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We present an analytical study of the linearized impulsive Richtmyer-Meshkov flow for incompressible
elastic solids. Seminumerical prior investigations of a related shock-driven compressible elastic problem sug-
gest that the interface amplitude remains bounded in time, in contrast to the unstable behavior found for gases.
Our approach considers a base unperturbed flow and a linearization of the conservation equations around the
base solution. The resulting initial and boundary value problem is solved using Laplace transform techniques.
Analysis of the singularities of the resultant function in the Laplace domain allows us to perform a parametric
study of the behavior of the interface in time. We identify two differentiated long-term patterns for the
interface, which depends on the material properties: standing wave and oscillating decay. Finally, we present
results for the vorticity distribution, which show that the shear stiffness of the solids is responsible both for the
stabilization of the interface, and also for the period of the interface oscillations. Comparisons with previous

Linearized Richtmyer-Meshkov flow analysis for impulsively accelerated incompressible solids

results are discussed.
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I. INTRODUCTION

The original Richtmyer-Meshkov problem [1,2] describes
the instability, caused by the passage of a shock wave, of the
interface separating two fluids. This problem has been the
subject of study in many fields [3], including inertial con-
finement fusion [4], astrophysical phenomena [5], magneto-
hydrodynamics [6], and solid mechanics [7].

In the field of solid mechanics, Plohr and Plohr [7] per-
formed an analysis based on linearized compressible elastic-
ity, using free-slip boundary conditions and neo-Hookean
stress-strain relations. The numerical solution of the resulting
equations for a discrete range of initial conditions and mate-
rial parameters revealed that the behavior of the interface
separating two solids was oscillatory and stable after the
shock wave—interface interaction, with shear waves advect-
ing vorticity from the interface.

Piriz et al. [8] performed both local analysis and simula-
tions to derive an approximate result for the long-time be-
havior of the interface. They provide a long-time approxima-
tion for the amplitude and frequency of the interface
oscillations. However, it is unclear what boundary conditions
exactly were applied.

Richtmyer-Meshkov flow has similarities with other types
of flows that are unstable for fluids, such as the Rayleigh-
Taylor problem. In the field of solid mechanics, this flow has
been studied, too. Plohr and Sharp in 1998 [9] used Laplace
transform methods to study the instability of an incompress-
ible metal plate to derive an expression for the critical wave-
length beyond which the flow is unstable. They also demon-
strated the existence of shear waves in the solids, which
dissipate the vorticity deposited at the interface by an im-
pulse. Other contributions come from Piriz er al. [10] and
Terrones [11].

In this paper, we demonstrate the stability of the
Richtmyer-Meshkov problem for elastic solids using an in-
compressible, linearized, and impulse-driven model to obtain
a simple time-dependent solution. Using transform tech-
niques, we reduce the stability calculation to an analysis of
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the locations of singularities in the complex plane. We show
two distinct long-term types of behavior: decaying oscilla-
tions and standing waves.

II. PROBLEM DESCRIPTION

The impulsive Richtmyer-Meshkov problem for solids is
formulated using small perturbation theory and two-
dimensional plane-strain conditions for both materials. Fig-
ure 1 shows the initial configuration and the parameters that
influence the problem. The shock wave that initiates the mo-
tion of the system in the compressible Richtmyer-Meshkov
problem is replaced with an impulsive acceleration V&(r).
The interface is described as perpendicular to the direction of
the impulse with the addition of a sinusoidal perturbation of
wavelength 277/k and initial amplitude 7. Both materials
(j==,+) are described by their density p; and their shear
wave speeds c;= \e‘ﬁj/ pj, where u; is the material shear
modulus. The materials are taken to be purely elastic and
incompressible.

Mass conservation and momentum equations are applied
to each material in order to obtain a system of partial differ-
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ential equations for evolution of the perturbed flow, while
boundary conditions relate the velocities and stresses at the
interface between materials. The system is transformed in
time by a Laplace transform, and in one spatial dimension by
a normal-mode assumption. The resulting fourth-order ordi-
nary differential equation for the transform of the velocity
field in each material is then solved. From this expression,
other useful variables, such as amplitude of the interface and
the vorticity, can be calculated.

III. EQUATIONS OF MOTION AND BOUNDARY
CONDITIONS

We describe here the general form of the conservation
equations along with the incompressibility and plane-strain
constraints. These equations are particularized in the follow-
ing sections to describe the base and perturbed flows.

