PHYSICAL REVIEW E 81, 066309 (2010)

Solution of the stochastic Langevin equations for clustering of particles in random flows

in terms of the Wiener path integral
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We propose to take advantage of using the Wiener path integrals as the formal solution for the joint
probability densities of coupled Langevin equations describing particles suspended in a fluid under the effect
of viscous and random forces. Our obtained formal solution, giving the expression for the Lyapunov exponent,
(i) will provide the description of all the features and the behavior of such a system, e.g., the aggregation
phenomenon recently studied in the literature using appropriate approximations, (ii) can be used to determine
the occurrence and the nature of the aggregation-nonaggregation phase transition which we have shown for the
one-dimensional case, and (iii) allows the use of a variety of approximative methods appropriate for the
physical conditions of the problem such as instanton solutions in the WKB approximation in the aggregation
phase for the one-dimensional case as presented in this paper. The use of instanton approximation gives the
same result for the Lyapunov exponent in the aggregation phase, previously obtained by other authors using a
different approximative method. The case of nonaggregation is also considered in a certain approximation

using the general path integral expression for the one-dimensional case.
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I. INTRODUCTION

Recently, there has been considerable interest in the study
of the behavior of particles in media taking into account the
effect of random forces. Studies in this direction can provide
a better understanding of the behavior of particles in turbu-
lent flow. The features and behavior of turbulent flow are
under continuous intense investigations. As one of the main
features, the clustering of particles into regions of high den-
sity has been studied extensively on both experimental and
theoretical sides [1-4]. Particles suspended in a turbulent
fluid form cluster structures as a result of the competition
between the diffusive random forces and the aggregative vis-
cous ones. However, the conditions for such a behavior are
not fully understood, the mechanisms which contribute to the
formation of clusters have been studied in [5-8] (see also
[9]). An extreme form of clustering of particles, known as
the “aggregation phenomenon,” which is not well under-
stood, has been studied recently by means of theoretical
modeling and numerical simulations [ 10-16]. Other phenom-
enological models for cluster aggregation, inspired by Kol-
mogorov’s theory [17], may be also studied along similar
lines [18]. The aggregation of particles can be defined as the
coalescence of different particles paths with very close posi-
tions and velocities in a fluid subjected to random forces
fluctuating in space and time, the particles being affected by
viscous forces proportional to their velocities. The first the-
oretical analysis and numerical simulations for the aggrega-
tion of suspended particles in a one-dimensional random
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fluid were carried out in [10]. The result of this study shows
a phase transition between the nonaggregate and aggregate
phases. Motivated by this result, recent investigations on the
aggregation of particles in two- and three-dimensional ran-
dom fluids were performed in [11-13]. By introducing a
model for the motion of pointlike noninteracting particles in
a three dimensional random fluid, the equations of motion
for such particles, which are under the influence of a viscous
force beside the random force were also derived in [13].
Then by linearizing the equations of motion, two coupled
Langevin equations which describe the evolution of the sepa-
ration of positions and velocities of two nearby particles
were obtained. These two coupled Langevin equations de-
scribe the aggregation of particles and thus the system of
coupled Langevin equations should be solved for calculating
the Lyapunov exponent [19], which is equal to the expecta-
tion value of one of the variables in the Langevin equations.
For this purpose, we apply the Wiener path integral formal-
ism for solving the system of two coupled Langevin equa-
tions, describing the aggregation phenomenon. At first we
introduce a method for writing the solution of Langevin
equations in terms of the Wiener path integral, which has
been thoroughly studied in the literature over the years
[20-24]. Then, by generalizing the procedure, we obtain the
solution of the system of N coupled Langevin equations in
terms of the Wiener path integral. The Lyapunov exponent as
an indicator of aggregation can also be written in terms of
path integral. The Wiener path integral formalism provides
an exact solution to the aggregation problem. The obtained
exact solution in terms of the path integral is presented in a
closed analytical form and its actual evaluation can be per-
formed by means of a variety of different approximation
methods suitable to the specific physical conditions of the
system. We discuss some approximative methods for such
Wiener path integrals in one-dimensional case.
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II. SYSTEM OF COUPLED LANGEVIN EQUATIONS
DESCRIBING THE AGGREGATION PHENOMENON

