that are related to our problem are the total force acting
on the spherical object F1�F2=F3=0�, the r−� component of
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the stress tensor Pr� on the boundary surface, and the heat
flow across the surface of the object Qr. These can be sum-
marized as follows:

F1
�d�

p0L2 = F̄1
�d� = 6��1k�1 + k0k −

4

3
Adk2 + ¯
 , �33�

Pr�
�d�

sin �
= P̄r�

�d� =
3

2
�1k +

9

2
�1k0k2 + ¯ , �34�

Qr
�d�

cos �
= Q̄r

�d� = �3

2
�3 + 3�

�

0

HA��0�d�0
k2 + ¯ , �35�

F1
�1�

p0L2 = F̄1
�1� = 4��1�K1k2 − 2Atk

3 + ¯� , �36�

Pr�
�1�

sin �
= P̄r�

�1� = 3k2
�1K1 + �3 − �
�

0

��1��0� + �1��0��d�0�
+ ¯ , �37�

Qr
�1�

cos �
= Q̄r

�1� =
5

2
�2k − �5�2d1 − 2�

�

0

HB��0�d�0
k2 + ¯ .

�38�

For problem 3, we obtain the following solution:

ur
�v�

cos �
= −

1

r
+

1

r3 + 3k0�−
1

r
+

1

r3
k + �4�Ad − b1

r
+

Bd − b1

r3 

− 10�

�

�

Y0��0�d�0�k2 + ¯ ,

u�
�v�

sin �
=

1

2
�1

r
+

1

r3
 +
3

2
�k0�1

r
+

1

r3
 + 2Y0����k

− 2�Ad − b1

r
−

Bd − b1

r3 − Yd����k2 + ¯ ,

��v�

cos �
= 20�d4

r2 + �4���
k2 + ¯ ,

w�v�

cos �
= −

�1k

r2 + �− �3�1k0 + 20d4�
1

r̂2 + 20�4���
k2 + ¯ ,

where �= �r−1� /k. On the boundary, the force, the stress
tensor and the heat flow are given as follows:

F1
�v�

p0L2 = F̄1
�v� = 4��1k�1 + 3k0k − 4�Ad − b1�k2 + ¯� ,

�39�

Pr�
�v�

sin �
= P̄r�

�v� = 3�1k + 9�1k0k2 + ¯ , �40�

Qr
�v�

cos �
= Q̄r

�v� = ��3 + 10�
�

0

HA��0�d�0
k2 + ¯ . �41�

The coefficients �1, �2, �3, k0, b1, d1, d4, Ad, Bd, At, and K1
and the Knudsen-layer functions Y0���, Yd���, HA���,
HB���, �1���, �4���, �1���, and �4��� were introduced in
the textbook �19�. The actual values of F1, Pr�, and Qr for
each Problem are summarized in Table I for the case where
k=0.1.

III. PHOTOPHORESIS OF A SOLID SPHERE

Before we consider the photophoresis of a spherical drop-
let, we briefly discuss the photophoresis of a solid sphere in
terms of the linearized Boltzmann equation. The velocity dis-
tribution function of the gas around a solid sphere is given by


 = ū
d + �̄w
1, �42�

where ū=U�2RT0�−1/2 is a nondimensional air-flow velocity
at infinity, and �̄w is the magnitude of the temperature gradi-
ent on the solid surface. When the temperature distribution of
the solid object is denoted as �p=�n�p,n�r�Pn�cos ��, where
Pn�x� is a Legendre polynomial,

�̄w = �p,1�1� . �43�

In the steady state, the migration velocity of the solid
sphere −ū and the temperature gradient on the sphere �̄w are
determined by the balance of the forces and the continuity of
the energy flux at the solid surface:

ūF̄1
�d� + �̄wF̄1

�1� = 0, �44�

ūQ̄r
�d� + �̄wQ̄r

�1� = −� �p

�LB
�r�p,1�

r=1
, �45�

where �p is the thermal conductivity of the solid and
�LBT0= p0L�2RT0. When the solid sphere undergoes light
irradiation, the temperature distribution �p follows the diffu-
sion equation in the following form:

�2�p = − �IB/��pT0� , �46�

where �=4�nk /� is an adsorption coefficient, ñ=n+ ik is a
complex refraction index, � is the wavelength of an incident

TABLE I. The values of the total force �divided by p0L2� F̄1, the

r−� component of the stress tensor �divided by sin �� P̄r�, and the

r component of the heat flow �divided by cos �� Q̄r for the BKW
equation, in which we use the Knudsen number �times �� /2� k
=0.156 249 2 for the force and stress tensor, and k=0.192 228 4 for
the heat flow, to resemble �19� a hard-sphere gas of k=0.1. The
scripts �d�, �1�, and �v� indicate the boundary conditions, which are
explained in the body text.