Mass conservation and conservation of linear momentum
are expressed in Eulerian form as

(914[

—L =0, 1

ox, (1)
(914[ r?u,» (90‘['
Fiy pu, =T, 2
P o p’axj ax; @

where u; is the velocity in the x; direction and oy; is the

Cauchy stress tensor. The kinematic equation that describes
the evolution of the interface 7(x,,7)—x,;=0 is given by

Dﬂt[n(xbt)_xl]:()’ (3)

where D/Dt=49/dt+u;d/ dx; is the material derivative.

Additional kinematics of solid deformation are described
by a gradient of a Lagrangian map x(X,7), where x is the
location of the particle at time ¢ that was originally at point
X. An inverse map is defined as X=X(x,). From these re-
lationships two tensors are obtained: the deformation tensor
Fj=0x;/ 0X; and the inverse deformation tensor g;;=0X;/ dx;.
These two tensors are related by Fj;gj= 6. Components g;;
evolve according to

) @)

The assumptions of plane strain and incompressiblitiy im-
pose relations between the elements of the inverse deforma-
tion tensor g;;. From the two dimensionality of plane strain
we have

gn=1 (5)

This may be combined with conservation of mass expressed
as det(g)=p/p, to give

813=823=831=83=0,

g18n—818n=1, (6)

for an incompressible material.

To close the problem, we define a constitutive law relating
stresses to the material deformation. We model both materi-
als with a neo-Hookean constitutive relation,
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0,y =—pO;+ uFyF . (7)

where pressure p is a Lagrange multiplier that enforces in-
compressibility, i.e., p satisfies

Fp F

é’x? oy dx;

(= puu;+ wFy Fjp), (®)
for uniform p.

Boundary conditions

Boundary conditions at the interface » relate variables
from each material. Defining n and t as the unit normal and
tangent at the boundary, the four boundary conditions are,
respectively, continuity of normal velocity, continuity of nor-
mal stress, and zero tangential stress (i.e., free slip),

[|“i|]”i=0’ )
”i[|0'ij|]n_,'=0, (10)
tla'l_ln]=0=t,0';n], (11)

where [|g|] indicates the jump ¢*—¢~. Boundary conditions
at infinity are imposed as radiation conditions, requiring all
waves at infinity to be outgoing.

IV. BASE FLOW AND LINEARIZATION

The trivial base flow assumes a planar interface aligned
with the x, axis and perpendicular to the direction of the
impulse. The resulting one-dimensional motion depends on
x;,t only and does not deform the material. The reference
frame is chosen with the unperturbed interface located at
x;=0 after the impulse at r=0, so that

n=-Vi[H() - 1], (12)

where V is the impulsive velocity and H(z) is the Heaviside
function. In each material the velocity, deformation, and
pressure fields are given by

uy=—VIH(t) - 1], (13)
u =0, (14)
8=, (15)

p=pVéD)x+u, (16)

where the resulting Cauchy stress o;;=—pVd(1)xJ;; represents
the fact that for this special geometry the material is in an
unstressed state before and after the impulse.

Linearization

Once the base flow variables are known, the complete
value of each variable g defining the problem is calculated
adding a perturbation term ¢’ to the base flow result g, i.e.,
Eqgs. (12)—(16). Substituting g=g+¢’ in the equations of mo-
tion [Egs. (1)—(4)] and retaining terms that are at most linear
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in perturbation quantities gives the following system of lin-
ear equations for the perturbed variables:

ITH
a—L=0, (17)
x.
j
ou' _z?ul-’ (90'1-’»
p—t+u—-—1=0, (18)
ot ox;  dx;
(9/
—; —u; =0, (19)

dg!. dgl,  ou!
78;1+u_1ﬁ+—1=0, (20)

&Xj 0-'.xj

where u, is given by Eq. (13).
Linearization of the neo-Hookean stress-strain relations
[Eq. (7)] produces

oy==p'&;— g+ &), 1)

the familiar relation for a Hookean material of linear elastic-
ity with Lamé’s first parameter A=0. The boundary condi-
tions for the normal velocity, normal stress, and free-slip
conditions [Egs. (9)—(11)], respectively, become

[Jui[]=0, (22)
(o [1==[lpl1Vy' 80), (23)
o5 =0= 0y, (24)

and are applied on the unperturbed interface (i.e., at x; =0 for
1=0).