In this section we briefly review the results of recent stud-
ies [13] on the aggregation phenomenon in three dimensions.
Particles suspended in a turbulent fluid can be modeled by
the spherically massive particles which are moving in a ran-
dom velocity field with specific properties such as isotropic,
homogeneous, and stationary statistics. For simplicity, it can
be assumed that there is no interaction between the particles
themselves as well as between the particles and the fluid.
Also we can neglect the inertia of the displaced fluid. By
these assumptions, one can consider a large number of sus-
pended particles with random initial positions in the fluid and
zero velocities. The behavior of the trajectories of particles is
dictated by the effect of random as well as viscous forces and
the motion of such particles in a random fluid is diffusive.
Therefore, the inhomogeneities in density tend to get re-
duced, while the viscous forces cause the aggregation of par-
ticles and eventually the competition between diffusive ran-
dom forces and viscous forces leads to a phase transition
between path coalescence and path noncoalescence phases.
The equations of motion which describe the suspended par-
ticles’ trajectories are

i==, p=—+p-mu(r)], (1)

Sl

where vy characterizes the strength of the viscous damping
and u(r,?) is the random velocity field. The aggregation of
particles can be studied by considering two nearby trajecto-
ries with spatial separation or and momenta difference Jp.
The linearized version of the equation of motion can be de-
rived as

. 0 .
or=—, p=-yp+F()ér, (2)
m

with the matrix elements of F as

é’fi r?ui
Fij=——(@0),0) =my—(r(1).1). 3)
ar; ar;
With the parametrization of the linearized equations of mo-
tion as

5r=Xn1, 5p=X(Y1n1 + anz), (4)

where X is a scale factor showing the aggregation occurs if it
decreases with probability in the limit #—o. n; and n, are
time-dependent orthogonal unit vectors (in three dimensions
the third unit vector is defined as ny=n; An,). By differenti-
ating Eq. (4), substituting the result in Eq. (2), and finally
projecting the equations onto the unit vectors one obtains the
equations of motion for the variables X and Y;:

o1
X=—YX,
m

. 1
Y, =—yY, + n—1(Y§— Y +F, (1),
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. 2 ,
Y2=—')/Y2—%Y1Y2+F21(l‘), (5)

where n,(r) . F(r)n(t) =F;j(t). It has been argued [13], that the
maximal Lyapunov exponent \, (hereafter called simply
Lyapunov exponent) in the limit t— < is given by

N =<dld—,x> =, ©

which we used the first equation in Eq. (5).

We recall the general definition of the Lyapunov exponent
as a quantity that characterizes the rate of separation of in-
finitesimally close trajectories. Quantitatively, the separation
S8Z(1) of two trajectories in phase space with initial separa-
tion 87 is given by the formula

|6Z(1)] = | 8Zylexp(s), (7)
where \ is the Lyapunov exponent. The separation diverges
with time when A>0 and aggregation occurs for the case
A <0.

In the limit where the correlation time 7' of the random
force is small and the random force itself is also sufficiently
weak, the coupled equations of motion can be approximated

by a system of two coupled Langevin equations (for details
of derivations and physical explanations see part I1I of [13]):

1
dy, = [— yY +—(Y5- Y%)]dw ey,
m

Dy 2
dY2= —7Y2++—_Y1Y2 dt+d§2, (8)
Y2 m
with the noise properties

(dgp =0, (d{dg)=2D;dt. )

The diffusion constants D;; is defined as
(™
D;;= Ef dt(Fi'l(t)F]"l(O)). (10)
Consequently, by the change of variables

Y Y
dt, = d[, i = _Yi7 d i _d i 11
vt xi= w \/D[ g (1D

where D;=D;;, D,=D,;= Dy, the final coupled Langevin
equations read as

dx; = [-x, + e(T'x3 — x7)1dt" + dw,

dx2=[—)C2+x£1 —26x1x2]dt' +dW2, (12)
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where e=D1{?/my>? is a dimensionless measure of the iner-

tia of the particles and I'=D,/ D, is a measure of the relative
intensities of potential and solenoidal components of the ve-
locity field. Equivalently, the coupled Langevin equations
can be written as