�d� �1� �v�

F̄1 2.51354 −0.11286 1.12251

P̄r� 0.12273 0.03662 0.24546

Q̄r 0.04248 0.20917 −0.00622
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beam, I is the light intensity, and B�x� is the relative power
distribution of the electromagnetic field in the sphere. As is
known, a general solution of Eq. �46� in a spherical system
with a rotational symmetry can be given in the form �p
=�n�p,nPn�cos ��, where Pn�x� is a Legendre polynomial.
When we describe B�x� with an expansion form as
�nBn�r�Pn�cos ��, we can derive the following relation:

�r�p,1	r=1 = �p,1�1� +
�I

�pT0
�

0

1

s3B1�s�ds . �47�

The photophoretic velocity of the solid particle is obtained in
the following form:

ū =

�I��
0

1

s3B1�s�ds
F̄1
�1�/F̄1

�d�

�pT0 + �LBT0�Q̄r
�1� − Q̄r

�d�F̄1
�1�/F̄1

�d��
, �48�

where the integral �0
1s3B1�s�ds is equivalent to the asymmet-

ric factor J introduced by Yalamov �21�. Consequently, the
migration velocity depends linearly on the laser power as
long as the velocity and the temperature difference are small
compared with their reference values �the thermal molecular
velocity �2RT0 and the gas temperature at infinity T0�.

IV. PHOTOPHORESIS OF A LIQUID SPHERE
WITH SLOW INTERNAL FLOW

When an aerosol particle is not solid, the boundary on the
particle side may have a nonzero velocity. As shown later,
the flow velocity of the first order at the boundary of a
spherical liquid droplet linearly depends on sin �. When
there is no mass flow across the boundary, the velocity dis-
tribution function of the ambient gas is given by


 = ū
d + �̄w
1 + ūw
v, �49�

where ūw is the magnitude of the flow velocity at the bound-
ary surface of the droplet. The boundary equations in this
case are

ūF̄1
�d� + �̄wF̄1

�1� + ūwF̄1
�v� = 0, �50�

ūP̄r�
�d� + �̄wP̄r�

�1� + ūwP̄r�
�v� = P̌r� −

T0

Lp0

d�

dT
�w, �51�

ūQ̄r
�d� + �̄wQ̄r

�1� + ūwQ̄r
�v� = −� �p

�LB
�r�p,1�

r=1
, �52�

where p0P̌r� sin � is the r−� component of a viscous stress
tensor at the boundary surface of the droplet and � is the
surface tension of the droplet.

For a liquid droplet, its temperature distribution and the
internal flow velocity in a steady state are determined by the
Navier-Stokes equations. The nondimensional forms of these
equations are given by

� · u = 0, �53�

Re�u · ��u = − ��p�� + ūw�2u, �54�

Re�u · ��� = Pr−1 ūw��2� + �IB/�pT0�

+ Ma2 ūw
−1�� jui + �iuj��iuj , �55�

where Re is the Reynolds number, Pr is the Prandtl number,
Ma is the Mach number, and ūw=Uw / �2RT0�1/2 is a dimen-
sionless characteristic velocity. Boundary conditions are
given by Eqs. �51� and �52�, and the condition of no mass
flow across the boundary �ur=0 at r=1�. In the above equa-
tions, the reference velocity is �2RT0 to match the dimen-
sionless expression of the Boltzmann equation. If we intro-
duce a reference Reynolds number Re�=L�2RT0 /�, where �
is a dynamic viscosity coefficient, the Reynolds number is
expressed as Re=Re� ūw. Usually, the Mach number �the ra-
tio of the characteristic velocity to the speed of sound� is
much smaller than unity, and thus the last term of Eq. �55�
�the viscous dissipation function� is negligible. Moreover, we
consider here the case in which the Reynolds number Re and
the Peclet number Pe�Pe=Re·Pr� are sufficiently small so
that the advective terms in Eqs. �54� and �55� may also be
ignored.