V. SOLUTION OF THE PROBLEM

We assume now that the interfacial perturbation is ini-
tially sinusoidal in x, and the resulting perturbation solutions
may be expressed as Fourier modes in x,, ¢'(f,x;,x,)
=q(x,,1)exp(ikx,). In addition, the differential expressions
containing time dependence are converted to algebraic rela-
tions using the Laplace transform. The initial conditions for
the perturbations precede the impulse and are thus zero.

Denoting the Laplace transforms of a variable ¢ with
capital letters (e.g., G;;=L[g;]), the linearized equations
(17)—(20) become

d .
_U1+lkU2=0, (25)
dx
d d ,
pSUl + 2/.L_G11 +—P+ Mlk(G12+ G21) = O, (26)
dx dx

d
pSU2+2/LikG22+ikP+,lLd_(G|2+G21)=O, (27)
X

d
SGi]+_Ui=0’ (28)
dx
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SGi2+ikUi=0. (29)

This system of equations is manipulated to obtain an expres-
sion for U;, which is a fourth-order ordinary differential
equation to be solved separately in each material (i.e., x<0
and x>0),

d s2 o\ d® st
%Ul_ ?—2/( ﬁU1+ 7+k U,=0, (30)

where ¢?>=u/p. The general solution for U, is spanned by
the fundamental solutions

_ 22002 v (222
{ekxl’e kxl’e\(s /c%)+k xl’e V(s7/c?)+k xl}. (31)

Apart from the four boundary conditions imposed at the
interface (22)—(24), regular boundary conditions at infinity
are imposed after a suitable definition of the generally mul-
tivalued square root. Recalling that the inverse Laplace trans-
form is defined by a vertical contour of integration in the
complex s plane located to the right of all singularities, we
explicitly define the square roots to have positive real parts
in the right half plane. Boundary conditions at x — * o then

imply
UF(5,00) = A=(9)e ™ + Bu(s)e T2 (32)

where the upper sign is taken for x >0 and the lower sign for
x<O0.

The four unknowns A . (s),B.(s) are determined by appli-
cation of the four interface boundary condition equations
transformed into Laplace space. Solving the resulting linear
system gives

(r=1)Vaoks(2c3k? + s%)

AL(s)= Q0) , (33)
— 1) Voks2c2 k>
B(s) = 1) Qz‘;)s = (34)

where ()(s) is given by

Q(s) = (1 + r)s* +42k%s% + 4t krs” — 4tk

2 2
P 474 S
><<—1+ 1+c§k2)_4c+k r<—1+ 1+C2k2),

+

(35)

and r=p,/p_. With this, the problem is solved in the com-
plex s plane: all other transformed variables may be obtained
from U,(x;,s) by manipulation of Egs. (25)—(29).

Before analyzing the solutions in detail, we obtain physi-
cal insight by examining the evolution of vorticity, defined
for a two-dimensional flow as w=du,/dx;—du,/ dx,. By tak-
ing the curl of the linearized momentum (18) to eliminate the
hydrodynamic pressure and then differentiating in time to
expresses the time derivative of the stress in terms of the rate
of strain with the aid of Eq. (20), one finds that the vorticity
due to the linear perturbations satisfies the second-order
wave equation,
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Fo' 2(92(»'
=c
ot ax?

2

(36)

in each material for >0. The fourth-order ordinary differ-
ential equation (ODE) [Eq. (30)] is simply the Laplace trans-
form of this equation cast in terms of i, after the normal-
mode  assumption has been made: u'(f,x;,x,)
=ii(t,x;)exp(ikx,).

Using incompressibility (17), vorticity can be expressed
solely in terms of the velocity perturbation i, as

. 14, .
o' (1,x1,%,) = @(t,x;)e*2 = i<— kit + ——zl)e’kxz. (37)
k 9x;

From this one may readily verify that the A~ (s) solution in
Eq. (32) corresponds to an irrotational velocity field, while
the B.(s) solution identifies shear waves. Note that expres-
sion (37) holds within each solid but not at the interface,
where a finite jump of the tangential velocity u, produces an
additional vortex sheet. The Laplace transform of Eq. (37)
may be written as

02 (5,x1) = = 2ikU, (5,0)e*VOHEDT b (3g)

where U,(s,0)=U;(s,0)=U;(s,0) is the transform of the
normal velocity at the interface. Excluding the vortex sheet
the remaining vorticity w is continuous at the interface.