X =[-x+ E(I‘xg —x%)] +wy,

)&2=[—X2+XEI—ZGX1XZ]+W2, (13)

with

S
<WZWJ>=2_1L l,J= 1,2

py=0, s
() e

(14)
This system of stochastic differential equations should be
solved and the derived solution, which represents the prob-
ability density, can be used to determine the Lyapunov expo-
nent \; [13,19], as an indicator of the aggregation phenom-
enon:

)\1=‘y6<x1>. (15)

When the Lyapunov exponent A; is negative the aggregation
phenomenon occurs [13]. A positive Lyapunov exponent is
an indication that the system is chaotic.

The system of two coupled Langevin equations as a spe-
cial kind of stochastic differential equations has an exact
solution in terms of the Wiener path integral. In the follow-
ing, we introduce the Wiener path integral as the solution of
stochastic differential equations for the special case of the
Langevin equations. Subsequently, we generalize the Wiener
path integral formalism for the system of coupled Langevin
equations, which describe massless as well as massive
Brownian particles in random media. After that we shall be
able to present a solution in terms of the Wiener path integral
for the coupled Langevin equations describing the aggrega-
tion phenomenon.

III. SOLUTION OF THE STOCHASTIC DIFFERENTIAL
LANGEVIN EQUATIONS IN TERMS OF WIENER
PATH INTEGRAL

In this section, we introduce the Wiener path integral
method for the solution of stochastic differential equations of
special kind, the Langevin equations. As a prototype for such
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Langevin equations, we can look upon them as describing
the Brownian motion in different coordinate or velocity
spaces. For a comprehensive description of several Brownian
particles in general, see [25].

A. Wiener path integral for one Langevin equation

At first, we consider a Brownian particle in a random
medium and write the path integral solution for the transition
probability of the particle from one fixed arbitrary initial
point to a fixed arbitrary final point. The Wiener path integral
method can be used for the analysis of the stochastic equa-
tions and consists in determining the statistical properties of
their solutions such as probability densities and expectation
values. The microscopic approach to stochastic processes
starts from the stochastic Langevin equation. The Langevin
equation for a Brownian particle subject to a general nonsta-
tionary and nonlinear external force is

mi+pi=F+®, (16)

where m is the mass of the particle, 7 is the friction coeffi-

cient, F' is an external force, and ® is a random force. For
sufficiently large time intervals t>m/n we can neglect the
mass term, so the Langevin equation which describes the
motion of inertialess Brownian particles takes the form

(1) + f(x(7),7) = (7). (17)
where
= i, p= 2. (18)
-7 7

Performing a functional change of variables through the Vol-
terra integral equation

y(7) =x(7) + frf(x(s),s)ds, 0=7r=1, (19)
0

one can write Eq. (17) as

(1) = $(7).

The Jacobian of this transformation can be evaluated by the
discrete-time approximation

(20)

et o 0
f’(xl,s) 1 +f,(-x2,28)§ 0 --- 0
’ (21)
f'(x1.8) f(xs,2¢) 1+f'(xN,N8)§
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where f' = Jf/dx and e=1/N. The determinant [Eq. (21)] be-
comes

N !
Je) =11 {1+M] (22)
n=1

In the continuum limit, the determinant takes the form

N ¢
J=1lim exp|:12 8f’(x,,,ns)] = exp{%f f’(x(s),s)ds} .
0

=0 2n=l
(23)
Now we can write the transition probability of the stochastic

process defined by the Langevin equation in the path integral
form

! dx(7)

—
Clrg0spt) =0 N47dT

W(x,,t

-x070) =

t

1 .