In an incompressible fluid �where Eq. �53� holds true�, the
flow velocity field is determined independently of the tem-
perature field, except for the boundary condition. Equations
�53� and �54� can be transformed into the so-called Helm-
holtz’s vorticity equation �47� in terms of the vorticity �
=�	u. In a spherical system with rotational symmetry in
the 
 direction and with no rotational component of the flow
velocity, the vorticity � only has a rotational component �
.
When the advective term is negligible, a general solution for
�
 is given by

�
 = �
n=1

�

�Anrn + Bnr−n−1�Pn
1�cos �� , �56�

where Pn
m�cos �� is an associated Legendre function. From

the definition of vorticity, u� and ��ur have expansion forms
with respect to Pn

1�cos ��. This leads to

ur = ar
0�r� + �

n=1

�

ar
n�r�Pn�cos �� , �57�

u� = �
n=1

�

a�
n�r�Pn

1�cos �� . �58�

From Eqs. �53�, �57�, and �58�,

ar
0 = c0r−2, �59�

and for n�1,

ar
n = cn1rn+1 + cn2r−n + cn3rn−1 + cn4r−n−2, �60�

a�
n = −

n + 3

n�n + 1�
cn1rn+1 +

n − 2

n�n + 1�
cn2r−n

−
1

n
cn3rn−1 +

1

n + 1
cn4r−n−2. �61�

Since there is no flow across the boundary, we obtain the
following solution for the mode n=1:
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ur = ūw�1 − r2�cos � , �62�

u� = ūw�− 1 + 2r2�sin � . �63�

For this flow field, the r−� component of the viscous
stress tensor at r=1 takes the form

P̌r� = − 6 Re�−1��p/�0�ūw. �64�

On the other hand, since the Peclet number is assumed to be
small, the temperature field follows a simple diffusion equa-
tion. In this case, the gradient of the temperature at r=1
follows Eq. �47� in the preceding section. Thus, the photo-
phoretic velocity is derived to show linear dependence on the
laser power as follows:

ū =

− �I� s3B1�s�ds/��LBT0�

Qr
�d� + Qr

�v� F̄1
�1�P̄r�

�d� − F̄1
�d�P̄r�

�1��

F̄1
�v�P̄r�

�1�� − F̄1
�1�P̄r�

�v��
+ Q̄r

�1�� F̄1
�d�P̄r�

�v�� − F̄1
�v�P̄r�

�d�

F̄1
�v�P̄r�

�1�� − F̄1
�1�P̄r�

�v��

, �65�

where Q̄r
�1��= Q̄r

�1�+�p /�LB, P̄r�
�v��= P̄r�

�v�+6 Re�−1��p /�0�, and

P̄r�
�1��= P̄r�

�1�+T0�d� /dT� / �Lp0�.

V. PHOTOPHORESIS OF A LIQUID SPHERE WITH
MODERATELY FAST INTERNAL FLOW

When the Peclet number is not small, the advective term
in the energy equation is not negligible. In this case, the
detailed structure of the relative power distribution becomes
important. Later in this section, we introduce a parameter
Bmn. To avoid confusing the notation with Bn, we briefly
summarize these notations:

B�x� = Bn�r�Pn�cos �� �66�

=BmnB̂mn�r,�� , �67�

where B̂mn�r ,��=rnPm�1−2r�Pn�cos ��. When B�x� is given,
Bmn is calculated as follows:

Bmn =
�2m + 1��2n + 1�

4�
�

0

2� �
−1

1 �
0

1

B�x�r−n

	Pm�1 − 2r�Pn�cos ��drd cos �d
 . �68�

Hereafter, we consider the case where the Reynolds num-
ber is small �0�Re�1�, but the Peclet number is not nec-
essarily small �0�Pe�Pr, Pr�1�. Thus, the flow in the
droplet is represented by Eqs. �62� and �63�, and the energy
equation is described as

�
n
��1 − r2��r�n� n + 1

2n + 1
Pn+1�cos �� +

n

2n + 1
Pn−1�cos ��
 +

2r2 − 1

r
�n�n�n + 1�

2n + 1
Pn+1�cos �� −

n�n + 1�
2n + 1

Pn−1�cos ��

− Pe−1� 1

r2�r�r2�r�n�Pn�cos �� −
n�n + 1�

r2 �nPn�cos �� +
�I

�pT0
Bn�r�Pn�cos ��
� = 0. �69�

Since Pn�cos �� are orthogonal, each coefficient for Pn�cos �� must be 0;