Using the convolution theorem, the vorticity mode in
physical space @&(,x;) can be computed as

t
d)i(-xht) = f (I)(’T,XI = O)gAi(t_ 'T,XI)dT, (39)
0

where  g.(r,x) =L [exp{FV(s*/ 2k +1 kx,}] and
&+(t,x,)exp(ikx,) satisfies the second-order wave equation
(36) as outward radiating waves. This convolution expres-
sion shows how the vorticity that is deposited at the interface
is transported by the shear waves into the materials for
t>0.

VI. ANALYSIS OF THE INTERFACE BEHAVIOR

To determine the time-dependent behavior of the velocity
field, interface amplitude, or other quantities of interest, the
inverse Laplace transform of the s-dependent expressions is
performed. The Bromwich integral offers a general way of
performing this operation,

1 y+iT
ft)y=LYF(s)} = ﬁlim f e'F(s)ds,  (40)

T— y=iT

where vy is a real value situated to the right of all singularities
of the function F(s).

Expression (40) can be calculated numerically to obtain
the complete evolution of the interface # in time and such
results are reported in the next section. Here, we use the tools
of complex analysis and asymptotics to examine analytically
both the initial growth rate and the long-term behavior of the
interface.
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A. Short-time interface behavior

From Eq. (19) [i.e., d5'/dt=ui(0,x,,7)], we see that the
growth rate of the linearized interface may be computed by
calculating the inverse Laplace transform of U,(s,x;=0).
Using Eq. (32), this quantity may be computed as
an (r=1)Vayoks®
— =L 41
ot [ Q(s) “1)

We can recover the familiar impulsive Richtmyer-Meshkov
result for inviscid fluids by eliminating the shear strength
of the materials (i.e., c+=0). This reduces € to Q=(r+1)s*
and the inverse Laplace transform gives

o (r-1)
at (r+1)

Vok, (42)

from which one sees that the perturbation amplitude grows
linearly in time. The ratio (r—1)/(r+1) is the Atwood num-
ber A,.

For the case of elastic solids, the initial growth rate for
any value of shear strength is also given by Eq. (42) as can
be seen by examining the large s limit U;(0,s) ~A,Vyk/s.
Physically for times much shorter than the characteristic
shear wave speeds << 1/(kc) the vorticity is located approxi-
mately at the interface and the interface initially evolves as in
the fluid example.

B. Long-time interface behavior

We now perform an analysis of the time-dependent be-
havior of the interface amplitude #7(¢) directly. From Eq. (41)
we see that

1) = 1, + L7'[N(s)], (43)

where

(r=1)Vayoks*

NO="00)

: (44)

and Q(s) is as defined in Eq. (35). In performing the inverse
transform, the analytical properties of the denominator ()
determine the time dependence of the solution. With the aim
of obtaining the long-time behavior of the interface, we con-
struct a specific representation of ) and deform the Bro-
mwich integral around the possible singularities.

While the square roots in {) have been defined to have a
positive real part in Re(s) >0, there are several possibilities
for the specific locations of the branch cuts. Figure 2 shows
the set of branch cuts that were used for our analysis. This
choice offers the possibility of applying linearization tech-
niques to calculate the long-term behavior, as is shown later
in this section.

Using this disposition of branch cuts, the Bromwich inte-
gral for 7 can be closed in the left half plane for #>0 and
computed as
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Im(s)
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FIG. 2. Set of branch cuts used for the analysis and deformation
of the Bromwich integral. We show two poles in the imaginary axis,
which is not a general case. For any pole found, the contour is
deformed to surround it.

1
i) =, + 72 Res(N(s,))e™"
i,
f —xt+zcll‘[N( X+ lC?k) N( X+ lC;lk)]dx
2771 =

f —xt— tc/t[N( Y= lclk) N(- x—ic?k)]dx,
27Tl J=—

(45)

where s, are the possible zeros of the denominator; the su-
perscripts “a” and “b” determine the value of the function
right above and below of the branch cut, respectively. The
part of the contour that lies at infinity has no contribution
according to Jordan’s lemma and the turning integrals around
the branch points can be shown to contribute nothing as their
radius goes to zero. Hence, the behavior of the interface is
determined by the residue of the amplitude function in the
complex s plane at the zeros of () and by the integration

around the branch cuts.

1. Contributions of the branch cuts

It can be seen directly that the oscillatory exponentials
may be taken out of the integrals in Eq. (45), and in addition
it can be shown that the magnitude of the integrals decays
with time. This follows from the fact that functions |N(s)|
are, in general, bounded along the branch cuts, although
there are certain discrete parametric exceptions that corre-
spond to poles of N(s) crossing a branch cut and onto a
separate sheet. In such a case, the poles are simple poles and
the principal values of the integrals are well defined.