Xexp _ZJ dr{x
0
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B. Wiener path integral for a system
of coupled Langevin equations

As a prototypical example for a system of coupled Lange-
vin equations, let us consider a system of N Brownian par-
ticles in random media which can be treated by the generali-
zation of the Wiener path integral method depicted in the
preceding section. For the system of N Brownian particles,
there are N corresponding coupled Langevin equations

(1) + fi(x(7),7) = Dy(7),
and equivalently in the matrix form
x(D) +f(x(7),7) = D(7). (26)

As mentioned before, the next step is the functional change
of variables

i=1,2,...,N, (25

T

y(n) =x(7) + J' f(x(s),s)ds,

0

0=r=1t, (27)

leading to

¥(D) =®(7). (28)

Similarly to the case of Eq. (19), the Jacobian of transforma-
tion can be calculated by the discrete-time approximation,

1 Ale) 0 0
+ /1), 71 fexp f drf [, 7] . . A2 0 - 0
O . .
24) J(e) = . : ’ (29)
The obtained Wiener path integral [Eq. (24)] can be gen- . 3 *. A (].V )
eralized for solving a system of coupled Langevin equations. &
In the next section we shall describe such a generalization. where
|
19f1(x,8) 1 df1(x,e) 1 df1(x,¢)
l+-———ne ——/——ne ————ne
2 dx 2 Ox, 2 dxy
1 df>(x,¢) 1 df>(x,¢)
— +-——ne
2 dx 2 x,
A(ne) = . (30)
1 dfn(x,8) 1 dfp(x,€) 1 dfp(x,€)
————ne —————ne +—-———ne
2 dx; 2 0x, 2 dxy

[T3E 11}

and the stars
transformation [Eq. (27)] is given by

J=1im J(e) = exp[
&—0

in Eq. (29) denote the matrix blocks which do not contribute to the determinant. The Jacobian of the

ox;

'S ds—‘?ff("(”’”]. G1)
25 Jo i

Now we can write the joint probability density in terms of the Wiener path integral as

1 t
dx,(7 dxpy(T
W(x,,t|x,0) = # e ’Mexp -
Clxg0x,0) =0 N4mdT oo N4TdT

N

1 ! 1

=2 | drli+ fiIx(D, 7] fexp) =X | dr—
4 Jo 2351 Jo

N~

afilx(),7]
ox;

l

(32)
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At this level, we have developed the Wiener path integral
approach for solving the system of Langevin equations and
we can apply this method for the case of aggregation equa-
tions. However, there is some conceptual point concerning
the meaning of the variables in the aggregation equations,
namely, that they are not the coordinates, but are dimension-
less velocity differences, as mentioned before. So the sug-
gested model for the aggregation of particles includes the
inertia of particles, but after linearizing the equations of mo-
tion one can get the first order differential equations in the
velocity space.

Now, it is straightforward to apply the above method to
the case of two coupled Langevin equations. For the Lange-
vin Egs. (13) describing the aggregation of particles, we can
write the exact solution for the probability density in terms
of path integral as follow:

L dxy(7) oy dxo(7)

W(x,,1%(,0) = —]] —
Clxg0:x,.0) =0 N47dT =0 NdTdT
1 t
Xexp{— 3| e +f2>2]}
0
1L(" (4 d
Xexp —f dr<i+ﬁ> , (33)
2 0 (?xl (9X2
where
fi=xi - E(Fx%—x%),
fr=xy— x5 +2ex,x,. (34)

The obtained joint probability density represents an exact
solution for the system of two coupled Langevin equations
for the aggregation of inertial particles. Thus, we can write
the maximal Lyapunov exponent in the form of a path inte-
gral, using Egs. (15), (33), and (34):

XO,O)x”.

t—0 t—0

+00 400
N\ =lim ye(x;)=1lim ye f f dx,dxy W(X,,t

(35)

It can be seen from Eq. (34) that f, and its derivative in the
expressions for W and A contain singularities at x,=0. How-
ever, the region x,~0 does not contribute to the probability
density W and the Lyapunov exponent A\; and overall the
path integral is convergent.

The case of negative \; leads to the aggregation phenom-
enon. Having presented an exact solution of two coupled
Langevin equations in terms of the Wiener path integral as in
Eq. (33), one can study all the features and properties such as
Lyapunov exponent with the help of approximation methods,
both theoretical and numerical, e.g., perturbation expansion
in small parameters, by now very well developed lattice cal-
culations and the saddle-point approximation. In this way, we
can also determine the points of aggregation and nonaggre-
gation phase transition and their nature, by investigating the
exact expression used to determine the Lyapunov exponent
given by Eq. (35). By studying the whole integrand in the
exponent in Eq. (35) with Eq. (33), as a function of x; and x,,
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we can find for which values of x|, negative or positive, the
path integral W(x,,7|x,,0) is larger—the region in which
negative x; values dominate (as a function of € and I') gives
the region where aggregation occurs.