�1 − r2�� n

2n − 1
�r�n−1 +

n + 1

2n + 3
�r�n+1
 +

2r2 − 1

r
�n�n − 1�

2n − 1
�n−1 −

�n + 1��n + 2�
2n + 3

�n+1

− Pe−1� 1

r2�r�r2�r�n� −
n�n + 1�

r2 �n +
�I

�pT0
Bn�r�
 = 0. �70�

Equation �70� is singular at r=0. Roughly, the advective term
is on the order of � /r and the diffusion term is on the order of
� /r2. Thus, in the limit of r→0, diffusion should determine
the leading term of the solution. The general solution of the

diffusion equation takes the form �n=C1rn+C2r−n−1. Since
we are only interested in a finite solution, the leading term of
�n scales as rn in the limit r→0. Thus, when we consider the
solution in the form �n�r�=rn�n��r�, the function �n� does not
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diverge in the limit r→0. Equation �70� can be rewritten in
terms of �n� as follows:

�r
2�n� = − Ībn�r� − 2�n + 1�r−1�r�n� + Pe� n

2n − 1

1 − r2

r
�r�n−1�

+
n + 1

2n + 3
r�1 − r2��r�n+1� +

n�n − 1�
2n − 1

�n−1�

−
�n + 1��n + 2�

2n + 3
r2�n+1� + �n + 1��1 − r2��n+1� � , �71�

where rnbn�r�=Bn�r� and Ī=�I / ��pT0�.
For n=0, the following relation is derived from the above

equation:

�r�0� = −
Ī

r2�
0

r

s2b0�s�ds +
Pe

3
�r − r3��1�. �72�

If we omit a contribution from �2�, Eq. �71� for n=1 and Eq.
�72� lead to a dominant equation for �1�:

�r�r4�r�1�� −
Pe2

3
r4�1 − r2�2�1� + f�r� = 0, �73�

f�r� = Īr4b1�r� + Ī Pe r�1 − r2��
0

r

s2b0�s�ds . �74�

From Eqs. �50� and �51� with Eq. �64�, we can easily
determine that ū, �̄w, and ūw are linearly dependent on each
other. Here, we express ū and ūw with �̄w;

ū = �u�̄w, �75�

ūw = �uw�̄w. �76�

By substituting Eqs. �75� and �76� into Eq. �52�, we obtain
the first boundary condition

��̄ + 1��1��1� + �r�1��1� = 0. �77�

For r=0, �r�n� must be 0. Otherwise, the energy equation �Eq.
�71�� becomes singular at r=0. This is the second boundary
condition

�r�1��0� = 0. �78�

�Notably, limr→0��r�n�� /r is not necessarily 0. Thus, the actual
boundary condition at r=0 is given by the continuity of
�r

2�n�.�
Equation �73� has one undetermined parameter Pe, and

we need an additional condition to determine it. Since the
Peclet number Pe=Pr·Re� ūw, Eq. �76� leads to

�1�1� = �sur Pe. �79�

To find a general trend of the solution, it is convenient to
calculate the Green’s function GPe�r ,r�� for Eq. �73� with the
boundary conditions �Eqs. �77� and �78��. Once the Green’s
function is solved, the temperature distribution at r=1 is
given by

�1�1� = �
0

1

GPe�1,r��f�r��dr�. �80�

If we consider the right-hand side of Eq. �80� as a function of
the Peclet number, the Peclet number �and consequently the
migration velocity −ū� would be determined as an intersec-
tion of the two curves of Eqs. �79� and �80�. Unfortunately, it
is difficult to derive the analytic expression of GPe�1,r��, and
we must solve it numerically. For a water droplet of 1.0 �m
in radius suspended in air with Knudsen number k=0.1 �cor-
responding to 6.0	104 Pa� at room temperature �25 °C�,
the coefficients of the equations can be calculated as �̄
=0.029 and �sur=8.6	10−3. Water is just an example for
assigning numerical values to the parameters, and we expect
that a general trend of the solution is not influenced by the
specific values of the parameters. However, for a droplet of
water, the present analysis is justified only for a Peclet num-
ber less than, roughly, 10. Beyond this region, the Reynolds
number is larger than 1, and a more careful analysis for the
advective term �u ·��u is required.

Figure 2�a� shows a plot of the Green’s function GPe�1,r��
for this case for various values of the Peclet number, ranging
from Pe=0.05 to Pe=100. For a small Peclet number, the
Green’s function is almost linear with respect to the radial
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FIG. 2. �a� Green’s functions of the surface temperature for
various Peclet numbers versus the radial distance in the droplet. �b�
The Green’s functions at various r�s versus the Peclet number. �c�
The Green’s function at r� versus the Peclet number over a wide
range.