The long-time asymptotic contributions from the branch
integrals to 7)(t) may be computed using Watson’s lemma
[12]. Essentially for large ¢, an expansion of [N(—x * ic’k)
—N(=x=*ic%)] about x=0 is used. Note that care must be
taken in treating the various square roots with respect to the
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density ratio r

FIG. 3. Regions of existence and nonexistence of pure imagi-
nary poles. A parametric set that lies in the first (second) region
produces an oscillatory (decaying) behavior of the interface,
respectively.

disposition of the branch cuts. Local to a given branch point,
such a procedure gives an expression of the form
N(-x *+ ic’k) = N(- x * ic%k) = \";2 ajxj, (46)
j=0

where x denotes the usual real square root. Then, expres-
sion (46) multiplied by exp(—xt) and integrated gives terms
in 1/67%,1/¢2,1/¢"2,.... When the exponentials exp(=*ickt)
are included, the resulting terms clearly oscillate with the
shear wave frequency while decaying to zero as t— . The
Appendix develops an approximation for the growth rate us-
ing the first term (agVx) of this approximation.

2. Contributions of the poles

The denominator ) is a single valued sheet of a multival-
ued function containing square roots. A rationalization is per-
formed by forming the product of all sheets to obtain a poly-
nomial of degree 16. The 16 roots of this polynomial are
computed numerically but only a few are real zeros of (). A
simple evaluation of our denominator at the roots allows one
to determine which residues need to be computed. The num-
ber of these poles varies depending on the parameters of the
problem.

Our analysis reveals that all the zeros of () correspond to
simple poles of N(s) and lie in Re(s) =<0, which combined
with our analysis of the branch-cut integrals indicates that
the interface may be classified as stable. The positions of the
poles depend on the ratio of shear wave velocities c_/c, and
the density ratio r.

Exploring this parameter space, we find regions where
there are a pair of conjugate poles that lie in the imaginary
axis (oscillatory) and regions where all poles lie in Re(s)
< 0. Figure 3 shows the region in parameter space where the
dominant poles produce pure oscillatory behavior and in the
region where the poles contribute at most exponentially de-
caying oscillatory behavior.
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2025 -02 -0.15 -0,
Re(s)

FIG. 4. Position of the closest pole with respect to the imaginary
axis and relative to the branch cuts (horizontal dashed lines). An-
other conjugate pole lies in Im(s) <0. Arrows show the direction
the poles follow when incrementing c_, leaving ¢, and r unchanged.
When both velocities are similar, the poles lie on the imaginary axis
and the interface oscillates. After reaching the branch cut, the pole
reappears and tends to the imaginary axis as c_— .

Oscillatory behavior is obtained when both materials have
a similar shear wave speed. The region around c_/c,=1
where this happens depends on the density ratio r. As the
ratio c_/ ¢, separates from 1, the pure imaginary poles travel
along the imaginary axis toward the lowest pair of branch
points. As this happens, the amplitude of the oscillations de-
creases, representing a smooth transition toward decaying
oscillatory behavior. After a certain critical value of the shear
wave velocity ratio, which depends on the density ratio, the
poles reach the lowest branch cut and disappear; and for such
parameters, the interface amplitude oscillates while decaying
with time to 7,.

A particular case, presented in Fig. 3, that gives oscilla-
tory behavior of the interface is that of one shear wave ve-
locity being zero and the other finite (or one being finite and
the other infinite). This case is the asymptotic result of the
decaying behavior and will be explained by monitoring the
location of the poles closest to the imaginary axis.

Figure 4 shows the position of the closest pole with re-
spect to the imaginary axis and relative to the position of the
branch cuts with c_=c,. First, the poles lie in the imaginary
axis for c_=c, and they approach the lower branch cut as c_
increases. After that, if we continue to increase c_, the poles
reappear from the superior branch cut and separate from it
approaching the imaginary axis.

In conclusion, when our shear wave velocities are far
from c_=c,, the behavior of the interface is decaying. As the
values of the shear wave velocities separate from each other,
a pair of conjugate poles tend to approach the imaginary
axis. This means that the interface behavior in time looks
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like an oscillatory exponential decay that decays more
slowly as the values of the shear wave velocity are more
distinct. Finally, when one of them becomes zero, the pole
reaches the imaginary axis and the behavior of the interface
is oscillatory in time.