We will follow in this line to find analytic solutions for
Lyapunov exponent by using some approximation methods.

C. Evaluation of Wiener path integral for probability density
in one-dimensional case: Instanton approximation

As an example, we can apply the above results for the
analysis of aggregation phenomena in one-dimensional fluid.
In the following we summarize the formulation and the re-
sults of a specific model which has been introduced by
Wilkinson and Mehlig [12] for the one-dimensional fluid in a
similar way as described for the three-dimensional fluid in
Sec. II.

Equations of motion for any independent particle with
position x(7) and momenta p(t) are

. P .
X==, p=—wp+flxn, (36)
where 7y characterizes the strength of the viscous damping
[12]. The random force f(x,t) is translational invariant in
both space and time, and the statistical properties of the force

are given by the following expressions:
Ax? Ar?
1)) =0, Nf 1)) =a? exp| - — lexp| - —5 |,
() =0 (fnftx'a)=a p[ 252} p[ 272}
(37)
where « denotes the magnitude of the force and & and 7 are
correlation length and correlation time, respectively. The lin-
earized version of the equation of motion can be derived as
_%»
=

ox Op =— yp + d,f(x,1) Ox, (38)
where 6x and Jdp are small separations of positions and mo-
mentums between pairs of trajectories. One can write the
equations of motion in terms of X=48p/x (where X has a

stationary distribution as r— %) as the following:

X
= (39)
m
. x?
Koo X=X s o fen). (40)
m

Since the separation ox of two nearby trajectories has a
lognormal distribution {In|x(z)/ &x(0)| )=\t, the distribution
of X remains stationary. From Eq. (39) we obtain for the
Lyapunov exponent A

=L (41)

We start with the Wiener path integral analysis of this
case from single Langevin Eq. (40). The probability density
of particles in one-dimensional fluid, which is described by
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single Langevin Eq. (40), can be written in terms of a Wiener
path integral. By inserting f=yX+X?/m into Eq. (24) and
after restoring the diffusion coefficient D, we obtain

dX(7)
0,0) = f IM1==
€(0.0:X,.4) =0 V47DdT

X —— | dn X+ yX+—

exp 4DJ0 X+ X+
(' 2X

Xexp| = | drly+— ||, (42)
2J m

with the last factor exp[% Jodr(y+ %{)] being the Jacobian of
transformation. After some simplification, Eq. (42) takes the
form

W(X,,t

t

woox ] f dx(7)
4D~ 6Dm C(0.0:x,1) 0 N47DdT
2yX3 x4

1 t
Xexpl—EJ ( +)/2X2 " m2
—Zﬂ()}exp{lt} (43)
m 2

Let us consider the expression for the action in the expo-
nent in Eq. (43).

We should mention that the normalization of the probabil-
ity density is guaranteed by the Jacobian of transformation
included in Eq. (43), although when using approximative
methods we ought to normalize the probability function at
each stage of approximation.

The next step is to derive an analytical expression for this
probability density which is expressed in terms of Wiener

W(X,,t

0,0) —exp{

| D)?mexp[— ismm] -3 exp[— isp?c(m] | Dn(F)eXp{— o | [ ez
XC

where the measures of integration and fluctuations 7(7)
around the classical solution X,.(7) have been defined as

L dX(7) © dn(®
, D 48
—) E)w daredT (j E,\/m “8)
X@ =X + 7. (49)

In Eq. (47), beside the contribution of classical configura-
tions, there are additional path integrals over the fluctuations
77(7) around the classical configurations. In the first approxi-
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path integral [Eq. (43)]. Equation (43) in the present form
cannot be solved exactly, so we try to use approximative
methods in some cases. Let us first introduce new set of
parameters and make the following change of variables:

~ t 1
d=DPIm?, X=—X=—X. (44)
my

mv

The action in terms of new variables takes the form

SR = 55 K]

(45)

where e=d/v*=D/m?y’. The action in this form is suitable
for WKB approximation in the limit € — 0.