TAKAFUMI IWAKI PHYSICAL REVIEW E 81, 066315 �2010�

066315-8



distance. This situation corresponds to the case where the
advective term is negligible, which is discussed in the previ-
ous section. When the Peclet number exceeds Pe=1, the
Green’s function starts to noticeably stray from a diffusion-
dominant line. Figure 2�b� shows the dependence of the
Green’s function at each point on the Peclet number as a
double-logarithmic plot. The slopes of the curves decrease as
the Peclet number increases. When the Peclet number is Pe
=5, the Green’s function near the center of the droplet de-
creases as Pe−� with ��1. In this region, the value for �
depends on the radial distance r�, but this dependency is not
extreme. Consequently, the relation among the surface tem-
perature variation �̄w, the Peclet number Pe and the radiation
power I can be estimated from the representative radial dis-
tance �and the corresponding �� where GPe�1,r��f�r�� has a
maximum weight. When the contribution from the B0 com-
ponent of the power distribution is dominant,

�̄w � Pe � I Pe GPe, �81�

and �̄w has a quasiscaling relation as �̄w= I1/�. When the con-
tribution from the B1 component is dominant,

�̄w � Pe � IGPe, �82�

and �̄w has an interim scaling relation �̄w= I1/�1+��. Thus,
when the B1 component is dominant and has a particular
weight near the center of the droplet, the temperature differ-
ence �̄w and consequently the photophoretic velocity ū ex-
hibit an interim scaling relation with the radiation power as
ū� I1/2 within a narrow range near Pe=5. However, in a
general sense, there is no power law in this intermediate
range of the Peclet number.

On the other hand, for a large Peclet number the photo-
phoretic velocity shows a power law. From the curves for
Pe�20 in Fig. 2�a�, each Green’s function can be approxi-
mated with a hinge-shaped line. In fact, for the correspond-
ing Peclet number in Fig. 2�b�, the Green’s function near the
center of the droplet falls off very rapidly, while that on the
surface GPe�1,1� decreases moderately. Thus, we can ap-
proximate the Green’s function for a large Peclet number as

GPe�1,r�� � 
 0 if r� � 1 − hGPe�1,1�
GPe�1,1� + �r − 1�/h if r� 
 1 − hGPe�1,1� ,

�
�83�

where h is the inverse of �GPe�1,r�� /�r� at r�=1. To be
precise, h is given by

h = 1 + �̄�1a�1�/�̇1a�1� , �84�

where �1a�r� is the solution of the homogeneous equation for
Eq. �73�, which satisfies the boundary condition �Eq. �78��
and �̇1a�r� is its derivative. Since �̄�1, h can be approxi-
mated as h�1.

When the Peclet number is large and the radiation power
distribution changes only moderately near the surface, the
surface temperature can be expressed as the following first-
order approximation:

�̄w �
�I

�pT0
�1

3
Pe GPe�1,1�3�

0

1

s2B0�s�ds

+
1

2
GPe�1,1�2B1�1�� . �85�

Thus, when GPe�1,1��Pe−�, the photophoretic velocity
scales as ū� I1/�3�� for the case where the B0 component is
dominant, and as ū� I1/�1+2�� for the case where the B1 com-
ponent is dominant. Since the ratio of the contribution from
the B0 component to that from the B1 component scales to
GPe�1,1�Pe, in the limit Pe→� the photophoretic velocity
should scale as ū� I1/�3�� unless � is larger than 1.

Figure 2�c� shows a plot of the Green’s function GPe�1,1�
for a wider range of the Peclet number. In this figure, we can
clearly distinguish two regions with different scaling rela-
tions. One is the diffusion-dominant region for Pe�1 and
the other is the highly advective region for Pe
20. For the
latter case, at least up to Pe=1500, the Green’s function
GPe�1,1� numerically scales as GPe�1,1��Pe−� with an al-
most constant � of 0.57. Thus, the photophoretic velocity
scales as ū� I0.58 for the case where the B0 component is
dominant, and as ū� I0.47 for the case where the B1 compo-
nent is dominant.