C. Conclusions of the analysis

We distinguish two different long-term types of behavior
for the interface amplitude 7(r): pure oscillatory and oscilla-
tory decay. When discussed in terms of the interface
7(t,x,) = 7(t)exp(ikx,) these correspond to standing oscilla-
tory waves and decaying waves.

As the branch-cut integration always results in algebra-
ically decaying waves oscillating at the two shear speeds, the
classification of the late-time behavior is a function of the
locations of poles, i.e., the zeros of (). For the oscillatory
case, after an initial transient due to the branch cuts, the
interfacial waves oscillate at a frequency determined by the
position of the poles on the imaginary axis. The relative am-
plitude of this wave depends on the position of the poles too
through the calculation of residues. This amplitude decreases
as we parametrically approach the critical value of c_/c,.
After that, the behavior changes to time-dependent decay.
Physically the free-slip condition allows interfacial shear
waves to persist when the shear speeds are similar in both
materials, but when these nonzero speeds differ too greatly
(Fig. 3) such waves decay.

The other case that gives a late-time oscillatory behavior
for 7(z) is the extreme case of one of the shear wave veloci-
ties being zero (which indicates that this material is unaf-
fected by shear stresses, equivalent to a inviscid fluidlike
material). For this case, vorticity can only be carried off the
interface by the material with a nonzero shear modulus.

With respect to the oscillatory decaying behavior, we have
shown that it occurs when the shear wave velocities are suf-
ficiently different and no poles exist on the imaginary axis.
To analyze this region, the position of the pair of conjugate
poles that are closest to the imaginary axis is important. If
the pole is very close to it (which occurs when the two shear
wave velocities are very different) the subdominant exponen-
tially decaying traveling wave may be present for some time
as the characteristic decay rate of the resulting wave is very
small. On the other hand, when this pair of poles is far from
the imaginary axis, which happens just after reaching the
critical shear wave speed ratio that separates oscillatory from
decaying behavior; the evolution of the interface is con-
trolled by the integral around the branch cuts and exhibits a
1/£2 decay.

VII. RESULTS

In this section, some specific results from our solution of
the linearized Richtmyer-Meshkov flow are presented. We
aim to visualize the general conclusions extracted from the
analytical approach to the problem.

The most representative variable to discuss the stability of
the system is the amplitude of the interface. For that reason,
the first group of results shows the behavior of this variable
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FIG. 5. Interface amplitude varying c_/c, from 1 to 3 and r.

under changes in the parameters that control the problem. A
second group describes the frequency behavior of the long-
time oscillations, comparing it with previously published ap-
proximate results [8]. Finally, we show the way the vorticity
is carried away from the interface and the evolution of tan-
gential slip velocity at the interface.

A. Interface behavior

Figure 5 shows the amplitude of the interface in time
(conveniently nondimensionalized) when the shear wave ve-
locity ratio c_/c, is in the range 1=c_/c, =3, leaving the
density ratio fixed. As expected, after the transient, the inter-
face amplitude 7(z) oscillates for the case c_/c,=1. For the
other cases the interface amplitude decays faster as c_/c, is
increased.

Figure 6 shows the amplitude of the interface when c_/c,
is increased from 0.2 to 1. A practically oscillatory behavior

c/c =02
r=2 -+
~_c/c=04
0.3F o c_/c+=0.6’
¢ /c =0.8
0.2H1 _.cle=1}

—0.2 I I I I
0 10 20 30 40 50

tc k

+

FIG. 6. Interface amplitude varying c_/c, from 1 to 3 and fixed
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is observed for c_/c,=0.2 and c_/c,=0.4. As we already
pointed out, the interface oscillates for c_/c,=0. Therefore,
values of 0.2 and 0.4 are close enough to zero to exhibit a
very low rate of decay. For the intermediate values, the am-
plitude of the interface decays faster, but it returns to oscil-
latory for c_/c,=1.

B. Oscillation period

An attempt to perform a long-time (s —0) approximation
of Eq. (32) leads to the following expression:

(r=1)Vyoks

_+ _+ .
2(1 +r)(s+ik\/u>(s—ik\/u>
p_+ps p_+p.