Here, we briefly present the WKB approximation method
for the evaluation of a path integral (a complete description
of WKB approximation can be found, e.g., in [25]). In the
WKB approximation, a general path integral can be written

by using the Taylor expansion of the action S[X(7] around

the classical solution )?c(f), which can be obtained from the
corresponding Euler-Lagrange equation for

8S'[X.(D]
5X

c

=0, (46)

where the subindex c refers to the classical solution. Using
the Taylor expansion of Eq. (45) around the classical solution

[Eq. (46)] gives
n(7) -+ :| )

(47)

SS[X (7]

(7)) C(Fz)

mation, this path integral is a Gaussian one and can be cal-
culated exactly by discretization, i.e.,

52
fDﬂ .)exp[ deTIdT27](Tl) SX(7)] 7](72):|
5X (7'1)5X (Tz)

~ —-1/2
det m . (50)
X )ix

This path integral is only a function of time [since 7(0)
=7(v)=0] which can be included in the overall normaliza-
tion factor.
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Let us return to the original path integral expression (43)
and use the WKB approximation for its evaluation. As dis-
cussed above, in WKB approximation method one has to
solve the Euler-Lagrange equation of motion to find the clas-
sical solutions. The classical equation of motion from Eq.
(46) with the action in Eq. (45) is

X.-X,-3X-2X° +26=0, (51)

with dot denoting the derivative with respect to 7.

Instantons were introduced in the context of the turbu-
lence by Gurarie and Migdal [26], through the studies of the
WKB approximation for the velocity distribution function of
forced Burgers equation. Similarly, in our problem the path
integral can provide a framework to study the instanton con-
tribution to the aggregation phenomena although the physical
meaning of the instanton solution in this case is not yet fully
clear.

Now, let us introduce a shifted variable Z:)?+% so that
the action in Eq. (45) changes its form and the new action
and Lagrangian become

S'[Z] = fde[ lZ'2 + 1(22 - 1)2 - 232} (52)
o 127 2 4 ’

1., 1

1 2
L=—z2+—(zz——> —2¢Z. (53)
2 2 4

Accordingly, the Euler-Lagrange equation for general € is
.1
Z+ Ez—zz3+zs=0. (54)

Equation (54) in the limit £ —0 has the following instanton
solution [27]:

Z= %tanh(%(?— '1’0)). (55)

The Lagrangian for this instanton solution can be calcu-
lated and the result is

1 1 _ N\
Lipg = E{l - tanh2<5(7'— 7'0))} , (56)
which after insertion in Eq. (52) gives the action
1 1 1 S,
S = {Etanh<5(7'— To)) + ﬂcosh 2(;(7’— To))
1 _ _ 14
Xtanh(—(r— 70)>] . (57)
2 0

The action [Eq. (57)] can be written in terms of Z,, (Z, de-
notes the value of Z at the time 7=v) as

s’ 1Z 1Z / 1Z 123
= — + — = — -
6 14 3 VZV 4 14

34w (58)

using the fact that Z'=i—Z2 for Eq. (55). By restoring the

variable X and the original variable X, we can rewrite the
action [Eq. (45)] as

PHYSICAL REVIEW E 81, 066309 (2010)

| B 1~ 1=
- —S'[X(D]=—X)+—X, 59
S RA= X+ X (59)
or equivalently
Lol X Ly (60)
2e ¢ 6Dm ' 4D "’

The contribution of this instanton solution to the probabil-
ity density in the WKB approximation (47) with Eq. (43)
cancels the exponential in front of the path integral [Eq. (43)]
and leads to a zero value for the Lyapunov exponent N\ de-
fined in Eq. (41).