The approximation to retain up to the �1 component in the
ordinary differential system for a thermal transport system
discussed above is a very rough version of the spectral
method �48� for a �partial� differential system. Though this
rough case is numerically stable, and is advantageous for
directly calculating the Green’s function on real space, it is
not very accurate. Figure 3 shows a plot of the numerical
solutions of �1�1� with a homogeneous radiation intensity
�B0�r�=1�, while varying the fineness of the spectral method.
The term “order n” means that, up to �n, the components of
the differential equations are retained. This figure shows that
the second-order approximation only reproduces the qualita-
tive behavior. On the other hand, the numerical solutions for
higher-order approximations can only be obtained in a lim-
ited range of the Peclet number.

As described above, for a higher-order approximation, the
Green’s function on real space is not calculated directly. On
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FIG. 3. The �1 component of the surface temperature under a
homogeneous radiation intensity versus the Peclet number. The
lines are solutions of systems of ordinary differential equations
transformed from the thermal advective equation, up to the second,
third,…, and eighth orders, respectively.
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the other hand, since the delta function is regarded as an
infinite summation of eigenfunctions, the Green’s function
can be constructed as an infinite summation of response
functions for each base function. If we change our viewpoint,
the set of these response functions can be substituted for the
Green’s function. Figure 4 shows a plot of �1�1� versus the
Peclet number for various base functions in the form of

B̂mn�r ,��=rnPm�1−2r�Pn�cos ��, where Pn�x� is a Legendre
polynomial. Thin dashed lines in the figure were introduced
to show the slope of the line of the boundary condition �Eq.
�79��. To be exact, the line of the boundary condition exists
uniquely, and the curves of the response functions shift up-
ward as the radiation intensity increases. In principle, this is
equivalent to considering that the line of the boundary con-
dition shifts downward as the radiation intensity increases, as
long as the Peclet number at a steady state is considered. The
actual steady state is the intersection of the line of the bound-
ary condition with the total response function according to
the actual radiation distribution structure, but its general be-
havior can be estimated from the intersections with indi-
vidual radiation modes.

As shown in Fig. 4, the scaling behavior differs according
to the base function of the radiation intensity distribution.
With regard to �1, the advection-dominant region first ap-
pears for the base function of n=1. For n=1, the magnitude

of the scaling exponent of �1 against Pe is largest for m=0,
and decreases as the value of m increases. This tendency is
specific to n=1, and for a larger value of n, the opposite
trend is seen. However, in the case of n=3, the advection-
dominant region is not sufficiently calculated, and it is diffi-
cult to make a clear conclusion at present. For n=0, the
horizontal position of each curve is not regular. From top to
bottom, the curves are, respectively, for m=0, m=2, m=1,
and m=3, respectively. This irregular behavior can be attrib-
uted to the total energy flux acting on the droplet. For n=0,
the total energy inflow scales to �0

1s2Pm�1−2s�ds, and this
term can be rewritten by using Pm

� �s�= Pm�1−2s� as follows:

�
0

1

s2Pm
� �s�ds = �

0

1 �1

6
P2

��s� −
1

2
P1

��s� +
1

3
P0

��s�
Pm
� �s�ds .

�86�

From the above expression, it is clear that the total energy
inflow is 1/3 for m=0, −1 /6 for m=1, and 1/30 for m=2. For
m�3 or n�1, the total energy inflow is 0. Consequently,
�1�1� shows a regular behavior for these modes of the radia-
tion intensity distribution.

Overall, the response of �1�1� is largest for n=1 and m
=0 and decreases as 	n−1	 and/or m increase. In principle,
the intensity distribution in a spherical dielectric under irra-
diation with a planar wave can be given by the Mie solution
�26,27�. According to the ratio of diameter to wavelength,
the behavior of the Mie solution can be analyzed for three
cases. In one case, the diameter of the dielectric is much
larger than the wavelength of the incident beam, and the
dielectric can be considered a spherical lens. In this case, the
dominant modes of the intensity distribution would be B00
and B01. Thus, the scaling of the photophoretic velocity to
the radiation intensity is determined by the ratio B01 /B00 and
the absolute value of the radiation intensity. In Fig. 4, the
steady state is roughly determined by the highest of the in-
tersections of each curve with the line of the boundary con-
dition �Eq. �79��. The absolute value of the radiation inten-
sity shifts the temperature level for all curves. When the
intensity I goes to 0, all curves in the figure shift downward
infinitely. For a sufficiently small I, the line of the boundary
condition first meets the solution for B01 with a very small
Peclet number. In this region, the solution for Bm1 shows a
flat profile, and the intersection follows a scaling relation
I��sur Pe.