(47)

U(s,0) =

From this last expression, we obtain that the oscillation pe-
riod is

T 1+r
= , (48)
To B

M

with Ty=(27/k)Vp_/ pu_. This value is on the order of
max[c_,c, ]k, which formally contradicts our principal as-
sumption in performing the long-time approximation, s
<(c_k,c,k). As a consequence, performing an inverse
Laplace transform of Eq. (47) leads to an inaccurate value
for the amplitude and does not reflect a possible decaying
behavior; in fact it predicts that the long-time amplitude
scales as 1/T for any value of c_/c,.
Piriz et al. [8] provided a similar expression

T 1.55 1+r
N s (49)

Ty 2 My

1+—

Mo

obtained by a mixture of local analysis and simulation. They
also predicted pure oscillation with a 1/7 amplitude as the
long-time behavior irrespective of c_/c,. This is because the
simple analytical model proposed in [8] computes the inter-
face behavior using Newton’s second law with a forcing term
that is proportional to the amplitude of the interface and a
mass term that is proportional to its acceleration. The result-
ing equivalent mass-spring system does not capture decaying
oscillations.

Figures 7 and 8 show a comparison between these ap-
proximations and the result calculated from the complete
model. The oscillation period arising from the pole that is
closer to the imaginary axis (the imaginary part of the pole
position) is also compared. In spite of the inaccuracy for
calculating the expected behavior of the system (oscillating
decay or pure oscillatory), the long-term approximation in
fact gives a very good result for the oscillation frequency. As
expected, as the ratio c¢,/c_ separates from 1, the oscillation
period of the complete system is closer to that associated
with the pole that is closer to the imaginary axis.
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3 ‘ ‘
——model result
- - -long term estimate
25k Piriz et al. (2006) |
i - - pole freq

0 5 10 15 20 25 30
n/u

FIG. 7. Oscillation period for fixed density ratio of 6.182 and
varying shear modulus. The complete model result is calculated
performing numerically the inverse Laplace transform of the inter-
face amplitude and counting the time between oscillations. The
long-term estimate uses Eq. (48). The estimate of Piriz ef al. uses
Eq. (49). The pole frequency is calculated by locating the pole in
the complex plane.

C. Vorticity

We have shown that vorticity is controlled by a wave
equation. At =0, the impulse produces a tangential velocity
that is equal in magnitude and opposite in direction in the
materials. For a incompressible inviscid fluid, vorticity lies at
the interface and cannot be dissipated or transported. There-

8 :
——model result
7| - - - long term estimate 4
Piriz et al. (2006) s,
61|~ pole freq ;T

p./p_

FIG. 8. Oscillation period for varying density ratio and fixed
ratio of shear modulus u,/u_. The complete model result is calcu-
lated performing numerically the inverse Laplace transform of the
interface amplitude and counting the time between oscillations. The
long-term estimate uses Eq. (48). The estimate of Piriz et al. uses
Eq. (49). The pole frequency is calculated by locating the pole in
the complex plane.
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FIG. 9. Amplitude of vorticity at different times for c_/c,=1,
r=2. Equal shear wave velocities produce a symmetric distribution
of vorticity at each time.

fore, the growth rate of the interface is constant [U(z,0)
=A,Vnok, with r being the density ratio]. This growth rate is
observed for our solution at r=0%*. After that moment, shear
waves carry the vorticity away from the interface. Figures 9
and 10 show how the initial vorticity is carried off the inter-
face for two cases: solids with equal shear wave velocity
(Fig. 9) and solids with different shear wave velocities (Fig.
10).

To close the study of vorticity, we recall that another vor-
tex sheet is produced by the jump in tangential velocity
across the interface. Using the incompressibility condition
(17), it is easy to derive the expressions for the tangential
velocities from the normal velocity. This reveals that the be-
havior is similar to that of the growth rate (the parametric
regions of oscillatory and decaying behavior are the same).

25

[
~ 0.
3 (:D
= tc k=0
+
-0.5]] tc+k=0.25 1
1o _tc k=0.5 |
- +
tc k=0.75
+
—1.54 1
. tc k=1
+
2 . . . . .
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

x1k

FIG. 10. Amplitude of vorticity at different times for c¢_/c,=3,
r=2. Vorticity is carried off the interface faster in the material with
higher wave velocity.
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-+

__c/c =8,r=2
-+
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+

FIG. 11. Evolution of the tangential velocity jump across the
interface for two different sets of parameters. The first set (continu-
ous line) corresponds to an oscillatory long-term behavior while the
second one (dashed line) corresponds to a decaying behavior.

Figure 11 shows the evolution of the jump in time for two
different sets of parameters (case 1: c_/c,=1 and r=2; case
2: c_/c,=3 and r=2).