Besides the contribution of instanton solution, also anti-
instanton solution which is another solution of Eq. (54) can
contribute to the evaluation of the path integral. The anti-
instanton solution has the following form:

1 1 _
Z=—Etanh<5(7— TO)>. (61)
The action can be obtained in a similar way as for the
instanton solution and the result is

1 1 0%
- —8'[X(D]=- —X, - =X
265 XD ==0p X = %
Thus, using Egs. (47) and (50) the WKB approximation
for the probability density [Eq. (43)] yields

(62)

2 3
wW(X,) =8 exp{— X _ L]

63
2D  3Dm (63)

From the definition of &, it can be seen that in the limit &
— 0, where the above solution is obtained, the dimensionless
viscosity v is much larger than dimensionless diffusion coef-
ficient d. In this regime we can consider the Gaussian part as
the main part and keeping the leading terms in the expansion
of the remaining part, we obtain

X3 VX
W(X,)=p8[1- f)ex -1,
) B( 3Dm p[ 2D
where B is a normalization constant. Hence the Lyapunov
exponent can be obtained as

(64)

_1 f - dX,W(X)X,=— D (65)

mJ_, m*y*

We see that in the limit € — 0, the Lyapunov exponent \ is
negative so the aggregation of particles (coalescence of
paths) occurs in this regime.

The obtained result \=—D/(m?y?) in Eq. (65) is identical
to the one previously obtained in [12] using a different ap-
proximation method.

Along this line, one can search for corrections to the ex-
isting results by expansion around the instanton solution.
Also the consideration of the multi-instantons configurations
will be of interest.

In the following we will continue our analysis for the
evaluation of the Lyapunov exponent in the nonaggregation
phase and its derivation from the path integral formalism.
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Aggregation and nonaggregation phases can occur in
many different cases for many different values of diffusion
and viscosity coefficients, but we restrict ourselves to special
cases, where the path integral is exactly solvable or is appro-
priate for approximative methods. Thus, let us consider the
case of a very large D, large y with /D small but /D
fixed, when a nonaggregation phase can be imagined, since
the effect of diffusive force is more important than the effect
of viscous force. Hence, in this case the third and fourth
terms, i.e., 29X°/(Dm) and X*/(Dm?) in the action in Eq.
(43), can be neglected compared with the other terms. This
brings the path integral expression (43) for the probability
density into an exactly solvable form:

2 '
¥X dX(7)
W(X,t|0,0)=exp|:— —]J [1==
t 4D 1J ¢(0.0:x,.0) =0 V4mDdT

(! .
><exp|:—Ef dT<X2+ VX2
0

—“jﬂexp[z]. (66)
m 2

Expression (66) includes a Gaussian path integral, which
has an exact analytical solution [25]. Here we describe
the steps of calculations very briefly. Completing the qua-
dratic form in the exponent by the change in variable X
—2D/(mvy?)=Y, one obtains

t
0,0) =eXP{_ X ” _dY(7)
’ 4D 1J ¢(0.0:v,.) =0 N4mDdT

Xexp —ifodﬂ(f/)z+ Y'Y?]

szyzt}exp{%t] (67)

After evaluation of the Gaussian path integral and restoring
the original variable X, we reach an analytic expression for
the probability density

W(X,,t

Xexp{
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W(X,,t

12
__r
47D sinh(yt)}
52 2_0)2
Xexp{—4D<X, oy coth(yr)

" X D b4
exp| — 4D exp o yzt exp 5 |
(68)

After taking the limit #— o0 and normalizing the probability
density W(X,,7/0,0) in Eq. (68) to unity, we obtain

I " { l( _D)z}
0’0)_[277 ] exp| -7 X-—=] |
(69)

Using Eq. (69) for the probability density we find the
Lyapunov exponent in this case:
L&) _ D
m mzyz
Therefore, a positive quantity for Lyapunov exponent in this
case for the nonaggregation phase is obtained.

As a final remark, we should mention that the probability
density W(X,,£/0,0) in Eq. (42) satisfies the Fokker-Planck

0,0) = {

W(X,,t

> 0. (70)

equation
IWX,0,0) (£ + 9X)W(X,.10.0)] L PWE10.0)
= + .
at X x>

(71)

The Fokker-Planck Eq. (71) can be derived by writing down
the expression for infinitesimally shifted W(X,,.,z+€|0,0) as
in Eq. (42) and making expansion around X, and ¢. Equation
(71) is identical to the Fokker-Planck equation used in [12].
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