When I becomes large, the Peclet number at the intersec-
tion becomes large and the contribution from B00 becomes
large. In particular, for the case in which B01 /B00 is much
smaller than 1, the solution for B00 is a dominant contribu-
tion to �1. After the intersection passes the peak of the solu-
tion, the intersection numerically follows a scaling relation
I Pe−1.2��sur Pe. Consequently, the photophoretic velocity
scales to I0.45. If the ratio B01 /B00 is not small, the dominant
contribution is the solution for B01. In this case, the intersec-
tion numerically follows a scaling relation I Pe−1.5��sur Pe,
and the photophoretic velocity scales to I0.4. These scaling
exponents are slightly smaller than the earlier rough estima-
tions based on the two-mode approximation. On the other
hand, solutions for Bm0 do not seem to sufficiently reach an
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FIG. 4. The �1 component of the surface temperature versus the
Peclet number under a radiation intensity distribution in the form of

various base functions as B̂mn�r ,��=rnPm�1−2r�Pn�cos �� where
n=0 for �a�, n=1 for �b�, n=2 for �c�, and n=3 for �d�. The sym-
bols, +, 	, �, and �, in the figure correspond to m=0, m=1, m
=2, and m=3, respectively. Thin dashed lines were introduced as
auxiliary lines to show the slope of the line of the boundary condi-
tion, �1�Pe.
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asymptotic region within the calculated range. From the
wide-range calculations for the two-mode approximation
shown in Fig. 2�c�, we can be certain that solutions for Bm0
would exhibit an asymptotic scaling behavior for a large
value of the Peclet number. However, the actual asymptotic
scaling exponent may shift from the above discussed value.

Interestingly, in Fig. 4�d�, a curve for Bm3 sometimes has
two intersections with the line of the boundary condition.
The smaller intersection corresponds to an unstable steady
state. This behavior is not seen in the other modes. Due to
the essential property of the system, in the limit of a small
Peclet number, the response functions for the Bm0 and Bm2
modes would show asymptotic linear scaling. The response
functions for the Bm1 modes would show an asymptotic con-
stant behavior. This difference depends on how many times
the internal flow acts to produce a �1 temperature distribu-
tion. For the Bm3 modes, the internal flow acts twice, and
thus the response function has an asymptotic scaling relation
as �1�Pe2 for a small Peclet number. Consequently, for the
Bm3 modes or modes of higher order than Bm3, there is a
threshold of the photophoretic velocity. For the Bm0 and Bm2
modes, while there is no threshold of the photophoretic ve-
locity, there is a threshold of the intensity to induce photo-
phoresis.

Variation in size influences the photophoretic velocity by

changing the boundary parameters ��u, �uw, �̄, and �sur� and
by changing the heat source function. The formula for the
heat source function is established but rather complicated,
which depends on the wave length, the complex refraction
index and the size of sphere itself. To understand a general
trend of the effect of thermodynamic processes, we focus on

the changes in �u, �uw, �̄, and �sur.

The parameter �̄ represents the magnitude of the heat flow
from the droplet to the gas. Since �LB scales to the size of

droplet L, �̄ increases linearly to the increase in L, unless the
other parameters do not change. In fact, when L increases
under the same pressure, the Knudsen number k decreases

and the value of �̄ changes in a more complicated manner.

However, �̄ basically increases with the increase in L. It is

interesting that this change in �̄ only slightly changes the
Green’s function. In addition, �uw does not change very much
with the change in L.

The parameter �sur is a ratio of the surface temperature
difference to the Peclet number, and it decreases with the
increase in L. When �sur decreases, the solution for the Peclet
number increases. Finally, �u associates the Peclet number
with the photophoretic velocity −U;

Pe �u

L�uw
= U Pr/� . �87�

In principle, the photophoretic velocity decreases as L in-
creases because �u decreases.

Figure 5 is the plot of Pe �u / �L�uw� versus L for various

values of ĪB01 and ĪB00. For ĪB00=0.01, there is no photo-
phoresis. It is notable that U changes its sign from the posi-
tive to the negative when L increases. This fact is character-
istic to a liquid droplet �of which surface tension decreases as

the temperature increases�. For a solid particle, photophoretic
velocity falls off to zero as L increases. The negative value of
U means the photophoretic motion toward the heated side. In
this case, the droplet swims because of the Marangoni con-
vection. The sign of U depends on the size of the droplet L

but is independent of the radiation intensity Ī.
In principle, inhomogeneous surface tension induces not

only the convection but also the deformation of the droplet.
While the convection is determined by the space derivative
of surface tension, the deformation is determined by the sur-
face tension itself. Let us consider droplets in different sizes
with the same surface temperature distribution in angle. The
convection becomes more rapid as the size of the droplet
decreases. On the other hand, the deformation of the droplet
is independent of the size of the droplet. Thus, for a small
droplet, the deformation is not significant as compared with
the convection. Usually, the deformation is taken into ac-
count for a centimeter-sized droplet.