VIII. CONCLUSIONS

An analytical approach to the Richtmyer-Meshkov flow
for elastic solids allowed us to simply determine the para-
metric dependence of the problem. The incompressible and
linear assumptions reduce the number of parameters in con-
sideration to two: the shear wave velocity ratio and the den-
sity ratio. Then, the parameter space was explored with ease
despite the difficulty of the expressions encountered.

Our analysis reveals the following conclusions concerning
the amplitude and rate of growth of the interface between
two elastic solids with frictionless contact:

(1) Solutions show a transitory period close to =0 fol-
lowed by a regular behavior. The rate of growth of the inter-
face at =0 corresponds to the Richtmyer-Meshkov result for
fluids.

(2) Two different patterns are identified for the long-time
behavior. The first one is purely oscillatory and appears when
the two solids in contact have a very similar shear wave
velocity or when one of the solids has no shear strength. The
second behavior is described as an oscillatory decay that
parametrically varies in oscillation frequency and rate of de-
cay. As the ratio c_/c, separates from 1, the decaying rate
increases and then decreases as c_/c, becomes very large or
very small, tending to the asymptotic oscillatory behavior
when c_/c,—0 or c_/c,—ce.

(3) While the model of [8] accurately predicts the oscilla-
tion frequency of the interfacial waves, it incorrectly predicts
the long-time amplitude. The amplitude should be computed
using the full expression or performing a more accurate long-
time approximation considering true pole locations and the
branch cuts of the Laplace transform.
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FIG. 12. Contribution of the integral over the branch cuts to the
growth rate using a numerical quadrature method to integrate the
growth rate function and using the first term of the approximation
around the branch points.

We have shown the second-order wave equation with the
shear wave velocity governing the vorticity within each ma-
terial. Shear waves carry the initial vorticity deposited by the
impulse at the interface at =0 to the interior of the solid and
away from interface. The tangential slip velocity at the inter-
face either oscillates or decays while oscillating, as deter-
mined by the nature of the interfacial wave 7(z,x,).
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APPENDIX: APPROXIMATION FOR THE GROWTH
RATE USING LINEARIZATION AROUND BRANCH CUTS

The symmetry of the problem allows us to only consider
the integrals around the branch cuts located at Im(s)>0,

066305-9



LOPEZ ORTEGA et al.

multiply the result by 2, and take the real part of the expres-
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iNe_(c - Ci) JE \E pic_ki=il4

sion, up3(t,0) == = 3. (A4)
Nt
In :
= (01 =0) = 11,0 + > u,(1,0), (Al (@ i Befeski-imi
- (1,0) = - ~E= =0 (A3)
upg(t, —3n 4-
where u,,,, is the contribution of the residues of the poles to vt
the normal velocity and leading-order branch-cut contribu- For c_<c,,
tions u,,; are
T [y ic_kimimi4 Ve(c2 = )i eie-ki-imi4
Ve_ky2e'- = +
Mbl(t,o) =— 0 Kl , (AZ) ub3(t, 0) \”/7—113/2 K3, (A6)
Nt
. . . [~ ic kt—im
R P 00 St T
up(,0) == T K,. (A3) palts N I
For c_.>c,, where coefficients K; are
|
4t (1+r)[- 48(336?}‘2 + 326§rr2 =882 r(1+r) + A1+ +8c*ctr(1 +30)] (A8)
e K[- 16cir2 - SCicir(l 1)+ 402+ SCEcir(l +3n]? ’
B 4cir(1 +r)[32c¢8 - 486‘?63 - 8CEC$(1 +7)+ ci(l +7)+ 80ici(3 +7)] (A9)
: K- 16¢% -8t (1 + 1) + 81+ 1)+ 8B+ 0P '
3ZCEcir(1 +r)[- 4czcir + 4cir +ct(1+0)]
K3=73 6 42 6 2 2 4 27 (A10)
K[=16¢%2 = 8c*c2r(1 + 1) + c®(1 + 1) + 8c2cr(1 +37)]
323 2r(1 + )[4t — 4t + (1 +r
X, Zepr(L+r)[4ct —4ciei + cy(1 +7)] (Al1)

The results are quite accurate even using only the first
term (the term in 1/7%) of the approximation. Normally
this approximation matches the complete integration
result earlier when the two shear wave velocities are

Bl=16¢® = 8c2ct(1+ 1) + (1 + 1)+ 823+ 0]

very different from each other. Figures 12(a) and 12(b)
show a comparison of both results (actual and approxi-
mate) for c_/c,=2 and r=2, and c_/c,=1 and r=2, respec-
tively.
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