For a symmetrical model system, photophoretic motion
occurs along a light axis. In fact, in many actual experiments,
the photophoretic force pointed toward the direction of a
light axis. However, the photophoresis of a different type is
also observed �12�. At present, such anomalous photophore-
sis is associated with inhomogeneity of the photophoretic
particle. For example, when the particle surface is not clean,
the accommodation coefficient is occasionally position de-
pendent. In this case, the photophoretic force �called the ��
force �11�� arises as a body-fixed force and the particle
moves toward a direction independent of the light axis. In-
homogeneity can also influence the temperature distribution.
When a spheroid is illuminated from an oblique direction,
the direction of the photophoretic force can theoretically de-
viate from the light axis �29�. In these explanations, anoma-
lous photophoresis is characteristic to a solid particle. Since
the Bm0 mode of the radiation distribution has no particular
direction, it is clear that an internal flow or temperature field
sustained by this homogeneous mode does not depend on the
direction of the light axis. In this case, the direction of the
photophoresis would be easily influenced by fluctuations and
disturbances of the system. Thus, the present result suggests
that anomalous photophoresis can occur for a liquid droplet
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FIG. 5. The size dependence of the photophoretic velocity.
Pe �u / ��uwL� is equivalent to U Pr /�, where −U corresponds to the
photophoretic velocity.
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due to the coupling of a homogeneous energy inflow and an
internal flow field.

A nonlinear scaling relation between photophoretic force
and radiation intensity was also discussed by Sitarski �32�. In
his model, the Stefan-Boltzmann law of blackbody radiation
�T4 dependence� and evaporation increasing exponentially to
T were the main causes of nonlinearity. Nonlinearity basi-
cally originates from the boundary condition, and this situa-
tion is similar to the present analysis. Whether or not black-
body radiation is negligible depends on thermodynamic
variables. Let us consider dried air at 105 Pa and 300 K. If a
temperature difference in the system is on the order of 5 K
and the Knudsen number is k=0.1, the dimensionless heat
flow originating from problem 2 is on the order of 2	10−3.
On the other hand, the dimensionless heat flow between 305
K blackbody and 300 K background radiation field is on the
order of 10−6. In this case, the effect of heat radiation is
actually negligible. It is notable that heat radiation is inde-
pendent of the pressure if the gas is transparent, but the heat
flow arising from molecular collisions highly depends on the
pressure. In a nonvacuum condition, heat radiation is negli-
gible as a matter of fact. In a medium-vacuum condition,
these two terms can be comparable. In a high-vacuum con-
dition, heat radiation can be the main influence on the tem-
perature distribution. The effect of evaporation highly de-
pends on the material. To explain the photophoresis of a
volatile oil droplet, this effect must be considered correctly.
The present discussion should also promote our understand-
ing of the essential physics of this problem.

VI. CONCLUSION

The photophoresis of a microdroplet is discussed with
Navier-Stokes equations for a liquid region coupled with the
linearized Boltzmann equation for a gaseous region. When
internal flow is slow, a temperature distribution inside the
droplet is determined by the diffusion equation. In this case,
the photophoretic velocity linearly scales to the radiation in-
tensity. Only difference with the case of a solid sphere is its
coefficient. When internal flow is fast, the temperature ad-
vection changes the behavior of the system in a qualitative
manner. We observed an asymmetric flow field induced by a
homogeneous mode of the radiation intensity distribution in-
side the droplet. While such a mixing of modes is a charac-
teristic of nonlinear phenomena, this case has a much sim-
pler explanation. A homogeneous mode is not an eigenmode
for this system even if the hydrodynamic equation is linear-
ized. On the other hand, since nonlinear coupling exists
between the flow field and temperature field through the
boundary condition, a nonlinear relation appears between the
photophoretic velocity and the radiation intensity. For a suf-
ficiently strong radiation intensity, the photophoretic velocity
scales to the intensity with a scaling exponent of about 0.4,
and the actual value depends on the intensity distribution
inside the droplet. In addition, the radiation intensity can
switch the dominant mode of the radiation distribution and
a threshold behavior is anticipated for the photophoretic
velocity.
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